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Abstract

This paper presents a complete, choice-based, axiomatic Bayesian decision theory.

It introduces a new choice set consisting of information-contingent plans for choosing

actions and bets and subjective expected utility model with effect-dependent utility

functions and action-dependent subjective probabilities which, in conjunction with the

updating of the probabilities using Bayes’ rule, gives rise to a unique prior and a set

of action-dependent posterior probabilities representing the decision maker’s prior and

posterior beliefs.
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1 Introduction

A choice-based theory of Bayesian decision making blends five key ideas. First, the pat-

terns revealed by choice are the sole evidence by which the underlying theoretical concepts

may be refuted.1 Second, the decision-maker’s evaluation of the objects of choice — payoffs

contingent on the realization of events — reflects his tastes as well as his beliefs regarding

the likelihoods of the relevant events. Third, the decision maker’s beliefs, both prior and

posterior, are measurable cognitive phenomena representable by probabilities. Forth, new

information affects the decision maker’s preferences, or choice behavior, through its effect on

the decision maker’s beliefs rather than his tastes. Fifth, the posterior probabilities repre-

senting the decision maker’s posterior beliefs are obtained by updating the prior probabilities

representing his prior beliefs using Bayes’ rule. By themselves these ideas do not imply that

Bayesian decision makers are expected utility maximizers.

In the wake of the seminal work of Savage (1954), it is commonplace to depict the choice

set as the set of all mappings from a set of states, representing the resolutions of uncertainty,

to a set of consequences. The objects of choice have the interpretation of alternative courses

of action and are referred to as acts. The two most commonly used specifications of the

choice set in the literature are those of Savage (1954), in whose formulation the set of states

is infinite and the set of consequences arbitrary, and Anscombe and Aumann (1963), in

whose specification the set of states is finite and the set of consequences are lotteries with

1This is an application of the revealed-preference methodology.
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finite sets of arbitrary prizes.

The literature abounds with axiomatic theories specifying preference relations on these

choice sets whose representations involve unique subjective probabilities, interpreted as the

Bayesian prior.2 However, in all the models that invoke Savage’s analytical framework, the

uniqueness of the prior probabilities is due to the use of a convention maintaining that

constant acts are constant-utility acts. This convention lacks choice-theoretic meaning and

as a result is not refutable in the context of the revealed-preference methodology.

To grasp this claim, let S the set of states, C be the set of consequences and F the set

of acts. Decision makers are characterized by their preference relations on F . In Savage’s

subjective expected utility theory, the structure of a preference relation, <, on F, depicted

axiomatically, allows its representation by an expected utility functional, that is, for all

f ∈ F ,

f 7→
Z
S

u (f(s)) dπ (s) , (1)

where u is a real-valued (utility) function defined on the consequences and π is a finitely

additive, nonatomic probability measure on S. Moreover, the utility function u is unique

up to positive linear transformation, and, given u, the subjective probability measure π is

unique.

The uniqueness of π, however, is predicated on the implicit assumption that constant

2Prominent among these theories are the expected utility models of Savage (1954), Anscombe and Aumann

(1963), and Wakker (1989), as well as the probability sophisticated choice models of Machina and Schmeidler

(1992, 1995).
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acts are constant utility acts (that is, the utility function is state-independent). As already

mentioned, this assumption is not implied by the axioms and is, therefore, devoid of be-

havioral content. In fact, there are infinitely many prior probability measures consistent

with a decision maker’s prior preferences. Put differently, even if a decision maker’s beliefs

constitute a psychological phenomenon quantifiable by a probability measure and his choice

behavior is consistent with the axiomatic structure of expected utility theory, the proposition

that the subjective probabilities ascribed to him by Savage’s model represent the decision

maker’s beliefs is untestable. To prove this assertion, let γ be a strictly positive, bounded,

real-valued function on S, and let E (γ) =
Z
S

γ (s) dπ (s) . Then the prior preference relation,

depicted by the representation (1), is also represented by

f 7→
Z
S

û (f(s), s) dπ̂ (s) , (2)

where û (·, s) = u (·) /γ (s) and π̂ (s) = π (s) γ (s) /E (γ) , for all s ∈ S.3

The fact that the uniqueness of the subjective probabilities in Savage’s theory, and in

other theories that invoke Savage’s (1954) analytical framework, is not a choice-based prop-

erty of the model means that these subjective probabilities do not constitute a behavioral

foundations of Bayesian statistics.

The popularity of Savage’s notion of subjective probabilities among economists and de-

3This point has been recognized by Drèze (1987); Schervish, Seidenfeldt, and Kadane (1990); Karni (1996,

2003); Karni and Schmeidler (1993); and Nau (1995). Note also that, even if a decision maker is Bayesian

(that is, updates his preferences using Bayes’ rule), neither his prior nor his posterior beliefs, as defined by

the representing probabilities, are unique.
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cision theorists is due, in part, to the elegance of the representation it affords, both in terms

of its mathematical formulation and the linguistic ease of describing its ingredients.4 How-

ever, this elegance comes at a cost. To attain the separation of subjective probabilities from

utilities it is necessary to assume that the preference relation exhibits state independence,

which entails substantial loss of generality and limits range of applications of the model. For

instance, Anscombe and Aumann (1963) impose state-independence to decompose the terms

of a separately additive representation into a product of utility and probability.5 The im-

position of substantive restrictions to attain mathematical elegance is not good scholarship.

Furthermore, it has recently been shown, in the context of insurance in the presence of moral

hazard, that even the representation of the agent’s prior preferences is correct, failure to as-

cribe to him his true prior probabilities and utilities, may result in attributing to the agent

the wrong posterior preferences. In such case, when new information necessitates changing

the insurance policy, the insurer may offer the agent a policy that is individually rational and

yet incentive incompatible.6 A more meaningful notion of subjective probability, one that

is a measurement of subjective beliefs when these beliefs have structure that allows their

representation by probability measure, is developed in this paper.

Building on Karni (2006), this paper introduces a new analytical framework that in-

4Quite often in the literature, the term subjective probability is used interchangeably with the term

beliefs. Yet, as just demonstarted, this usage is hardly justified if not outright misleading. It does, however,

serves the purpose of lending the theory with intuitive meaning that readers apparently find compelling.
5The analogous axioms in Savage’s model are P3 and P4 (see Hill (2008)).
6See Karni (2008).
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cludes actions, effects, bets and a set of observations, or signals, that the decision maker

may receive before choosing his action and bet. Bets are real-valued mapping on the set of

effects and strategies are maps from the set of observations to the set of action-bet pairs.

Decision makers in this model are characterized by preference relations on the set of all

strategies. The axiomatic structure of these preference relations lends the notion of constant

utility bets choice-theoretic meaning. In other words, unlike models that use Savage’s choice

set, in this model constant utility bets leave their unique signature, or trace, in the pattern

of choice permitting their identification. This makes it possible to define unique family of

action-dependent, joint subjective probability distributions on the product set of effects and

observations. Moreover, the prior probabilities are the unconditional marginal probabili-

ties on the set of effects and the posterior probabilities are the distributions on the effects

conditional on the observations. To my knowledge, this is the only complete choice-based

Bayesian decision theory available.

The model presented here accommodates effect-dependent preferences, lending itself to

natural interpretations in the context of medical decision making and the analysis of life

insurance, health insurance, as well as standard portfolio and property insurance problems.

The fact that the probabilities are action dependent means that the model furnishes an

axiomatic foundation for the behavior of the principal and agent depicted in the parametrized

distribution formulation of agency theory introduced by Mirrlees (1974, 1976).

