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Abstract

We introduce a new solution concept for complete informa-
tion games, which we call equilibrium in group dominant
strategies. This concept is the strongest of all known solution
concepts so far, since it encompasses both the ideas behind
the concepts of dominant strategies and strong equilibrium.
Because of its strength, a solution in group dominant strate-
gies does not exist in any interesting game; however, as we
show, such solutions can be achieved in various rich settings
with the use of mediators.

Introduction
A finite game in strategic form is a tuple Γ =
〈N, {Ai}i∈N , {ui}i∈N 〉 where:

• N = {1, . . . , n} is a finite set of players.

• For each player i ∈ N , Ai is a finite non-empty set of
actions (or strategies, we use the terms interchangeably)
available to player i.

• For S ⊆ N , AS denotes
∏
i∈S Ai, and A−S denotes∏

i∈N\S Ai. AN is denoted by A.

• For each player i ∈ N , ui : A → < is a utility func-
tion, which represents the “contentment” of the player
with each specific strategy profile.

• Let a ∈ A. We will sometimes write a as (ai, a−i) for
i ∈ N and as (aS , a−S) for S ⊆ N .

One of the most basic questions of game theory is: given
a game in strategic form, what is the solution of the game?
Basically, by a “solution” we mean a stable strategy profile
which can be proposed to all agents, in a sense that no ra-
tional agent would want to deviate from it. Many solution
concepts for games have been studied, differing mainly by
the assumptions that a rational agent would have to make
about the rationality of other agents. For example, probably
the most well known solution concept for games is the Nash
equilibrium:

A profile of actions a ∈ A is a Nash equilibrium (NE) if

∀i ∈ N ai ∈ bri(a−i)

A shortened version of this paper appeared in the proceedings of
WINE 2008, Patras, Greece.

Here, bri(a−i) for i ∈ N , a−i ∈ A−i denotes
arg maxai∈Ai{ui(ai, a−i)} (the set of best responses of i
to a−i).

There are two basic problems with the Nash equilibrium
as a solution concept for games:
Problem 1: A NE guarantees absence of profitable devia-
tions to a player only in the case that all the other players
play according to the suggested profile; in the case where
even one of the other players deviates, we have no such guar-
antees. So, the assumption that this concept requires about
the rationality of other players is: all the other players will
stick to their prescribed strategies. But why should a rational
player make that assumption?

The following stability concept takes this problem into ac-
count: A profile of actions a ∈ A is an equilibrium in weakly
dominant strategies if

∀i ∈ N, b−i ∈ A−i ai ∈ bri(b−i)
The above definition strengthens the concept of NE by

taking care of the aforementioned problem: no unilateral de-
viation can ever be beneficial, no matter what other players
do; in other words, it requires no assumptions on the ratio-
nality of other players.
Problem 2: A NE does not take into account joint deviations
by coalitions of players. We usually assume that an individ-
ual will deviate from a profile if she has an available strategy
that strictly increases her income. In some settings it would
be natural to assume also that a group of individuals will
deviate if they have an available joint strategy that strictly
increases the income of each group member. For example,
consider the famous Prisoner’s Dilemma game:

C D
C 4,4 0,6
D 6,0 1,1

The strategy profile (D,D) is a NE and even an equilib-
rium in weakly dominant strategies; however, it is not stable
in the sense that if both players deviate to (C,C), the income
of each one of them will increase. The following stability
concept by (Aumann, 1959) deals with this problem:

A profile of actions a ∈ A is a strong equilibrium (SE) if

∀S ⊆ N aS ∈ brS(a−S)

Here, the concept of best response strategy is extended to
multiple players as follows: for S ⊆ N and a−S ∈ A−S ,



brS(a−S) denotes the set of best responses of S to a−S :

brS(a−S) =
{
aS ∈ AS |∀bS ∈ AS ∃i ∈ S :
ui(bS , a−S) ≤ ui(aS , a−S)

}
The concept of strong equilibrium indeed takes care of

Problem 2; however, it again does not take Problem 1 into
account. What we would ideally like to have is a solution
concept that has neither of these problems: we would like to
assume that players are able to cooperate for mutual benefit,
and on the other hand we would also like to assume noth-
ing about the actions of the other players. These require-
ments may seem conflicting. Note that simply saying that
we are interested in a profile a ∈ A that is both a SE and an
equilibrium in weakly dominant strategies is not enough: for
games with more than 2 players, we would have no guaran-
tees about the absence of joint deviations for players 1 and
2, in the case that player 3 deviated.

This brings us to the stability concept that we wish to
present: a profile of actions a ∈ A is an equilibrium in group
(weakly) dominant strategies (GDS) if

∀S ⊆ N, b−S ∈ A−S aS ∈ brS(b−S)

Existence of a GDS implies, for each player, that no mat-
ter what the other players choose, and no matter with whom
can she unite in making her decision, they will not find a
joint strategy that will be better to all of them than the pro-
posed one. And thus, if a GDS exists in a given game, we
can safely declare it to be the solution of the game. How-
ever, a GDS does not exist in any game that has ever been a
subject of interest. This is not surprising, since the concept
is so strong that its mere existence renders any game not in-
teresting. For this reason, the concept was never a subject of
exploration in complete information games. In incomplete
information games the concept is known under the name of
group strategy proofness and is widely studied, because in
some cases such solutions can be indeed implemented by
mechanism design. However, the whole approach of mecha-
nism design is not applicable to complete information games
– although we would indeed want to assume the existence of
an interested party, we don’t want to give it the power to
design the game.

An interested party who wishes to influence the behav-
ior of agents in a (complete information) game, which is
not under his control, will be called a mediator. This con-
cept is highly natural; in many systems there is some form
of reliable party or administrator who is interested in a
”good” behavior of the system. Many kinds of mediators
have been studied in the literature, differing by their power
in influencing the game (see e.g.(Mas-Colell et al., 1995;
Jackson, 2001; Aumann, 1974; Myerson, 1986)). The less
power we assume on the mediator, the more applicable the
positive results will be to the real world. For example, if we
assume that a mediator is able to observe the chosen strate-
gies of the players and issue arbitrarily large fines for devi-
ating from a proposed strategy profile, then, on one hand,
such mediator will trivially be able to implement any pro-
file as a very stable solution (e.g. GDS); on the other hand,
though, this model will not be applicable to almost any real
life multi-agent encounter. For this reason, as the focus of

this paper is to study the power of mediators in establish-
ing equilibrium in group dominant strategies, we make some
restricting assumptions: the mediator cannot design a new
game, cannot enforce agents’ behavior, cannot enforce pay-
ments by the agents, and cannot prohibit strategies available
to the agents.

In the rich literature about mediators, two different kinds
of mediators exist that adhere to our restricting assumptions:
routing mediators and k-implementation. K-implementation
was introduced by (Monderer and Tennenholtz, 2004).
There, a mediator is a reliable authority who can observe
the strategies selected by the players and commit to non-
negative monetary payments based on the selected profile.
Obviously, by making sufficiently big payments one can im-
plement any desirable outcome. The question is: what is the
cost of implementation? A major point in k-implementation
is that monetary offers need not necessarily materialize
when following desired behaviors; the promise itself might
suffice. In particular, (Monderer and Tennenholtz, 2004)
show that any NE of a game can be implemented as an equi-
librium in dominant strategies with 0-cost.

Routing mediators were introduced by (Rozenfeld and
Tennenholtz, 2007), continuing the work of (Monderer and
Tennenholtz, 2006). A routing mediator is a reliable author-
ity which can play the game on behalf of players who give it
such right. Such mediator devises a conditional contract that
he proposes to all players to sign: in this contract, the medi-
ator specifies exactly which actions he will take on behalf of
the players who sign the contract, given every possible com-
bination of actions by players who do not sign it. If a player
signs the contract, the mediator is then committed to playing
the game on behalf of that player by the contract specifica-
tions. So, in essence, the mediator adds a new strategy that is
available to each player – to sign the contract; the payoffs of
this new game are specified exactly by the contract he offers.
Note that no matter which players sign the contract, in the
end a strategy profile from the original game is played, and
the payoffs are not altered. 1 For example, consider such a
mediator in the Prisoner’s Dilemma game. The mediator of-
fers the agents the following protocol: if both agents agree to
use his services then he will playC on behalf of both agents.
However, if only one agent agrees to use his services then he
will play D on behalf of that agent. The mediator’s protocol
generates a new game, where a new strategy M is available
for using the mediator services:

C D M
C 4,4 0,6 0,6
D 6,0 1,1 1,1
M 6,0 1,1 4,4

Note that the mediated game has a most desirable prop-
erty: in this game jointly delegating the right of play to the
mediator is an equilibrium in group dominant strategies! We
can also note that in this example the mediator did not, in

1Similar ideas are explored in the extensive literature on com-
mitments and conditional commitments. In particular, (Kalai et al.,
2007) shows a folk theorem result for two-player games, using a
completely different model of interaction.



fact, require to be informed of the player’s chosen strategy
– it sufficed for him to know which agents agreed to dele-
gate him their right of play. However, as we will show, in
general such mediators will be too weak for implementing
GDS; the Prisoner’s Dilemma is, in a way, the only exam-
ple. Therefore, in this paper we will concentrate on fully
informed mediators, i.e. ones who can observe the entire ac-
tion profile selected by the agents and condition their action
on it.
Our results: In this paper we explore how different mediators
can implement GDS. Section deals with routing mediators.
In subsection we present a general sufficient condition for
the existence of GDS. We show two natural classes of games
that satisfy this condition; both of them are subclasses of ID-
congestion games, defined in (Monderer, 2006). We show
that simple monotone increasing identity-dependent [MIID]
congestion games satisfy our positive criterion, and hence
have a solution in GDS using a routing mediator; we show
that this also holds for quasi-symmetric MIID-congestion
games. Our results also imply that such implementation
can be efficiently computed for these classes of games, even
when the input representation is succinct.

In subsection we aim to characterize the games which
have a solution in GDS using an informed routing media-
tor. Our goal is a polynomial algorithm that gets a game in
strategic form as input, and outputs a routing mediator which
implements a solution in GDS, if such exists. We present a
polynomial algorithm for this problem for games with 2 and
3 players.

In subsection we present two negative results. The first
is a general sufficient condition of non-existence of GDS;
using this condition we can show that in many known classes
of games we can not hope, in general, to attain a solution in
GDS with an informed routing mediator (examples include
job scheduling, network design, zero-sum games, monotone
decreasing congestion games, and more). The second result
concerns uninformed mediators – here we justify the claim
that the Prisoner’s Dilemma game is, in a sense, the only
example where a GDS can be achieved with an uninformed
mediator.

Section deals with k-implementation. Extending the re-
sults of (Monderer and Tennenholtz, 2004), we show that
a profile can be implemented as GDS with 0 cost if and
only if it is a strong equilibrium. In particular, this re-
sult implies that we can implement GDS with 0 cost in
all settings where SE is known to always exist, such as
job scheduling, network design and certain forms of mono-
tone congestion games (see e.g. (Andelman et al., 2007;
Holzman and Law-Yone, 1997)). We also observe that the
minimal-cost implementation of a given strategy profile can
be computed in polynomial time, given an explicit represen-
tation of the game, if we assume that either the number of
players or the number of distinct payoffs for each player are
constant. Note that an explicit representation of a game takes
exponential space in the amount of players, therefore these
simplifying assumptions can be justified.

In section we investigate what happens when our me-
diator has the power of both routing mediators and of k-
implementation; i.e. he can both play on behalf of players

who give him such right and commit to non-negative pay-
ments. There, we derive our main result: the max-min fair
outcome of any minimally fair game can be implemented
as GDS with 0 cost. Minimally fair games are a gener-
alization of symmetric games: a game is minimally fair if
the agents have the same strategy space and, in addition, in
every strategy profile agents who chose the same strategy
receive the same payoff. This setting applies to many sit-
uations where the users are not identical, for example job
scheduling (where users may have tasks of different sizes)
or certain forms of ID-congestion games.

(Rozenfeld and Tennenholtz, 2007) showed that the max-
min fair outcome of any minimally fair game can be imple-
mented as a strong equilibrium with the aid of an informed
routing mediator; therefore, our current result can be simply
derived from the combination of the result of (Rozenfeld and
Tennenholtz, 2007) and our result in section . Nevertheless,
we consider it to be the main positive result of the paper,
because of its importance: we show that a socially optimal
profile of a very large class of games can be implemented as
an equilibrium in group dominant strategies with 0 cost.

Routing Mediators
Preliminaries
Recall our intuition on routing mediators: a mediator is a
party who can offer agents to play the game on their behalf,
and whose behavior on behalf of the agents who agreed to
use his services is specified by a contract. This contract can
be conditioned on the choices of all other agents. Hence, in
this setting, we assume that the original game can be played,
in a sense, only through the mediator – for example, the me-
diator sits on a router that receives all messages about the
actions chosen by the players. The mediator cannot alter
these messages, but he can observe them; this observability
can serve him as a critical tool in establishing his chosen ac-
tions on behalf of the players who delegated him their right
of play.

First, we formally define routing mediators. We simplify
the definitions given in (Rozenfeld and Tennenholtz, 2007),
for the following two reasons: first, in this work we consider
only pure strategies, and secondly, we restrict ourselves to
fully informed mediators (in the notation of (Rozenfeld and
Tennenholtz, 2007), we fix Ω = Ωfull).