The pioneering attempt to extend the subjective expected utility model to include moral

hazard and state-dependent preferences is due to Drèze (1961,1987). Invoking the analytical
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framework of Anscombe and Aumann (1963), he departed from their “reversal of order”

axiom, assuming instead that decision makers may strictly prefer knowing the outcome of

a lottery before the state of nature becomes known. According to Drèze, this suggests that

the decision maker believes that he can influence the probabilities of the states. How this

influence is produced is not made explicit. The representation entails the maximization of

subjective expected utility over a convex set of subjective probability measures.7

Section 2 introduces the theory and the main representation theorem. Section 3 discusses

dynamic consistency and the uniqueness of the probabilities. Concluding remarks appear in

section 4. Section 5 contains the proof of the main theorem.

2 The Theory

2.1 The analytical framework

Let Θ be a finite set of effects, X a finite set of observations or signals, and A a connected

separable topological space whose elements are referred to as actions. Actions correspond

to initiatives (e.g., time and effort) that decision makers may take to influence the likely

realization of effects.
7The model in this paper differs from that of Drèze in several important respects, including the specifica-

tion of the means by which a decision maker thinks he may influence the likelihood of the alternative effects.

For more deatils see Karni (2006).
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A bet is a real-valued mapping on Θ interpreted as monetary payoffs contingent on the

realization of the effects. Let B denote the set of all bets on Θ and assume that it is endowed

with the R|Θ| topology. Denote by (b−θr) the bet obtained from b ∈ B by replacing the θ

coordinate of b (that is, b (θ)) with r. Effects are analogous to Savage’s (1954) states in the

sense that they resolve the uncertainty associated with the payoff of the bets. Unlike states,

however, the likely realization of effects may conceivably be affected by the decision maker’s

actions.8

Observations may be obtained before the choice of bets and actions, in which case they

affect these choices. For example, Upon obtaining the result of a blood test indicating the

cholesterol level in his blood, a decision maker may adopt an exercise and diet regimen to

reduce the risk of heart attack and, at the same time, take out health insurance and life

insurance policies. In this instance the possible blood-test results correspond to observa-

tions, the diet and exercise regimens correspond to actions, the states of health are effects,

and the financial terms of an insurance policy constitute a bet on Θ.9 Another example

concerns a mutation in the genes BRCA1 or BRCA2. Women with this mutation are at sig-

nificantly increased risk of developing breast and ovarian cancers. Preventive (prophylactic)

oophorectomy (or the surgical removal of the ovaries) can be performed to reduce both risks.

Women can undergo genetic testing to determine whether they have this genetic mutation

8It is sufficient, for my purpose, that the decision maker believes that he may affect the likely realization

of the effects by his choice of action.
9Clearly, the information afforded by the new observation is conditioned by the existing regimen. The

decision problem is how to modify the existing regimen in light of the new information.
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and, as a result, are predisposed to developing breast cancer and ovarian cancer and use this

information to decide whether or not to undergo prophylactic oophorectomy. In this case

the probability of the existence of the mutation (the signal) is independent of the action (the

prophylactic oophorectomy). Yet undergoing surgery affects the probability of developing

breast or ovarian cancer.

To model this “dynamic” aspect of the decision making process, I assume that a de-

cision maker formulates a strategy, or contingent plan, specifying the action-bet pairs to

be implemented contingent on the observations. Formally, denote by o the event “no new

information” and let X̄ = X ∪ {o}, then strategy is a function I : X̄ → A×B that has the

interpretation of a set of instructions specifying, for each x ∈ X̄, an action-bet pair to be

implemented if x is observed.10 Let I be the set of all strategies.

A decision maker is characterized by a preference relation < on I. The strict preference

relation, Â, and the indifference relation, ∼, are the asymmetric and symmetric parts of <,

respectively. Denote by I−x (a, b) ∈ I the strategy in which the x coordinate of I is replaced

by (a, b) . An observation, x, is essential if I−x (a, b) Â I−x (a
0, b0) for some (a, b) , (a0, b0) ∈

A×B and I ∈ I. I assume throughout that all elements of X̄ are essential.

In the terminology of Savage (1954), X̄ may be interpreted as a set of states and contin-

gent plans as acts. However, because the decision maker’s beliefs about the likelihoods of the

10Alternatively stated, o is a non-informative observation (that is, anticipating the representaion below,

the subjective probability distribution on of the effects conditional on o is the same as that under the current

information).
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effects depend on both the actions and the observations, the preferences on action-bet pairs

are inherently observation dependent. Thus applying Savage’s state-independent axioms, P3

and P4, to < on I, makes no sense.

2.2 Axioms and additive representation of < on I

The first axiom is standard:

(A.1) (Weak order) < is a complete and transitive binary relation.

A topology on I is needed to define continuity of the preference relation <. Recall that

I = (A×B)X̄ and let I be endowed with the product topology.11

(A.2) (Continuity) For all I ∈ I, the sets {I 0 ∈ I | I 0 < I} and {I 0 ∈ I | I < I 0} are

closed.

The next axiom, coordinate independence, is analogous to but weaker than Savage’s

(1954) sure thing principle.12

(A.3) (Coordinate independence) For all x ∈ X̄, I, I 0 ∈ I, and (a, b) , (a0, b0) ∈ A×B,

I−x (a, b) < I 0−x (a, b) if and only if I−x (a
0, b0) < I 0−x (a

0, b0) .

11That is, the topology on I is the product topology on the Cartesian product (A×B)|X̄| .
12See Wakker (1989) for details.
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An array of real-valued functions (vs)s∈S is said to be a jointly cardinal additive represen-

tation for a binary relation º on a product set D = Πs∈SDs if, for all d, d0 ∈ D, d º d0 if and

only if
P

s∈S vs (ds) ≥
P

s∈S vs (d
0
s) , and the class of all functions that constitute an additive

representation of º consists of those arrays of functions, (v̂s)s∈S , for which v̂s = ηvs + ζs,

η > 0 for all s ∈ S. The representation is continuous if the functions vs, s ∈ S are continuous.

The following theorem is an application of Theorem III.4.1 in Wakker (1989):13

Theorem 1 Let I be endowed with the product topology and | X̄ |≥ 3. Then a preference

relation < on I satisfies (A.1)—(A.3) if and only if there exist an array of real-valued func-

tions {w (·, ·, x) | x ∈ X̄} on A × B that constitute a jointly cardinal continuous additive

representation for < .

2.3 Independent betting preferences

For every given x ∈ X̄, denote by <x the induced preference relation on A× B defined by

(a, b) <x (a0, b0) if and only if I−x (a, b) < I−x (a
0, b0) . The induced strict preference relation,

denoted by Âx, and the induced indifference relation, denoted by∼x, are the asymmetric and

symmetric parts of <x, respectively.14 The induced preference relation <o is referred to as

the prior preference relation; the preference relations <x, x ∈ X, are the posterior preference
13To simplify the exposition I state the theorem for the case in which X̄ contains at least three essential

coordinates. Additive representation when there are only two essential coordinates requires the imposition

of the hexagon condition (see Wakker [1989] theorem III.4.1).
14For preference relations satisfaying (A.1) - (A.3), these relation are well-defined.
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relations. For each a ∈ A the preference relation <x induces a conditional preference relation

onB defined as follows: for all b, b0 ∈ B, b <x
a b

0 if and only if (a, b) <x (a, b0) . The asymmetric

and symmetric part of <x
a are denoted by Âx

a and ∼x
a, respectively.

An effect, θ, is said to be nonnull given the observation-action pair (x, a) if (b−θr) Âx
a

(b−θr
0) , for some b ∈ B and r, r0 ∈ R; it is null given the observation-action pair (x, a)

otherwise. Given a preference relation, <, denote by Θ (a, x) the subset of effects that are

nonnull given the observation-action pair (x, a). Assume that Θ (a, o) = Θ, for all a ∈ A.