Let Γ = 〈N, {Ai}i∈N , {ui}i∈N 〉 be a game in strategic
form. A (fully informed) routing mediator for Γ is a tuple
M = 〈m, (cz)z∈Z〉, where the following holds:

• m /∈ Ai for all i ∈ N . m denotes the new strategy that
is now available to each player: to send a message to the
mediator, indicating that the player agrees to give the me-
diator the right of play for him.

• Zi = Ai ∪ {m}, and Z = ×i∈NZi. Given z ∈ Z, let
T (z) denote {j ∈ N |zj = m}. That is, T (z) denotes the
players who agree to give the mediator the right of play
for them in z.

• For every z ∈ Z, cz ∈ AT (z). That is, c is the condi-
tional contract that is offered by the mediator: it specifies
exactly which actions the mediator will perform on behalf



of the players who agree to use his services, as a function
of the strategy profile chosen by all agents.

Every mediator M for Γ induces a new game Γ(M) in
strategic form in which the strategy set of player i is Zi. The
payoff function of i is defined for every z ∈ Z as follows:
uMi (z) = ui(cz, z−T (z)). For S ⊆ N we denote by mS the
strategy profile (m, . . . ,m) ∈ ZS . We say that a mediator
M implements a profile a in GDS (resp., SE), if cmN = a
and mN is a GDS (resp., SE) in Γ(M).

Note that when informed mediators are considered, the
requirement on the implemented profile to be a GDS (and
not some weaker solution concept, such as SE) makes even
more sense: the mediator is able, indeed, to observe all the
players’ actions, so a group of players will want to sign the
contract only if the mediator commits to always play in their
best interests, according to how the other players play.

Before we proceed with our results, we show an alterna-
tive definition of implementing a profile in GDS with the use
of a routing mediator; this version is easier to work with and
it will serve us in our proofs.

Let S ⊆ N , aS ∈ AS . We define a game Γ′ =
(Γ � aS) (the subgame of Γ induced by aS) as follows:
Γ′ = 〈N ′, {Ai}i∈N ′ , {u′i}i∈N ′〉 where N ′ = N \ S and
u′i : AN ′ → < is defined as follows: for any aN\S ∈ AN ′ ,
u′i(aN\S) = ui(aS , aN\S).

We say that Γ′ is a subgame of Γ if there exist S ⊆ N ,
aS ∈ AS so that Γ′ = (Γ � aS). In particular, Γ is a sub-
game of itself (we call it the full subgame).

Let a, b ∈ A be two strategy profiles. We say that
a strictly dominates b (or b is strictly dominated by a) if
∀i ∈ N ui(a) > ui(b). We say that b ∈ A is strictly domi-
nated if there exists a ∈ A that strictly dominates b.

Note that for any S ⊆ N, aS ∈ AS , b−S ∈ A−S , aS is
not strictly dominated in the subgame (Γ � b−S) if and only
if aS ∈ br(b−S).

Let Γ be a game andM = 〈m, (cz)z∈Z〉 a mediator for Γ.
We say thatM implements a profile a in GDS if and only if
for any S ⊆ N , a−S ∈ A−S , mS is a SE in (Γ(M) � a−S).
Note the equivalence to the original definition; note also that
when checking the requirements for SE it will be enough to
check that no profile bT ∈ AT for T ⊆ S strictly dominates
mT in

(
Γ(M) � (a−S ,mS\T )

)
.

Positive Results
Now we begin our exploration of the power of informed
routing mediators in establishing GDS. The following the-
orem presents a sufficient condition for existence of GDS
with the aid of a fully informed mediator:

Theorem 1 Let Γ be a game which satisfies the following
property: in any subgame Γ′ of Γ there exists a non-empty
S ⊆ N ′ and a profile aS ∈ AS , such that for each i ∈ S
and every b−S ∈ AN ′\S , c ∈ AN ′ u

′
i(aS , b−S) ≥ u′i(c).

In words, the profile aS guarantees each member of S the
highest possible payoff for her in the subgame Γ′, no matter
what the remaining players in N ′ \ S do. Then:

1. There exists a profile a∗ ∈ A that is a SE.

2. An informed routing mediator can implement a∗ as a
GDS.

Proof:
1. Suppose that the game Γ satisfies the above property.

Then, we iteratively define the profile a∗ as follows: Γ
is in particular a subgame of Γ, therefore there exists a
non-empty S0 ⊆ N and a profile aS0 ∈ AS0 that satisfies
the requirements of the theorem: aS0 guarantees all play-
ers in S0 the highest payoff in Γ. We take a∗S0 = aS0 , and
consider the subgame Γ′ = (Γ � a∗S0). By the conditions
of the theorem, there exists a non-empty S1 ⊆ N \ S0

and a profile aS1 ∈ AS1 that satisfies the requirements.
We take a∗S1 = aS1 . We continue in the same manner
until the profile a∗ is fully defined. Since in every step k
the subset Sk is non empty, we need at most |N | steps to
define the profile.
Now we must show that a∗ is a strong equilibrium. We
show by induction on k that no i ∈ Sk can be a member of
a deviating coalition. It is clear that no member of S0 will
want to deviate, since by playing a∗ they guarantee them-
selves the highest possible payoff in the game. From the
definition of a∗ we see that the same logic can be used for
the induction step: no player in Sk+1 will want to deviate,
since a∗ was chosen so that all players in Sk+1 guarantee
themselves the best payoff in the subgame where players
in S0 ∪ . . . ∪ Sk play according to a∗.

2. We have to fully define the conditional contract that the
mediator offers; in other words, for every z ∈ Z we have
to define the profile cz ∈ AT (z) that the mediator com-
mits to playing on behalf of T (z). We define this profile
iteratively, in the similar manner that we defined a∗: we
start with the subgame of Γ induced by z−T (z), and fix
the action of the set S0 of players who can guarantee the
highest payoff in the subgame; then we fix the action of
the set S1 of players who can guarantee themselves the
highest possible payoff in the resulting new subgame; etc.
Now the game Γ(M) is defined, it remains to verify that
in every subgame Γ(M) � a−S , playing mS is a SE. This
can be proved in the same manner as (1): by induction on
k we can show that no member of Sk will participate in a
deviating coalition. We show the induction step: suppose
in a profile z players in S0 ∪ . . .∪Sk choose m; we must
prove that no member of Sk+1 will want to join a devi-
ating coalition T and play according to some wT ∈ AT .
Let us denote z′ = (wT , z−T ) (the profile after the de-
viation of T ). The important thing to notice here is that
(cz)i = (cz′)i for all i ∈ S0 ∪ . . . ∪ Sk – this follows
from our definition of cz and the induction hypothesis.
Then we can use the same logic as in the proof of (1) to
derive the result.

Note the computational implications of the above proof:
suppose we have a game which satisfies the conditions of
Thm. 1, and we want to implement a solution in GDS effi-
ciently. We can treat the mediator as a kind of oracle: given
a profile z, we want to be able to compute cz efficiently. It
follows from the proof of Thm. 1 that all that we need in
order to achieve this goal is the ability to efficiently com-



pute, for any given subgame Γ′, the S ⊆ N ′ and aS ∈ AS
whose existence is guaranteed by the theorem. As we will
see, in some natural classes of games such computation can
be done efficiently, even when the game is given in a suc-
cinct representation.

Now we will show two classes of games which satisfy the
condition of Thm. 1.

A monotone increasing identity-dependent [MIID]-
congestion game is defined as follows:

• A finite set of players, N = {1, . . . , n}.
• A finite non-empty set of facilities, M .

• For each player i ∈ N a non-empty set Ai ⊆ 2M , which
is the set of actions available to player i (an action is a
subset of the facilities).

• With every facility m ∈ M and set of players S ⊆ N a
real number vm(S) is associated, having the following in-
terpretation: vm(S) is the payoff to each user of m when
the set of users of m equals S.

• For each m ∈ M,S ⊆ N,T ⊆ S : vm(T ) ≤ vm(S),
meaning that the payoff from a resource is non-decreasing
with its the users.

The utility function of player i, ui : A→ <, is then defined
as follows:

ui(a) =
∑
m∈ai

vm({i|m ∈ ai})

MIID-congestion games are not congestion games in the
original sense of (Rosenthal, 1973), since we allow the pay-
off from a resource to depend on the identity of its users.
It is a particular subclass of ID-congestion games, defined
in (Monderer, 2006), with the restrictions to non-player-
specific version (users occupying the same resource get
the same payoff) and monotone-increasing payoffs. MIID-
congestion games can be used to model situations such as
buyers clubs, where players choose providers and get dis-
counts based on the group of people they buy with; also they
can be used in various situations of non-symmetric sharing
of the cost of a resource by the occupying players.

We say that a MIID-congestion game is simple if ∀i ∈
N, a ∈ Ai : |a| = 1.

We say that a MIID-congestion game is quasi symmetric
if ∀i, j ∈ N,Ai = Aj = A.

Proposition 1 Let Γ be a MIID-congestion game. Then, Γ
satisfies the conditions of Thm. 1 if either one of the follow-
ing holds:

1. Γ is quasi symmetric.
2. Γ is simple.

Proof: Note that if Γ is a simple MIID-congestion game,
then any subgame Γ′ of Γ is also a simple MIID-congestion
game. Same can be said about quasi-symmetric MIID-
congestion games. Therefore, to prove both cases it is
enough to show the existence of S ⊆ N, aS ∈ AS in the
full subgame Γ such that all players is S receive the high-
est payoff in the game when playing aS , regardless of other
players’ actions.

1. Suppose that Γ is quasi symmetric. Let S = N , and
a ∈ arg maxa∈A

(∑
m∈a vm({i|m ∈ a})

)
. We define aS

by taking ai = a for all i ∈ S. It is easy to see that aS
grants each player the highest possible payoff in the game.

2. Suppose that Γ is simple. For any m ∈ M ,
let Smax(m) denote {i|{m} ∈ Ai}. Let m ∈
arg maxm∈M (vm (Smax(m))), and let S = Smax(m),
and aS defined as ai = {m} for all i ∈ S. Since the game
is monotone increasing, each player in S gets the highest
possible payoff in the game.
Note that in both simple and quasi symmetric MIID-

congestion games the S ⊆ N, aS ∈ AS of Thm. 1 can
be efficiently computed, even if the games are given in a
succinct representation; this implies, as we showed, that a
solution in GDS can be implemented efficiently.

We have to remark that quasi-symmetric MIID-
congestion games would usually be considered trivial – the
symmetric socially optimal outcome where each player gets
the highest possible payoff in the game is a SE, so where
is the problem? The problem is that SE is not GDS. The
simplest example of such apparently ”trivial” game is the
coordination game:

A B
A 1,1 0,0
B 0,0 1,1

Obviously, (A,A) and (B,B) are both SE, but what
would be a good advice to play? A routing mediator will
be able to solve this game by the following contract: if both
players cooperate, the mediator plays (A,A), and if one de-
viates, the mediator will copy her action on behalf of the
cooperating player. This solution is more than SE – it is
GDS, and it is non-achievable here without a mediator.

Note also that the condition of Thm. 1 is sufficient for be-
ing able to implement GDS with an informed mediator, but
it is not necessary: the Prisoner’s Dilemma game does not
satisfy this condition, however the profile (C,C) is imple-
mentable as GDS by an informed mediator, as we saw in the
introduction. In the next section we will attempt to derive a
necessary and sufficient condition for existence of GDS with
an informed mediator.

Characterization for n = 2 and n = 3
Our goal is to characterize all the games in which a GDS is
implementable using an informed mediator. We begin with
the simple case n = 2:

Proposition 2 Let Γ be a 2 player game, and let a be a strat-
egy profile. a is implementable as GDS using an informed
mediator if and only if a is not strictly dominated and

∀i ∈ N ui(a) ≥ max
bi∈Ai

{ min
b3−i∈br3−i(bi)

{ui(b)}} (∗)

Proof: ⇒ Suppose that a is implementable as GDS using
an informed mediator. If a was strictly dominated by b, then
(m,m) wouldn’t be a SE in the full subgame Γ(M), since
both players could jointly deviate to b. Therefore, a is not
strictly dominated. Next, suppose for contradiction that (*)
does not hold. That means, w.l.o.g. there exists b1 ∈ A1



such that u1(a) < u1(b1, b2) for every b2 ∈ br2(b1). Con-
sider the subgame Γ′ = (Γ(M) � b1), and let b2 = c(b1,m)

(the response of the mediator on behalf of player 2 in Γ′). If
b2 /∈ br2(b1), then m2 is not a SE in Γ′. Therefore, it must
hold that b2 ∈ br2(b1). But in this case, (m,m) is not an
SE in Γ(M), since player 1 has a profitable deviation to b1.
Contradiction.
⇐ Suppose that both conditions hold. We define an in-
formed mediator M = 〈m, (cz)z∈Z〉 as follows: if both
players cooperate, the mediator plays a; if only player i co-
operates, and the player 3− i plays b3−i, the mediator plays
bi ∈ arg minbi∈bri(b3−i){u3−i(b)}. Formally, c(m,m) = a,
c(mi,b3−i) ∈
arg minbi∈bri(b3−i){u3−i(b)}. Note that the mediator al-
ways plays the best response strategy: m ∈ bri(b3−i). The
two players cannot jointly deviate, since a is not strictly
dominated. Finally, (*) implies that m ∈ bri(m3−i), which
completes the proof that (m,m) is a GDS in Γ(M).