Two effects, θ and θ0, are said to be elementarily linked if there are actions a, a0 ∈ A and

observations x, x0 ∈ X̄ such that θ, θ0 ∈ Θ (a, x)∩Θ (a0, x0) . Two effects are said to be linked

if there exists a sequence of effects θ = θ0, ..., θn = θ0 such that θj and θj+1 are elementarily

linked, j = 0, ..., n− 1. The set of effects, Θ, is linked if every pair of its elements is linked.

The next axiom requires that the “intensity of preferences” for monetary payoffs contin-

gent on any given effect be independent of the action and the observation:

(A.4) (Independent betting preferences) For all (a, x) , (a0, x0) ∈ A×X̄, b, b0, b00, b000 ∈ B,

θ ∈ Θ (a, x)∩Θ (a0, x0) , and r, r0, r00, r000 ∈ R, if (b−θr) <x
a

¡
b0−θr

0¢ , ¡b0−θr00¢ <x
a (b−θr

000) ,

and
¡
b00−θr

0¢ <x0
a0
¡
b000−θr

¢
then

¡
b00−θr

00¢ <x0
a0
¡
b000−θr

000¢ .
To grasp the meaning of independent betting preferences, think of the preferences (b−θ, r) <x

a¡
b0−θ, r

0¢ and ¡b0−θ, r00¢ <x
a (b−θ, r

000) as indicating that given the action a, the observation x,

and the effect θ, the intensity of the preferences of r00 over r000 is sufficiently larger than that
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of r over r0 as to reverse the preference ordering of the effect-contingent payoffs b−θ and b0−θ.

The axiom requires that these intensities not be contradicted when the action is a0 instead

of a and the observation is x0 instead of x.

The idea may be easier to grasp by considering a specific instance in which (b−θ, r) ∼x
a¡

b0−θ, r
0¢, (b−θr00) ∼x

a

¡
b0−θr

000¢ and ¡b00−θr0¢ ∼x0
a0
¡
b000−θr

¢
. The first pair of indifferences indicates

that, given a and x, the difference in the payoffs b and b0 contingent on the effects other than

θ measures the intensity of preferences between the payoffs r and r0 and between r00 and

r000, contingent on θ. The indifference
¡
b00−θr

0¢ ∼x0
a0
¡
b000−θr

¢
then indicates that given another

action-observation pair, a0 and x0, the intensity of preferences between the payoffs r and r0

contingent on θ is measured by the difference in the payoffs the bets b00 and b000 contingent on

the effects other than θ. The axiom requires that, in this case, the difference in the payoffs

b00 and b000 contingent on the effects other than θ is also a measure of the intensity of the

payoffs r00 and r000 contingent on θ. Thus the intensity of preferences between two payoffs

given θ is independent of the actions and the observations.

2.4 Belief consistency

To link the decision maker’s prior and posterior probabilities, the next axiom asserts that

for every given a ∈ A and θ ∈ Θ, the prior probability of θ given a is the sum over X of

the joint probability distribution on X ×Θ conditional on θ and a (that is, the prior is the

marginal probability on Θ).
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Let I−o (a, b) denote the strategy that assigns the action-bet pair (a, b) to every observa-

tion other than o (that is, I−o (a, b) is a strategy such that I (x) = (a, b) for all x ∈ X).

(A.5) (Belief consistency) For every a ∈ A, I ∈ I and b, b0 ∈ B, I−o (a, b) ∼ I−o (a, b
0)

if and only if I−o (a, b) ∼ I−o (a, b0) .

The interpretation of axiom (A.5) is as follows. The decision maker is indifferent between

two strategies that agree on X and, in the event that no new information becomes available,

call for the implementation of the alternative action-bet pairs (a, b) or (a, b0) if and only if he

is indifferent between two strategies that agree on o and call for the implementation of the

same action-bet pairs (a, b) or (a, b0) regardless of the observation. Put differently, given any

action, the preferences on bets conditional on there being no new information is the same

as that when new information may not be used to select the bet. Hence, in and of itself,

information is worthless.

2.5 Constant utility bets

Constant utility bets are bets whose payoffs offset the direct impact of the effects. Formally

Definition 2 A bet b̄ ∈ B is a constant utility bet according to < if, for all I, I 0, I 00, I 000 ∈

I, a, a0, a00, a000 ∈ A and x, x0 ∈ X̄, I−x
¡
a, b̄
¢
∼ I 0−x

¡
a0, b̄

¢
, I−x

¡
a00, b̄

¢
∼ I 0−x

¡
a000, b̄

¢
and

I 00−x0
¡
a, b̄
¢
∼ I 000−x0

¡
a0, b̄

¢
imply I 00−x0

¡
a00, b̄

¢
∼ I 000−x0

¡
a000, b̄

¢
and ∩(x,a)∈X×A{b ∈ B | b ∼x

a b̄} =

{b̄}.
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To render the definition meaningful it is assumed that, given b̄, for all a, a0, a00, a000 ∈ A

and x, x0 ∈ X̄ there are I, I 0, I 00, I 000 ∈ I such that the indifferences I−x
¡
a, b̄
¢
∼ I 0−x

¡
a0, b̄

¢
,

I−x
¡
a00, b̄

¢
∼ I 0−x

¡
a000, b̄

¢
and I 00−x0

¡
a, b̄
¢
∼ I 000−x0

¡
a0, b̄

¢
hold.

As in the interpretation of axiom (A.4), to understand the definition of constant utility

bets it is useful to think of the preferences I−x
¡
a, b̄
¢
∼ I 0−x

¡
a0, b̄

¢
and I−x

¡
a00, b̄

¢
∼ I 0−x

¡
a000, b̄

¢
as indicating that, given b̄ and x, the preferential difference between the substrategies I−x and

I 0−x measure the intensity of preference of a over a
0 and that of a00 over a000. The indifference

I 00−x0
¡
a, b̄
¢
∼ I 000−x0

¡
a0, b̄

¢
implies that, given b̄, and another observation x0, the preferential

difference between the substrategies I 00−x0 and I 000−x0 is another measure the intensity of pref-

erence of a over a0. Then it must be true that it also measure the intensity of preference of

a00 over a000. The requirement that ∩(x,a)∈X×A{b ∈ B | b ∼x
a b̄} = {b̄} implicitly asserts that

the set of actions and observations is sufficiently rich so that b̄ is well-defined.15

To understand why this implies that b̄ is a constant utility bet recall that, in general,

actions affect decision makers in two ways: directly through their utility cost and indirectly

by altering the probabilities of the effects. Moreover, only the indirect impact depends on

the observations. The definition indicates that, given b̄, the intensity of the preferences over

the actions is observations independent. This means that the indirect influence of the actions

is neutralized, which can happen only if the utility associated with b̄ is invariable across the

15Anticipating the main result, the assumed richness of the set of observations and acts is such that b̄ the

unique element in its equivalence class in B whose conditional expected utility is invariante with respect to

observations and actions.
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effects.

Let Bcu (<) be a subset of all constant utility bets according to < . In general, this set

may be empty. This is the case if the range of the utility of the monetary payoffs across

effects do not overlap. Here I am concerned with the case in which Bcu (<) is nonempty. The

set Bcu (<) is said to be inclusive if for every (x, a) ∈ X ×A and b ∈ B there is b̄ ∈ Bcu (<)

such that b ∼x
a b̄.

16

The next axiom requires that the trade-offs between the actions and the substrategies

that figure in definition 2 are independent of the constant utility bets.

(A.6) (Trade-off independence) For all I, I 0 ∈ I, x ∈ X̄, a, a0 ∈ A and b̄, b̄0 ∈ Bcu (<) ,

I−x
¡
a, b̄
¢
< I 0−x

¡
a0, b̄

¢
if and only if I−x

¡
a, b̄0

¢
< I 0−x

¡
a0, b̄0

¢
.