Proposition 3 There exists a polynomial algorithm that ac-
cepts as input a 3 player game Γ in explicit form and a
strategy profile a, and if a is implementable in GDS by an
informed mediator, outputs such a mediator.

Proof: To specify an informed mediator, we must deter-
mine which actions the mediator will commit to playing on
behalf of the cooperating players, depending on the actions
of others; formally, we must specify cz for each z ∈ (Z\A).
We know that c(m,m,m) = a. We first determine the sets
of “feasible” outcomes that the mediator can choose: con-
sider the profile (m,m, x3) for some x3 ∈ A3. We say that
a profile x = (x1, x2, x3) is feasible for a mediator to choose
(as c(m,m, x3)) if the following conditions hold:

1. u3(x) ≤ u3(a).

2. The profile (x1, x2) is not strictly dominated in the sub-
game (Γ � x3).

3. There is no profile (y1, y2, x3) that satisfies condition 1
and for which ∀i ∈ {1, 2} ui(y1, y2, x3) ≥ ui(x) and for
at least one i ∈ {1, 2} the inequality is strict.

We denote by Pos(m,m, x) the set of all feasible profiles
for (m,m, x). The set satisfies the following property:
Let z, z′ ∈ Pos(m,m, x). Then u1(z) > u1(z′) ⇔
u2(z) < u2(z′).
More importantly, we can show that if a mediator exists
that implements a as GDS, then there also exists such me-
diator that commits to a profile from Pos(m,m, x) when
(m,m, x) is played. In other words, we don’t lose general-
ity in restricting our attention to Pos(m,m, x). It is easy to
see that the first two conditions are necessary: the first guar-
antees that player 3 cannot deviate from (m,m,m), and the
second guarantees that players 1 and 2 cannot jointly deviate
from (m,m, x). Condition 3 states that once condition 1 is
satisfied, we can never “lose” by increasing the payoff of the
cooperating players – no new deviations are made possible.
Therefore, we can safely choose a profile which maximizes
the reward of the cooperating players.

Similarly, we define the sets Pos(m,x,m) and
Pos(x,m,m) for all x ∈ A. In a similar manner, we want

to limit the mediator to feasible actions on behalf of a single
cooperating player: we say that a profile x = (x1, x2, x3)
is feasible for a mediator to choose for (m,x2, x3) if the
following conditions hold:

1. ∃i ∈ {2, 3} ui(x) ≤ ui(a).
2. x1 ∈ br1(x2, x3).
3. There is no profile (y1, x2, x3) that satisfies conditions 1

and 2 and for which ∀i ∈ {2, 3} ui(y1, x2, x3) ≤ ui(x)
and for at least one i ∈ {2, 3} the inequality is strict.

Similarly, we denote by Pos(m,x, y) the set of all feasible
profiles for (m,x, y). The set satisfies the following prop-
erty:
Let z, z′ ∈ Pos(m,x, y). Then u2(z) > u2(z′)⇔ u3(z) <
u3(z′).
Similarly, we can show that if a mediator exists that imple-
ments a as GDS, then there also exists such mediator that
commits to a profile from Pos(m,x, y) when (m,x, y) is
played. As before, it is easy to see that the first two condi-
tions are necessary: the first guarantees that players 2 and 3
cannot jointly deviate from (m,m,m), and the second guar-
antees that player 1 cannot deviate from (m,x, y). Condi-
tion 3 states that once conditions 1 and 2 are satisfied, we can
never “lose” by punishing the deviating players – no new de-
viations are made possible. Therefore, we can safely choose
a profile which minimizes the reward of the deviating play-
ers. So, in similar manner we define the sets Pos(x,m, z)
and Pos(x, y,m) for all x ∈ A1, y ∈ A2, z ∈ A3. Note that
finding the sets Pos(−→m) takes polynomial time (we assume
that the game was given explicitly); obviously, if any one of
the sets is empty, the algorithm should stop and return false.

The main idea of the algorithm is: now that all that
is left is to find the assignment from each profile −→m ∈∏
i∈N Ai ∪ {m} \A \ {(m,m,m)} to Pos(−→m), we are go-

ing to reduce the problem to 2-SAT, and solve the resulting
2-SAT instance. Our (binary) variables will be assertions of
the form wi(−→m) ≥ C or wi(−→m) ≤ C, meaning that player i
gets at least (at most) C in the profile −→m. For any x3 ∈ A3,
let −→m = (m,m, x3). We define

V ar(−→m) = {w1(−→m) ≤ C|∃x ∈ Pos(−→m) : u1(x) = C}∪
{w1(−→m) ≥ C|∃x ∈ Pos(−→m) : u1(x) = C}∪
{w2(−→m) ≤ C|∃x ∈ Pos(−→m) : u2(x) = C}∪
{w2(−→m) ≥ C|∃x ∈ Pos(−→m) : u2(x) = C}

Similarly, for any x2 ∈ A2 and −→m = (m,x2,m), we
define
V ar(−→m) = {w1(−→m) ≤ C|∃x ∈ Pos(−→m) : u1(x) = C}∪

{w1(−→m) ≥ C|∃x ∈ Pos(−→m) : u1(x) = C}∪
{w3(−→m) ≤ C|∃x ∈ Pos(−→m) : u3(x) = C}∪
{w3(−→m) ≥ C|∃x ∈ Pos(−→m) : u3(x) = C}

and for any x1 ∈ A1 and −→m = (x1,m,m), we define

V ar(−→m) = {w2(−→m) ≤ C|∃x ∈ Pos(−→m) : u2(x) = C}∪
{w2(−→m) ≥ C|∃x ∈ Pos(−→m) : u2(x) = C}∪
{w3(−→m) ≤ C|∃x ∈ Pos(−→m) : u3(x) = C}∪
{w3(−→m) ≥ C|∃x ∈ Pos(−→m) : u3(x) = C}

In the same manner we define V ar(−→m) for all other
−→m ∈

∏
i∈N Ai ∪ {m} \ A \ {(m,m,m)}, and we let



V ar =
⋃
−→m V ar(−→m). Now we will translate the problem

of finding our mediator into binary clauses on variables in
V ar.
Transitivity: For all i ∈ N , whenever C < D we add the
following clauses:

wi(−→m) ≤ C → wi(−→m) ≤ D

wi(−→m) ≥ D → wi(−→m) ≥ C
Relation between ≥ and ≤: For all i ∈ N , whenever D is a
successor of C, we add:

¬wi(−→m) ≤ C → wi(−→m) ≥ D

¬wi(−→m) ≥ D → wi(−→m) ≤ C
Anti-symmetry: For all i ∈ N , whenever C < D, we add:

wi(−→m) ≤ C → ¬wi(−→m) ≥ D

wi(−→m) ≥ D → ¬wi(−→m) ≤ C
Solution borders: For any maximal C such that wi(−→m) ≤ C
is defined, we add:

wi(−→m) ≤ C

For any minimal D such that wi(−→m) ≥ D is defined, we
add:

wi(−→m) ≥ D
Solution domain: Now we use the fact that Pos(−→m) satisfies
the aforementioned properties in order to add clauses of the
form:

wi(−→m) ≤ C → wj(−→m) ≥ D
wj(−→m) ≥ D → wi(−→m) ≤ C

GDS requirements: Finally, we encode the requirements for
GDS: that playing m is a SE in any subgame. We already
took care of some of the requirements in our definitions of
the sets Pos(−→m); namely, that (m,m,m) is a SE; that there
is no beneficial deviation from m for the single cooperating
player when the others deviate; and, that two cooperating
players don’t have a beneficial joint deviation. All that is left
to encode is the requirements that one of the two cooperating
players must never have a beneficial deviation. They are
encoded as follows: let x ∈ A3, y ∈ A1. We add he clause

w1(m,m, x) ≤ C → w1(y,m, x) ≤ D

Here, D is the highest such that D ≤ C, and w1(y,m, x) ≤
D is defined. Similarly, we add the clauses:

w2(m,m, x) ≤ C → w2(m, y, x) ≤ D

w1(m,x,m) ≤ C → w1(y, x,m) ≤ D
w3(m,x,m) ≤ C → w3(m,x, y) ≤ D
w2(x,m,m) ≤ C → w2(x, y,m) ≤ D
w3(x,m,m) ≤ C → w3(x,m, y) ≤ D

In each of the above, x, y are chosen from the appropriate
domains, and C,D are set according to the definition of the
appropriate variable.

In order to finish the reduction, we must show how we
define a mediator given a satisfying assignment to the vari-
ables: first, we claim that any satisfying assignment to

the variables has a certain form: Consider all the vari-
ables wi(−→m) ≤ C1, . . . , wi(−→m) ≤ Ck and wi(−→m) ≥
C1, . . . , wi(−→m) ≥ Ck for a given i,−→m where C1, . . . , Ck
are sorted in decreasing order. Then, for any satisfying as-
signment there exists Cl such that wi(−→m) ≤ Cj is satisfied
if and only if j ≤ l and wi(−→m) ≥ Cj is satisfied if and
only if j ≥ l. This property follows from our requirements
on transitivity, anti-symmetry and relations between ≥ and
≤. What this means is that any satisfying assignment de-
termines exactly the payoffs of the two players of interest
(for profiles where two player cooperate, these are the co-
operating players, and for profiles where two players defect,
these are the defecting players); therefore, a satisfying as-
signment enables us to choose a single profile from Pos(−→m)
(the profile is guaranteed to exist, due to the ”solution do-
main” clauses that we included and the way Pos(−→m) was
defined).

From all the above we should be convinced that:
1. Any assignment to variables in V ar that satisfies all the

clauses results in a feasible mediator that implements a in
GDS;

2. If a mediator exists that can implement a in GDS, then
there exists a satisfying assignment for our clauses.
Of course, the number of clauses of the 2-SAT problem

is polynomial in the input size (the game is given explic-
itly); the time required for the preliminary work, as well as
the definition of the mediator, is also polynomial. Therefore
the above algorithm provides a complete characterization of
achieving GDS in 3-player games by an informed mediator.

For non-constant number of players, the explicit repre-
sentation of a game is infeasible; so, in a sense, it would
not help us much to find an algorithm for general n whose
running time is polynomial in the size of the input. We con-
jecture that even for n = 4, the decision problem of whether
a given profile can be implemented as GDS by an informed
mediator is NP-hard.

Negative Results on Routing Mediators
Now we present a simple necessary condition for existence
of GDS, which can be used to derive many negative results.
We will need the definition of a symmetric game: A permu-
tation of the set of players is a one-to-one function from N
onto N . For every permutation π, and for every action pro-
file a ∈ A we denote by πa the permutation of a by π. That
is, (πa)πi = ai for every player i ∈ S. Γ is a symmetric
game if Ai = Aj for all i, j ∈ N , and ui(a) = uπ(i)(πa)
for every player i, for every action profile a ∈ A, and for
every permutation π.

Proposition 4 Let Γ be a symmetric game, and let V de-
note the optimal social surplus. If there exists a set S ⊆ N
and a profile aS ∈ AS such that ∀a−S ∈ br−S(aS), i ∈
S ui(a) > V/n then there is no profile which can be imple-
mented as a GDS by an informed mediator.

Proof: Suppose, for contradiction, that there exists a
set S ⊆ N and a profile aS ∈ AS such that ∀a−S ∈
br−S(aS), i ∈ S ui(a) > V/n, but there exists a media-
torM = 〈m, (cz)z∈Z〉 that implements a solution in GDS.



Consider the subgame (Γ(M) � aS), and suppose all the
players in N \ S cooperate with the mediator. The mediator
must choose a profile c(aS ,m−S) ∈ br−S(aS), otherwise the
players in N \ S will have a beneficial deviation. However,
that means that all the players in S must receive more than
V/n each in the profile (aS ,m−S). Since mN is a SE in
the full subgame Γ(M), it follows that each of the players
in S must receive more than V/n in the profile mN as well.
However, same reasoning applies to any S′ ⊆ N such that
|S′| = |S|, since the game is symmetric; therefore, every
player has to receive more than V/n in mN – contradiction.

A good example to explain the intuition of the above
proposition is the Chicken-Dare game:

C D
C 0,0 -1,1
D 1,-1 -10,-10

In this game, a solution implemented by an informed me-
diator can never be a GDS: any individual player can guar-
antee herself a payoff of 1 by playing D, because she knows
that if she plays D, the mediator will have to play C (the
best response) on behalf of her opponent. Since no profile
exists where both players receive a payoff of 1, one of them
will have an incentive to deviate.

Proposition 4 can be used to derive many negative results
on the existence of GDS. For example, in settings such as
the network design game, monotone decreasing congestion
games, zero-sum games, job scheduling, and more, there is
no hope to achieve GDS with an informed mediator.