Finally, it is also required that the direct effect (that is, cost) of actions, measured by

the preferential difference between b̄ and b̄0 in Bcu, be independent of the observation.

(A.7) (Conditional monotonicity) For all b̄, b̄0 ∈ Bcu (<) , x, x0 ∈ X̄, and a, a0 ∈ A,¡
a, b̄
¢
<x
¡
a0, b̄0

¢
if and only if

¡
a, b̄
¢
<x0

¡
a0, b̄0

¢
.

16Inclusiveness of Bcu (<) simplifies the exposition. For existence and uniquness of the probabilities in the

main result below it is enough that for every given x and a, Bcu (<) contains at least two bets.
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2.6 The main representation theorem

For each I ∈ I let
¡
aI(x), bI(x)

¢
denote the action-bet pair corresponding to the x coordinate

of I — that is, I (x) =
¡
aI(x), bI(x)

¢
.

Theorem 3 Let < be a preference relation on I and suppose that Bcu (<) is inclusive. Then

< satisfies (A.1)—(A.7) if and only if there exist array of continuous, jointly cardinal, real-

valued, functions {u (·, θ) | θ ∈ Θ} on R, v ∈ RA and, a for every a ∈ A, there is a unique

joint probability measure π (·, · | a) on X̄ ×Θ such that < on I is represented by

I 7→
X
x∈X̄

μ (x)

"X
θ∈Θ

π
¡
θ | x, aI(x)

¢
u
¡
bI(x) (θ) , θ

¢
+ v

¡
aI(x)

¢#
(3)

where μ (x) =
P

θ∈Θ π (x, θ | a) for all x ∈ X̄ is independent of a, π (θ | x, a) = π (x, θ | a) /μ (x)

for all x ∈ X and for each a ∈ A, π (θ | o, a) = 1
1−μ(o)

P
x∈X π (x, θ | a) . Moreover, for every

b̄ ∈ Bcu (<) , u
¡
b̄ (θ) , θ

¢
= u

¡
b̄
¢
for all θ ∈ Θ.

Although the joint probability distributions π (·, · | a) , a ∈ A depend on the actions, the

distribution μ is independent of a. This is consistent with the formulation of the decision

problem according to which the choice of actions is contingent on the observations. In

other words, if new information in the form of an observation becomes available, it precedes

the choice of action. Consequently, the dependence of the joint probability distributions

π (·, · | a) on a captures solely the decision maker’s beliefs about his ability to influence the

likelihood of the effects by his choice of action.17

17If an action-effect pair are already "in effect" when new information arrives, they constitute a default

course of action. In such instnace, the interpretation of the decision at hand is possible choice of new action
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3 Dynamic Consistency and Uniqueness of the Proba-

bilities

3.1 Conditional preferences and dynamic consistency

The specification of the decision problem implies that, before the decision maker chooses an

action-bet pair, either no informative signal arrives (that is, the observation is o) or new

informative signal arrives in the form of an observation x ∈ X. One way or another, given

the information at his disposal, the decision maker must choose among action-bet pairs.

Let
³
<̂x
´
x∈X̄

be binary relations on A × B depicting the decision maker’s choice behavior

conditional on observing x. I refer to
³
<̂x
´
x∈X̄

by the name ex-post preference relations.

Dynamic consistency requires that at each x ∈ X̄, the decision maker implements his

plan of action envisioned for that contingency by the original strategy. Formally,

Definition 4 A preference relation < on I is dynamically consistent with the ex-post pref-

erence relations
³
<̂x
´
x∈X̄

on A × B if the posterior preference relations (<x)x∈X̄ satisfy

<x= <̂x
for all x ∈ X̄.

The following is an immediate implication of Theorem 3.

and bet. For example, a modification of the diet regiment coupled with a possible change of life insurance

policy.
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Corollary 5 Let < be preference relation on I satisfying (A.1)—(A.7) and suppose that

Bcu (<) is inclusive. Then < is dynamically consistent with the ex-post preference relations³
<̂x
´
x∈X̄

on A×B if and only if, for all x ∈ X̄, <̂x
is represented by

(a, b) 7→
X
θ∈Θ

π (θ | x, a)u (b (θ) , θ) + v (a) , (4)

where {u (·, θ) | θ ∈ Θ} and {π (· | x, a) | x ∈ X̄, a ∈ A} are the utility functions and

conditional subjective probabilities that appear in the representation (3).

For every a ∈ A the subjective action-contingent prior on Θ is π (· | o, a) and the sub-

jective action-contingent posteriors on Θ are π (· | x, a) , x ∈ X. The subjective action-

dependent prior is the marginal distribution on Θ induced by the distribution on X × Θ,

and the subjective action-dependent posteriors are obtained from the action-contingent joint

distribution on X ×Θ by conditioning on the observation.

3.2 Bayesian decision makers and the uniqueness of the subjective

probabilities

A Bayesian decision maker is characterized by a prior preference relation and correspond-

ing prior subjective probabilities, a set of posterior preference relations and corresponding

posterior probabilities, and the condition that the posterior preferences are obtained from

the prior preference solely by updating his subjective prior probabilities using Bayes’ rule.

It is worth underscoring that the transition from the prior preference relation to the poste-
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rior preference relations is affected by a change in the probabilities, leaving intact the other

functions (e.g., the utility functions) that figure in the representation. This conception of

Bayesianism captures the more general notion that a preference relation incorporates the

decision maker’s beliefs, which are represented by the subjective probabilities, and tastes,

which are represented by a utility function, and that information affects the decision maker’s

beliefs but not his tastes. In other words, observations affect the probabilities but not the

utilities and, consequently, the expected utility associated with constant utility bets must

be observation independent. Clearly, the preference relation < on I depicted in Theorem

3 is Bayesian. The question is, are there utility functions outside the class of positive lin-

ear transformation of the utility function in Theorem 3 and corresponding joint probability

distributions on X̄ ×Θ that represent the the preference relation in the sense of (3)?

To answer this question, let γ : X̄ × Θ → R++ be a function and define π̃ (θ, x | a) =

π (θ, x | a) γ (x, θ) /Γγ (a) for all (θ, x) ∈ Θ×X and a ∈ A,where Γγ (a) =
P

x∈X̄
P

θ∈Θ γ (x, θ)π (θ, x | a) .

Then the representation (3) may be written as

I 7→
X
x∈X̄

X
θ∈Θ

π
¡
θ, x | aI(x)

¢ £
u
¡
bI(x) (θ) , θ

¢
+ v

¡
aI(x)

¢¤
(5)

or, equivalently, as

I 7→
X
x∈X̄

Γγ
¡
aI(x)

¢X
θ∈Θ

π̃
¡
θ, x | aI(x)

¢ £
ũ
¡
bI(x) (θ) , θ, x

¢
+ v

¡
aI(x)

¢¤
, (6)

where ũ (b (θ) , θ, x) = u (b (θ) , θ) /γ (x, θ) .