Our next negative result concerns uninformed mediators.
One can remark that the solution in GDS that we presented
in the introduction for the Prisoner’s Dilemma game did
not require very strong assumption that the mediator has
the ability to see the actions that players choose in the un-
derlying game. Formally, we say the a mediator M =
〈m, (cz)z∈Z〉 for a game Γ is uninformed if cz = cz′ for
all z, z′ ∈ Z such that T (z) = T (z′). Such mediators re-
quire no access to the players’ chosen actions; in fact, any
reliable party can serve as an uninformed mediator. It turns
out, though, that the class of games where GDS is imple-
mentable by such a weak mediator is extremely limited:

Proposition 5 Let Γ be a game, n = 2, and let a be a strat-
egy profile. Then, a can be implemented as GDS by an unin-
formed mediator if and only if:

(a) a is not strictly dominated
(b) Γ has an equilibrium b in weakly dominant strategies, for

which ui(a) ≥ ui(b) for i = 1, 2
In particular, a solution in GDS is implementable in Γ by an
uninformed mediator if and only if Γ possesses an equilib-
rium in weakly dominant strategies.

Proof: ⇐ Suppose a satisfies both conditions. We define
the mediatorM = 〈m, (cz)z∈Z〉 as follows: c(m,m) = a,
∀x ∈ A c(m,x2) = b1, c(x1,m) = b2. We need to show that
(m,m) is GDS in Γ(M). Since a is not strictly dominated,
the two players do not have a joint beneficial deviation from
(m,m). Now w.l.o.g. we need to prove m ∈ br1(x2) for
all x2 ∈ Z2. For all x1 ∈ A1 it holds that uM1 (x1,m) =

uM1 (x1, b2) ≤ uM1 (b) ≤ uM1 (a) = uM1 (m,m), therefore
m ∈ br1(m). Let x2 ∈ A2. For all x1 ∈ A1 it holds that
uM1 (x1, x2) ≤ uM1 (b1, x2) = uM1 (m,x2), m ∈ br1(x2).
So (m,m) is GDS in Γ(M).
⇒ Suppose that an uninformed mediator M =
〈m, (cz)z∈Z〉 implements a in GDS. Obviously, a is
not strictly dominated, otherwise both players would jointly
deviate from (m,m). Let b = (c(m,x2), c(x1,m)). The pro-
file b is well defined, because the mediator is uninformed.
Since (m,m) is a GDS in Γ(M), m ∈ br1(x2) for all
x2 ∈ A2; therefore, for any x2 ∈ A2, x1 ∈ A1 we have
u1(b1, x2) = uM1 (b1, x2) = uM1 (m,x2) ≥ uM1 (x1, x2) =
u1(x1, x2), therefore b1 is a weakly dominant strategy for
player 1; similarly, b2 is a weakly dominant strategy for
player 2. Since m ∈ br1(m), it must hold that u1(a) =
uM1 (a) = uM1 (m,m) ≥ uM1 (b1,m) = uM1 (b) = u1(b);
similarly, from m ∈ br2(m) we derive that u2(a) ≥ u2(b),
which completes the proof.

Note that if an equilibrium b in weakly dominant strate-
gies exists in Γ, we can always take a profile a to be a Pareto
optimal profile s.t. ui(a) ≥ ui(b) for i = 1, 2, and both
conditions will hold; thus, we have that a solution in GDS is
implementable in Γ by an uninformed mediator if and only
if Γ possesses an equilibrium in weakly dominant strategies.

When n ≥ 3 we do not have any hope, in general, to
implement GDS with an uninformed mediator – even if an
equilibrium in weakly dominant strategies exists. The rea-
son for this is that in order to achieve a GDS a mediator
has to play a best response on behalf of all the cooperating
players, no matter what the others chose; when a group of
players cooperates, their joint best response is not necessar-
ily playing their individual weakly dominant strategies; so,
without the information about the played profile, the medi-
ator may not know the best response. So, in a sense, the
Prisoner’s Dilemma is the only example of achieving GDS
with an uninformed mediator.

K-Implementation
In this section we turn to a different kind of mediators, in-
troduced by (Monderer and Tennenholtz, 2004). We assume
that the mediator is an interested party who has the power
to alter the game by committing to non-negative monetary
transfers to the players, conditioned on the outcome of the
game. Formally, given a game Γ = 〈N,A,U〉, such a me-
diator is defined by a payoff function vector V = {vi}i∈N ,
where each vi : A → < is non-negative. Given a media-
tor a game Γ and a mediator V , the mediated game Γ(V ) is
simply 〈N,A,U + V 〉.

Note that the above definition implicitly makes two im-
portant assumptions:
• Output observability: The interested party can observe the

actions chosen by the players.
• Commitment power: The interested party is reliable in the

sense that the players believe that he will indeed pay the
additional payoff defined by V .
Note also that unlike routing mediators discussed in the

previous section, here the mediator does not play the game
on behalf of the agents. Similarly to routing mediators,



though, he observes players actions and offers a reliable con-
tract conditioned on these actions; he also does not restrict
the players’ actions in any way, and does not enforce behav-
ior.

Given a game Γ and a profile a ∈ A, we say that a has a k-
implementation in weakly dominant strategies if there exists
a V such that:

1. a is an equilibrium in weakly dominant strategies in Γ(V )

2.
∑
i∈N vi(a) ≤ k

Similarly, we define a k-implementation in group domi-
nant strategies. It is easy to see that a k-implementation of
any profile always exists; in particular, if we denote the max-
imal difference of payoffs in the game matrix byD, it is easy
to see that an D ·n implementation of any profile always ex-
ists. Obviously, our goal is to find cheap implementations;
in particular, we are interested in 0-implementation.

Theorem 2 (Monderer and Tennenholtz, 2004) Let Γ be
a game and a a strategy profile. Then, a has a 0-
implementation in weakly dominant strategies if and only if
a is a NE.

The above result can be extended into the following:

Theorem 3 Let Γ be a game and a a strategy profile. Then,
a has a 0-implementation in GDS if and only if a is a SE.

Proof: ⇐ Suppose a is a SE in Γ. Consider the following
mediator V : vi(a) = 0 for all i ∈ N ; for b 6= a, vi(b) = D
if ai = bi, and 0 otherwise. Obviously,

∑
i∈N vi(a) = 0.

We claim that a is a GDS in Γ(V ). First, we note that a
is still a SE in Γ(V ): this holds because we set vi(b) = 0
whenever ai 6= bi, so profitable deviations were not added.
Let b be a strategy profile, and S ⊆ N . If a−S 6= b−S ,
then obviously aS ∈ brS(b−S), since all players in S get the
highest payoff in the game when (aS , b−S) is played. But
when a−S = b−S , we have that aS ∈ brS(a−S) because a
is a SE in Γ(V ). Therefore, in both cases aS ∈ brS(b−S),
which makes a a GDS.
⇒ Suppose V is a 0-implementation of a in GDS, and sup-
pose for contradiction that bS is a profitable deviation of a
coalition S ⊆ N in Γ. We denote b = (bS , a−S). Since∑
i∈N vi(a) = 0, in particular we have vi(a) = 0 for all

i ∈ S; therefore, ∀i ∈ S ui(a)+vi(a) = ui(a) < ui(b) ≤
ui(b) + vi(b), which means that bS strictly dominates aS in
the subgame Γ(V ) � a−S ; therefore aS /∈ brS(a−S), so a is
not GDS in Γ(V ). Contradiction.

This result implies that we can implement GDS with 0
cost in all settings where SE is known to always exist, e.g.:
job scheduling, network design (Andelman et al., 2007) and
certain forms of monotone congestion games (Holzman and
Law-Yone, 1997; Rozenfeld and Tennenholtz, 2006).

Now we turn to the computational question of finding
the optimal k-implementation. (Monderer and Tennenholtz,
2004) showed a polynomial algorithm for finding the opti-
mal k-implementation in dominant strategies; now we would
like to extend their results to implementation in GDS.

Proposition 6 Let Γ = 〈N, {Ai}i∈N , {ui}i∈N 〉 be a game,
with |N | = n, |Ai| ≤ m, and |{ui(a)|a ∈ A}| ≤ p for all

i ∈ N . Then, an exhaustive brute-force algorithm for find-
ing an optimal k-implementation in GDS of a given profile
a ∈ A runs in O(pn · n ·mn).

Proof: To implement a profile a in GDS, we have to find
a profile of payments vi(a) to the agents such that for each
subset S of agents, and each joint deviation bS , there exists
an agent in i ∈ S such that ui(a) + vi(a) ≥ ui(a−S , bS)
(note that in all profiles b = (aS , b−S) where ∀i /∈ S bi 6= ai
we w.l.o.g. can set vj(b) = D for any j ∈ S, and set vi(b) =
0 for any i /∈ S). Note also that given a k-implementation V ,
we can verify the validity of the implementation as follows:
simply go over all the possible deviations bS , and ensure
that each deviation is covered (one of the players does not
benefit). This takes at most O(n ·mn) steps. Note also that
the amount of all possible mediators to check is at most pn,
because w.l.o.g. we can consider only possibilities in which
a player receives a total payoff that equals one of his possible
payoffs in Γ. Therefore, the simple brute force algorithm
that checks all possible mediators takes at mostO(pn·n·mn)
steps.

In general, p is bounded by mn; note that if the game
is given explicitly, p is at most polynomial in the size of
the input, and n is at most logarithmic in the size of the
input. Therefore, in the case where either n or p are constant,
the brute-force algorithm that checks all the possibilities is
polynomial in the size of the input2.

Combining Routing Mediators with
K-Implementation

In this section we consider mediators who combine the
power of routing mediators and k-implementation. Our goal
is to implement a good solution in GDS in an interesting
class of games. First, we formally define combined media-
tors:

Let Γ be a game in strategic form. A combined mediator
for Γ is a tuple (M, V ), whereM is a routing mediator for
Γ and V is a payoff function vector for Γ(M) (as defined in
the previous section).

We say that a combined mediator (M, V ), where M =
〈m, (cz)z∈Z〉, implements a profile a in GDS with cost k,
if:
• cmN = a

• V is a k-implementation in GDS of mN in the game
Γ(M)
Let Γ be a game in strategic form. Γ is a minimally fair

game (Rozenfeld and Tennenholtz, 2007) if for all i, j ∈
N,Xi = Xj and for every action profile x ∈ X , xi = xj
implies that ui(x) = uj(x). That is, a game is minimally

2It is an interesting question to consider the computational com-
plexity of finding the optimal k-implementation for non-constant n
and p, when the game is given explicitly. It is very unlikely that
the problem is NP-hard, since, as we saw, the size of the witness
is O(tlog t) (where t represents the input size). In fact, several
complexity classes have been defined that are good candidates for
this problem (Papadimitriou and Yannakakis, 1996); we conjecture
that finding the optimal k-implementation in GDS is LOGSNP-
complete.



fair if players who play the same strategy get the same pay-
off. The exact value of the received payoff may depend on
the identities of the players who chose the strategy, as well
as on the rest of the profile. In particular, every symmet-
ric game is a minimally fair game; however, minimally fair
games capture a much wider class of settings. For exam-
ple, typical job-shop scheduling games are minimally fair
games.

In order to define what solution is considered ”good”, we
employ the standard model of max-min fairness (Kleinberg
et al., 1999; Kumar and Kleinberg, 2000). We call an alloca-
tion of strategies to players max-min fair if the utility of any
player cannot be increased without decreasing the utility of
a player who was facing an already lower utility. In many
settings max-min fairness is a natural social optimality cri-
terion.

Now we are ready to state our main result:

Theorem 4 Let Γ be a minimally fair game and let a be
a max-min fair profile of the game. Then, a can be imple-
mented in GDS by combined routing mediator with 0 cost.

Proof: Applying Thm. 1 of (Rozenfeld and Tennenholtz,
2007), there exists a routing mediator M = 〈m, (cz)z∈Z〉
that implements a as a SE; that is, cmN = a and mN is a SE
of the game Γ(M). Applying Thm. 3 to the game Γ(M),
we have that there exists a 0-implementation V of mN in
GDS. Therefore, (M, V ) is the desired combined mediator.

Further Work
We see several possible directions for further work on the
subject of group dominant strategies. First of all, this pa-
per did not consider the possibility of using mixed strate-
gies. Ideally, in the extension of the definition of GDS to
the mixed case, we would like to consider the possibility
of correlated deviations; we would like to use the concept
of correlated strong equilibrium (defined in (Rozenfeld and
Tennenholtz, 2006)) and extend it to hold without any ra-
tionality assumptions on the non-cooperating players (in a
manner similar to the GDS concept). This, of course, will
result in a much stronger solution concept than GDS; in par-
ticular, Thm. 4 will no longer hold. However, we note that
Thm. 1 still holds in this case – which implies, in particu-
lar, that the positive results of Prop. 1 regarding simple and
quasi-symmetric MIIID-congestion games still apply under
this concept.

Another direction is to consider the tradeoff between the
cost of an implementation and the quality of the imple-
mented profile. In section , we implicitly assumed that the
cheaper implementation is always better, in particular, that
our goal is 0-implementation. However, it seems natural to
us that the decision making of the interested party is based,
in general, on both the cost of an implementation and the
quality of the implemented profile – where the quality can
be, for example, the social surplus. It will be interesting
to consider both the computational issues of finding the op-
timal implementation (where optimal now combines these
two criteria) and the following variant of price of stability:
to compare the optimal social surplus with the cost of the op-

timal implementation in GDS (where this cost, again, some-
how combines the two criteria).
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