Suppose that the preference relation < on I displays dynamic consistency. For every
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x ∈ X̄, let <x and <̃x
denote the conditional preference relations on A×B induced by the

representations (5) and (6), respectively. Then Bayesianism requires that <x be represented

by

U (a, b | x) =
X
θ∈Θ

π (θ, x | a)P
θ0∈Θ π (θ0, x | a) [u (b (θ) , θ) + v (a)] (7)

and <̃x
be represented by

Ũ (a, b | x) =
X
θ∈Θ

π̃ (θ, x | a)P
θ0∈Θ π̃ (θ

0, x | a) [ũ (b (θ) , θ, x) + v (a)] . (8)

But (8) is may be written as

μ (x)

Γγ (a, x)

X
θ∈Θ

π (θ, x | a)P
θ0∈Θ π (θ

0, x | a) [u (b (θ) , θ) + v (a)] , (9)

where μ (x) =
P

θ0∈Θ π (θ
0, x | a) and Γγ (a, x) =

P
θ0∈Θ π (θ

0, x | a) γ (x, θ0) . Thus, for all

(a, b) ∈ A×B and x ∈ X̄,

Ũ (a, b | x) = μ (x)

Γγ (a, x)
U (a, b | x) . (10)

Hence, (a, b) <x (a0, b0) if and only if U (a, b | x) ≥ U (a0, b0 | x) and (a, b) <̃x
(a0, b0) if and

only if U (a, b | x) /Γγ (a, x) ≥ U (a0, b0 | x) /Γγ (a0, x) . Consequently, if there is x ∈ X̄ such

that Γγ (a, x) 6= Γγ (a
0, x) for some a, a0 ∈ A then <̃x 6=<x . Formally, we have just proved

the following theorem.

Theorem 6 Let < be a dynamically consistent preference relation on I satisfying (A.1)—

(A.7) and suppose that Bcu (<) is inclusive. Then the only utility function and the joint

probability distributions, {π (θ, x | a)}a∈A that represent < on I are those that appear in (3)

if and only if Γγ (a, x) 6= Γγ (a
0, x) for some x ∈ X̄ and a, a0 ∈ A.
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The necessary and sufficient condition for the uniqueness of the probabilities in Theorem

(6) may be stated as follows: For every γ, there is x ∈ X̄ such that the mean of γ taken

with respect to the conditional probabilities π (θ | a, x) is not independent of a. This, in turn

requires that, for all θ ∈ Θ, and there is x ∈ X̄ such that π (θ | a, x) 6= π (θ | a0, x) for some

a, a0 ∈ A.

4 Concluding Remarks

4.1 Effect-independent preferences and effect-independent utility

functions

The choice-based Bayesian decision theory presented in this paper includes, as a special case,

effect-independent preferences. In particular, following Karni (2006), effect independent

preferences is captured by the following axiom:

(A.8) Effect-independent betting preferences For all x ∈ X̄, a ∈ A, b, b0, b00, b000 ∈ B,

θ, θ0 ∈ Θ, and r, r0, r00r000 ∈ R, if (b0−θ, r) <x
a (a, (b−θ, r

0)), (b−θ, r00) <x
a (b

0
−θ, r

000), and

(b00−θ0 , r
0) <x

a (b
000
−θ0 , r) then (b

00
−θ0 , r

00) <x
a (b

000
−θ0 , r

000).

The interpretation of this axiom is analogous to that of action-independent betting pref-

erences. The preferences (b0−θ, r
0) <x

a (b−θ, r) and (b−θ, r
00) <x

a (b
0
−θ, r

000) indicate that, for

every given (a, x), the “intensity” of the preference for r00 over r000 given the effect θ is suffi-
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ciently greater than that of r over r0 as to reverse the order of preference between the payoffs

b0−θ and b−θ. Effect independence requires that these intensities not be contradicted by the

preferences between the same payoffs given any other effect θ.

Adding axiom (A.8) to the hypothesis of Theorem 3 implies that the utility function

that figures in the representation takes the form u (b (θ) , θ) = t (θ)u (b (θ)) + s (θ) , where

t (θ) > 0. In other words, even if the preference relation exhibits effect-independence over

bets, the utility function may still display effect dependence, in the form of the additive and

multiplicative coefficient. Thus, effects may impact the decision maker’s well-being without

necessarily affecting his risk preferences.

Let Bc be the subset of constant bets (that is, trivial bets with the same payoff regardless

of the effect that obtains). If the set of constant utility bets coincides with the set of

constant bets (that is, Bc = Bcu (<)), then the utility function is effect independent (that

is, u (b (θ) , θ) = u (b (θ)) for all θ ∈ Θ). The implicit assumption that the set of constant

utility bets coincides with the set of constant bets is the convention invoked by the standard

subjective utility models. Unlike in those models, however, in the theory of this paper, this

assumption is a testable hypothesis.

4.2 The value of information

When facing a choice, decision makers can act on the basis of the information at hand or

seek additional, costly, information before choosing a course of action. A decision maker
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may seek to obtain the result of a medical test before adopting a health-enhancing life style

and taking out life insurance. In the same vein, an investor contemplating the purchase of

mineral extraction rights may seek to obtain, at cost, the result of a geological survey before

deciding how much such rights are worth to him.

The problem can stated as follows: Denote by A0 ⊂ A the feasible set of actions and

B0 ⊂ B a feasible set of bets. Suppose that a decision maker must choose an action- bet

pairs in A0 × B0. He may choose on the basis of his current information (that is, based on

the observation o) or he may pay ϑ to purchase a signal in X before choosing the action-bet

pair.

The question of whether it is worth purchasing the signal involves the following compari-

son. Let (a∗x, b
∗
x) be a maximal element of A

0×B0 given the observation x ∈ X̄. Formally, for

every given x ∈ X̄, and (a∗x, b
∗
x) ∈ A0 × B0, (a∗x, b

∗
x) <x (a, b) for all (a, b) ∈ A0 × B0. Acting

with the current information means choosing (a∗o, b
∗
o) to obtain the payoff

X
θ∈Θ

π (θ | o, a∗o)u (b∗o (θ) , θ) + v (a∗o) . (11)

If, instead, the decision is made following the purchase of information the payoff is given by

X
x∈X

μ (x)

1− μ (o)

"X
θ∈Θ

π (θ | x, a∗x)u (b∗x (θ)− ϑ, θ) + v (a∗x)

#
. (12)

The maximal willingness to pay for new information, ϑ̄, is the value of ϑ that equates the

payoffs (11) and (12). New information is sought if and only if ϑ ≤ ϑ̄. As the discussion makes

clear, the willingness to pay depends on the feasible set of action-bet pairs. In particular, if
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the feasible set of bets consists of constant utility bets then the maximal willingness to pay

is zero.

5 Proof of Theorem 3

For expository convenience, I write Bcu instead of Bcu (<) .

(Sufficiency) Suppose that < on I satisfies (A.1)—(A.7) and Bcu is inclusive. By Theorem

1, < is represented by

I 7→
X
x∈X̄

w
¡
aI(x), bI(x), x

¢
. (13)

where w (., ., x) , x ∈ X̄ are jointly cardinal, continuous, real-valued functions.

Since < satisfies (A.4), Lemmas 5 and 6 in Karni (2006) and Theorem III.4.1 in Wakker

(1989) imply that for every (a, x) ∈ A× X̄ such that Θ (a, x) contains at least two effects,

there exist array of functions {v(a,x) (·; θ) : R→ R | θ ∈ Θ} that constitute a jointly cardinal,

continuous additive representation of <x
a on B. Moreover, by the proof of Lemma 6 in Karni

(2006), < satisfies (A.1)—(A.4) if and only if, for every (a, x) , (a0, x0) ∈ A × X̄ such that

Θ (a, x) ∩ Θ (a0, x0) 6= ∅ and θ ∈ Θ (a, x) ∩ Θ (a0, x0) , there exist β((a0,x0),(a,x),θ) > 0 and

α((a0,x0),(a,x),θ) such that v(a0,x0) (·, θ) = β((a0,x0),(a,x),θ)v(a,x) (·, θ) + α((a0,x0),(a,x),θ).
18

Fix â ∈ A and define u (·, θ) = v(â,o) (·, θ) , λ (a, x; θ) = β((a,x),(â,o),θ) and α (a, x, θ) =

α((a,x),(â,o),θ) for all a ∈ A, x ∈ X̄, and θ ∈ Θ. For every given (a, x) ∈ A × X̄, w (a, b, x)

18By definition, for all (a, x) and θ, β((a,x),(a,x),θ) = 1 and α((a,x),(a,x),θ) = 0.
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represents <x
a on B. Hence

w (a, b, x) = H

ÃX
θ∈Θ

(λ (a, x, θ)u (b (θ) ; θ) + α (a, x, θ)) , a, x

!
, (14)

where H is a continuous, increasing function.

Consider next the restriction of < to (A×Bcu)X̄ .

Lemma 7 There exist a function U : A × Bcu → R, ξ ∈ R|X̄|++ and ζ ∈ R|X̄| such that, for

all
¡
a, b̄, x

¢
∈ A×Bcu × X̄,

w
¡
a, b̄, x

¢
= ξ (x)U

¡
b̄, a
¢
+ ζ (x) . (15)

Proof: Let I, I 0, I 00, I 000 ∈ I, a, a0, a00, a000 ∈ A and b̄ be as in definition 2. Then, for all

x, x0 ∈ X̄, I−x
¡
a, b̄
¢
∼ I 0−x

¡
a0, b̄

¢
, I−x

¡
a00, b̄

¢
∼ I 0−x

¡
a000, b̄

¢
, I 00−x0

¡
a, b̄
¢
∼ I 000−x0

¡
a0, b̄

¢
and

I 00−x0
¡
a00, b̄

¢
∼ I 000−x0

¡
a000, b̄

¢
. By the representation (13), I−x

¡
a, b̄
¢
∼ I 0−x

¡
a0, b̄

¢
implies that

X
y∈X̄−{x}

w
¡
aI(y), bI(y), y

¢
+ w

¡
a, b̄, x

¢
=

X
y∈X̄−{x}

w
¡
aI0(y), bI0(y), y

¢
+ w

¡
a0, b̄, x

¢
. (16)

Similarly, I−x
¡
a00, b̄

¢
∼ I 0−x

¡
a000, b̄

¢
implies that

X
y∈X̄−{x}

w
¡
aI(y), bI(y), y

¢
+ w

¡
a00, b̄, x

¢
=

X
y∈X̄−{x}

w
¡
aI0(y), bI0(y), y

¢
+ w

¡
a000, b̄, x

¢
, (17)

I 00−x0
¡
a, b̄
¢
∼ I 000−x0

¡
a0, b̄

¢
implies that

X
y∈X̄−{x0}

w
¡
aI00(y), bI00(y), y

¢
+ w

¡
a, b̄, x0

¢
=

X
y∈X̄−{x0}

w
¡
aI000(y), bI000(y), y

¢
+ w

¡
a0, b̄, x0

¢
, (18)

and I 00−x0
¡
a00, b̄

¢
∼ I 000−x0

¡
a000, b̄

¢
implies that

X
y∈X̄−{x0}

w
¡
aI00(y), bI00(y), y

¢
+w

¡
a00, b̄, x0

¢
=

X
y∈X̄−{x0}

w
¡
aI000(y), bI000(y), y

¢
+w

¡
a000, b̄, x0

¢
. (19)
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But (16) and (17) imply that

w
¡
a, b̄, x

¢
− w

¡
a0, b̄, x

¢
= w

¡
a00, b̄, x

¢
− w

¡
a000, b̄, x

¢
. (20)

and (18) and (19) imply that

w
¡
a, b̄, x0

¢
− w

¡
a0, b̄, x0

¢
= w

¡
a00, b̄, x0

¢
− w

¡
a000, b̄, x0

¢
. (21)

Define a function φ(x,x0,b̄) as follows: w
¡
·, b̄, x

¢
= φ(x,x0,b̄) ◦w

¡
·, b̄, x0

¢
. Axiom (A.7) with

b̄ = b̄0 imply that it is monotonic increasing. Then φ(x,x0,b̄) is continuous. Moreover, equations

(20) and (21) in conjunction with Lemma 4.4 in Wakker (1987) imply that φ(x,x0,b̄) is affine.

Let β(x,o,b̄) and δ(x,o,b̄) denote, respectively, the multiplicative additive coefficients cor-

responding to φ(x,o,b̄). Observe that I−o
¡
a, b̄
¢
∼ I 0−o

¡
a0, b̄

¢
and I−o

¡
a, b̄0

¢
∼ I 0−o

¡
a0, b̄0

¢
in

conjunction with axiom (A.6) imply that

β(x,o,b̄)
£
w
¡
a, b̄, o

¢
− w

¡
a0, b̄, o

¢¤
= β(x,o,b̄0)

£
w
¡
a, b̄0, o

¢
− w

¡
a0, b̄0, o

¢¤
(22)

for all b̄, b̄0 ∈ Bcu. Thus, for all x ∈ X̄ and b̄, b̄0 ∈ Bcu, β(x,o,b̄) = β(x,o,b̄0) := ξ (x) > 0, where

the inequality follows from the monotonicity of φ(x,o,b̄).

Let a, a0 ∈ A and b̄, b̄0 ∈ Bcu satisfy
¡
a, b̄
¢
∼o

¡
a0, b̄0

¢
. By axiom (A.7)

¡
a, b̄
¢
∼x

¡
a0, b̄0

¢
if

and only if
¡
a, b̄
¢
∼o

¡
a0, b̄0

¢
. By the representation this equivalence implies that

w
¡
a, b̄, o

¢
= w

¡
a0, b̄0, o

¢
. (23)

if and only if,

ξ (x)w
¡
a, b̄, o

¢
+ δ(x,o,b̄) = ξ (x)w

¡
a0, b̄0, o

¢
+ δ(x,o,b̄0). (24)

27



Thus δ(x,o,b̄) = δ(x,o,b̄0).

By this argument and continuity (A.2) the conclusion can be extended to Bcu. Let

δ(x,o,b̄) := ζ (x) for all b̄ ∈ Bcu.

For every given b̄ ∈ Bcu and all a ∈ A, define U
¡
b̄, a
¢
= w

¡
a, b̄, o

¢
. Then, for all x ∈ X̄,

w
¡
a, b̄, x

¢
= ξ (x)U

¡
b̄, a
¢
+ ζ (x) , ξ (x) > 0. (25)

This completes the proof of Lemma 7. ♣

Equations (14) and (15) imply that for every x ∈ X̄, b̄ ∈ Bcu and a ∈ A,

ξ (x)U
¡
b̄, a
¢
+ ζ (x) = H

ÃX
θ∈Θ

λ (a, x, θ)u
¡
b̄ (θ) , θ

¢
+ α̂ (a, x) , a, x

!
. (26)

Lemma 8 The identity (26) holds if and only if u
¡
b̄ (θ) , θ

¢
= u

¡
b̄
¢
for all θ ∈ Θ,

P
θ∈Θ

λ(a,x,θ)
ξ(x)

=

ϕ (a), α̂(a,x)
ξ(x)

= v (a) for all a ∈ A,

H

ÃX
θ∈Θ

λ (a, x, θ) u
¡
b̄ (θ) , θ

¢
+ α̂ (a, x) , a, x

!
= ξ (x)

£
u
¡
b̄
¢
+ v (a)

¤
+ ζ (x) , (27)

and there is κ (a) > 0 such that

κ (a)
X
θ∈Θ

λ (a, x, θ)

ξ (x)
u
¡
b̄ (θ) , θ

¢
+

α̂ (a, x)

ξ (x)
= U

¡
b̄, a
¢
. (28)

Proof: (Sufficiency) Let u
¡
b̄ (θ) , θ

¢
:= u

¡
b̄
¢
for all θ ∈ Θ,

P
θ∈Θ

λ(a,x,θ)
ξ(x)

:= ϕ (a) and

c (a) := κ (a)ϕ (a) for all a ∈ A and suppose that (28) holds.

But axiom (A.6) and the representation imply that, for all b̄, b̄0 ∈ Bcu,

c (a)u
¡
b̄
¢
+ v (a) = c (a0)u

¡
b̄
¢
+ v (a0)
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if and only if

c (a)u
¡
b̄0
¢
+ v (a) = c (a0)u

¡
b̄0
¢
+ v (a0) .

Hence, c (a) = c (a0) = c for all a, a0 ∈ A.

Normalize u so that c = 1. Then equation (26) follows from equation (27).

(Necessity) Multiply and divide the first argument of H by ξ (x) > 0. Equation (26) may

be written as follows:

ξ (x)U
¡
b̄, a
¢
+ ζ (x) = H

Ã
ξ (x)

"X
θ∈Θ

λ (a, x, θ)

ξ (x)
u
¡
b̄ (θ) , θ

¢
+

α̂ (a, x)

ξ (x)

#
, a, x

!
. (29)

Define V
¡
a, b̄, x

¢
=
P

θ∈Θ
λ(a,x,θ)
ξ(x)

u
¡
b̄ (θ) , θ

¢
+ α̂(a,x)

ξ(x)
then, for every given (a, x) ∈ A×X

and all b̄, b̄0 ∈ Bcu,

U
¡
b̄0, a

¢
− U

¡
b̄, a
¢
=
£
H
¡
ξ (x)V

¡
a, b̄0, x

¢
, a, x

¢
−H

¡
ξ (x)V

¡
a, b̄, x

¢
, a, x

¢¤
/ξ (x) . (30)

Hence H (·, a, x) is a linear function whose intercept is ζ (x) and the slope

£
U
¡
b̄0, a

¢
− U

¡
b̄, a
¢¤
/
£
V
¡
a, b̄0, x

¢
− V

¡
a, b̄, x

¢¤
:= κ (a) ,

is independent of x. Thus

ξ (x)U
¡
b̄, a
¢
+ ζ (x) = κ (a) ξ (x)

"X
θ∈Θ

λ (a, x, θ)

ξ (x)
u
¡
b̄ (θ) , θ

¢
+

α̂ (a, x)

ξ (x)

#
+ ζ (x) . (31)

Hence

U
¡
b̄, a
¢
/κ (a) =

X
θ∈Θ

λ (a, x, θ)

ξ (x)
u
¡
b̄ (θ) , θ

¢
+

α̂ (a, x)

ξ (x)
(32)
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is independent of x. However, because <x
a 6=<x0

a for all a and some x, x0 ∈ X̄, in general,

λ (a, x, θ) /ξ (x) is not independent of θ. Moreover, because α̂ (a, x) /ξ (x) is independent of

b, the first term on the right-hand side of (32) must be independent of x. For this to be true

u
¡
b̄ (θ) , θ

¢
must be independent of θ and

P
θ∈Θ λ (a, x, θ) /ξ (x) := ϕ (a) be independent

of x. Moreover, because the first term on the right-hand side of (32) is independent of x,

α̂ (a, x) /ξ (x) must also be independent of x. Finally, by definition, b̄ the unique element in

its equivalence class that has the property that u
¡
b̄ (θ) , θ

¢
is independent of θ.

Define v (a) := α̂ (a, x) /ξ (x), u
¡
b̄ (θ) , θ

¢
= u

¡
b̄
¢
, for all θ ∈ Θ, and U

¡
b̄, a
¢
= u

¡
b̄
¢
+

v (a) and κ (a)ϕ (a) = 1. Thus

U
¡
b̄, a
¢
= κ (a)

X
θ∈Θ

λ (a, x, θ)

ξ (x)
u
¡
b̄ (θ) ; θ

¢
+

α̂ (a, x)

ξ (x)
. (33)

This completes the proof of Lemma 8. ♣

Note that

U
¡
b̄, a
¢
=
X
θ∈Θ

λ (a, x, θ)

ξ (x)ϕ (a)
u
¡
b̄ (θ) ; θ

¢
+

α̂ (a, x)

ξ (x)
. (34)

But, by Lemma 8,
P

θ∈Θ λ (a, x, θ) = ξ (x)ϕ (a) . Hence, by the inclusivity of Bcu, the

representation (13) is equivalent to

I 7→
X
x∈X̄

"X
θ∈Θ

λ
¡
aI(x), x, θ

¢P
θ∈Θ λ

¡
aI(x), x, θ

¢u ¡bI(x) (θ) ; θ¢+ α̂
¡
aI(x), x

¢
ξ (x)

#
(35)

For all x ∈ X, a ∈ A and θ ∈ Θ, define the joint subjective probability distribution on

Θ× X̄ by

π (x, θ | a) = λ (a, x, θ)P
x0∈X̄

P
θ0∈Θ λ (a, x

0, θ0)
. (36)
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Since
P

θ∈Θ λ (a, x, θ) = ξ (x)ϕ (a), for all x ∈ X̄,

X
θ∈Θ

π (x, θ | a) = ξ (x)ϕ (a)P
x0∈X̄ ξ (x0)ϕ (a)

=
ξ (x)P

x0∈X̄ ξ (x0)
. (37)

Define the subjective probability of x ∈ X̄ as follows:

μ (x) =
ξ (x)P

x0∈X̄ ξ (x0)
. (38)

Then the subjective probability of x is given by the marginal distribution on X induced by

the joint distributions π (·, · | a) on X ×Θ and is independent of a.

Define the subjective posterior on Θ distribution by

π (θ | x, a) = π (x, θ | a)
μ (x)

=
λ (a, x, θ)P
θ∈Θ λ (a, x, θ)

, (39)

and define the subjective prior on Θ by:

π (θ | o, a) = λ (a, o, θ)P
θ∈Θ λ (a, o, θ)

. (40)

Substitute in (35) to obtain the representation (3),

I 7→
X
x∈X̄

μ (x)

"X
θ∈Θ

π
¡
θ | x, aI(x)

¢
u
¡
bI(x) (θ) , θ

¢
+ v

¡
aI(x)

¢#
. (41)

Let a ∈ A, I ∈ I and b, b0 ∈ B, satisfy I−o (a, b) ∼ I−o (a, b
0) . Then, by (41),

X
θ∈Θ

π (θ | o, a)u (b (θ) , θ) =
X
θ∈Θ

π (θ | o, a)u (b0 (θ) , θ) (42)

and, by axiom (A.5) and (41)

X
x∈X

μ (x)

1− μ (0)

X
θ∈Θ

π (θ | x, a)u (b (θ) , θ) =
X
x∈X

μ (x)

1− μ (0)

X
θ∈Θ

π (θ | x, a)u (b0 (θ) , θ) . (43)
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Thus

X
θ∈Θ

[u (b (θ) , θ)− u (b0 (θ) , θ)]

"
π (θ | o, a)−

X
x∈X

μ (x)

1− μ (0)
π (θ | x, a)

#
= 0. (44)

This implies that π (θ | o, a) =
P

x∈X μ (x) π (θ | x, a) / [1− μ (0)].

(If π (θ | o, a) >
P

x∈X μ (x)π (θ | x, a) / [1− μ (0)] for some θ and μ (o)π (θ0 | o, a) <P
x∈X μ (x)π (θ0 | x, a) / [1− μ (0)] for some θ0, let b̂, b̂0 ∈ B be such that b̂ (θ) > b (θ) and

b̂
³
θ̂
´
= b

³
θ̂
´
for all θ̂ ∈ Θ − {θ}, b̂0 (θ0) > b0 (θ0) and b̂0

³
θ̂
´
= b0

³
θ̂
´
for all θ̂ ∈ Θ − {θ0}

and I−o
³
a, b̂
´
∼ I−o

³
a, b̂0

´
. Then

X
θ∈Θ

h
u
³
b̂ (θ) , θ

´
− u

³
b̂0 (θ) , θ

´i"
π (θ | o, a)−

X
x∈X

μ (x)

1− μ (0)
π (θ | x, a)

#
> 0. (45)

But this contradicts (A.5).)

(Necessity) The necessity of (A.1), (A.2) and (A.3) follows from Theorem 1. To see the ne-

cessity of (A.4), suppose that I−x (a, b−θr) < I−x
¡
a, b0−θr

0¢ , I−x ¡a, b0−θr00¢ < I−x (a, b−θr
000) ,

and I−x0
¡
a0, b00−θr

0¢ < I−x0
¡
a0, b000−θr

¢
. By representation (14)

X
θ0∈Θ−{θ}

λ (a, x, θ0)u (b (θ0) , θ0)+λ (a, x, θ)u (r, θ) ≥
X

θ0∈Θ−{θ}

λ (a, x, θ0)u (b0 (θ0) , θ0)+λ (a, x, θ)u (r0, θ)

(46)

X
θ0∈Θ−{θ}

λ (a, x, θ0)u (b0 (θ0) , θ0)+λ (a, x, θ)u (r00, θ) ≥
X

θ0∈Θ−{θ}

λ (a, x, θ0)u (b (θ0) , θ0)+λ (a, x, θ)u (r000, θ)

(47)
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and

X
θ0∈Θ−{θ}

λ (a0, x0, θ0)u (b00 (θ0) , θ0)+λ (a0, x0, θ)u (r0, θ) ≥
X

θ0∈Θ−{θ}

λ (a0, x0, θ0)u (b000 (θ0) , θ0)+λ (a0, x0, θ)u (r, θ)

(48)

But (46) and (47) imply that

u (r00, θ)− u (r000, θ) ≥
P

θ0∈Θ−{θ} λ (a, x, θ
0) [u (b (θ0) , θ0)− u (b0 (θ0) , θ0)]

λ (a, x, θ)
≥ u (r0, θ)− u (r, θ) .

(49)

Inequality (48) implies

u (r0, θ)− u (r, θ) ≥
P

θ0∈Θ−{θ} λ (a
0, x0, θ0) [u (b000 (θ0) , θ0)− u (b00 (θ0) , θ0)]

λ (a0, x0, θ)
(50)

But (49) and (50) imply that

u (r00, θ)− u (r000, θ) ≥
P

θ0∈Θ−{θ} λ (a
0, x0, θ0) [u (b000 (θ0) , θ0)− u (b00 (θ0) , θ0)]

λ (a0, x0, θ)
. (51)

Hence

X
θ0∈Θ−{θ}

λ (a0, x0, θ0) [u (b00 (θ0) , θ0)− u (b000 (θ0) , θ0)] + λ (a0, x0, θ) [u (r00, θ)− u (r000, θ)] ≥ 0

(52)

Thus, I−x0
¡
a0, b00−θr

00¢ < I−x0
¡
a0, b000−θr

000¢ .
Next I show that if b̄ ∈ B satisfies u

¡
b̄ (θ) , θ

¢
= u

¡
b̄
¢
for all θ ∈ Θ then b̄ ∈ Bcu. Suppose

that representation (??) holds and let I, I 0, I 00, I 000 ∈ I, a, a0, a00, a000 ∈ A and x, x0 ∈ X̄, such

that I−x
¡
a, b̄
¢
∼ I 0−x

¡
a0, b̄

¢
, I 0−x

¡
a00, b̄

¢
∼ I−x

¡
a000, b̄

¢
and I 00−x0

¡
a0, b̄

¢
∼ I 000−x0

¡
a, b̄
¢
. Then the

representation (13) implies that

X
x̂∈X̄−{x}

w
¡
aI(x̂), bI(x̂), x̂

¢
+μ (x)

£
u
¡
b̄
¢
+ v (a)

¤
=

X
x̂∈X̄−{x}

w
¡
aI0(x̂), bI0(x̂), x̂

¢
+μ (x)

£
u
¡
b̄
¢
+ v (a0)

¤
(53)
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X
x̂∈X̄−{x}

w
¡
aI0(x̂), bI0(x̂), x̂

¢
+μ (x)

£
u
¡
b̄
¢
+ v (a00)

¤
=

X
x̂∈X̄−{x}

w
¡
aI(x̂), bI(x̂), x̂

¢
+μ (x)

£
u
¡
b̄
¢
+ v (a000)

¤
(54)

and

X
x̂∈X̄−{x0}

w
¡
aI00(x̂), bI00(x̂), x̂

¢
+μ (x0)

£
u
¡
b̄
¢
+ v (a0)

¤
=

X
x̂∈X̄−{x0}

w
¡
aI000(x̂), bI000(x̂), x̂

¢
+μ (x0)

£
u
¡
b̄
¢
+ v (a)

¤
.

(55)

But (53) and (54) imply that

v (a)− v (a0) = v (a00)− v (a000) . (56)

Equality (??) impliesP
x̂∈X̄−{x0}

£
w
¡
aI00(x̂), bI00(x̂), x̂

¢
− w

¡
aI000(x̂), bI000(x̂), x̂

¢¤
μ (x0)

= v (a)− v (a0) . (57)

Thus

X
x̂∈X̄−{x0}

w
¡
aI00(x̂), bI00(x̂), x̂

¢
+u
¡
b̄
¢
+v (a000) =

X
x̂∈X̄−{x0}

w
¡
aI000(x̂), bI000(x̂), x̂

¢
+u
¡
b̄
¢
+v (a00) (58)

Hence I 00−x0
¡
a000, b̄

¢
∼ I 000−x0

¡
a000, b̄

¢
and b̄ ∈ Bcu.

To show the necessity of (A.5) let a ∈ A, I ∈ I and b, b0 ∈ B, by the representation

I−o (a, b) ∼ I−o (a, b
0) if and only if

X
θ∈Θ

π (θ | o, a)u (b (θ) , θ) =
X
θ∈Θ

π (θ | o, a)u (b0 (θ) , θ) . (59)

But π (θ | o, a) =
P

x∈X μ (x)π (θ | x, a) / [1− μ (0)] . Thus (59) holds if and only if

X
x∈X

μ (x)
X
θ∈Θ

π (θ | x, a)u (b (θ) , θ) =
X
x∈X

μ (x)
X
θ∈Θ

π (θ | x, a)u (b0 (θ) , θ) . (60)
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But (60) is valid if and only if I−o (a, b) ∼ I−o (a, b0) .

For all I and x, let K(I, x) =
P

y∈X−{x} μ (y)
£P

θ∈Θ π (θ | x, a)u
¡
bI(y) (θ)

¢
+ v

¡
aI(y)

¢¤
.

To show the necessity of (A.6) Then I−x
¡
a, b̄
¢
< I 0−x

¡
a0, b̄

¢
if and only if

K(I, x) + u
¡
b̄
¢
+ v (a) ≥ K(I 0, x) + u

¡
b̄
¢
+ v (a0) (61)

if and only if

K(I, x) + u
¡
b̄0
¢
+ v (a) ≥ K(I 0, x) + u

¡
b̄0
¢
+ v (a0) (62)

if and only if I−x
¡
a, b̄0

¢
< I 0−x

¡
a0, b̄0

¢
.

To show that axiom (A.7) is implied, not that I−x
¡
a, b̄
¢
< I 0−x

¡
a0, b̄0

¢
if and only if

K(I, x) + u
¡
b̄
¢
+ v (a) ≥ K(I, x) + u

¡
b̄0
¢
+ v (a0) (63)

if and only if

K(I, x0) + u
¡
b̄
¢
+ v (a) ≥ K(I, x0) + u

¡
b̄0
¢
+ v (a0) (64)

if and only if I−x0
¡
a, b̄
¢
< I 0−x0

¡
a0, b̄0

¢
. ¥
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