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Abstract. To answer the question in the title we consider a fixed state space

with a profile of partitions that have a single common knowledge component
and let the the types, that is, the posterior probabilities, vary. How common

is it for types to have a common prior? The answer depends on the partition

profile. We say that it is maximal if any refinement of its elements results in a
profile that has more than one common knowledge component. If the partition

profile is maximal, then every profile of types has a common prior. If it is not

maximal, then the set of types that have a common prior is topologically small:
it is nowhere dense in the set of all types.

1. Introduction

Ever since the introduction of games with incomplete information by Harsanyi
(1967, 1968a, b), the use of common priors in models of differential information has
been ubiquitous. The assumption that players posterior beliefs are derived from
a prior common to all of them plays an essential role in the No Disagreements
theorem of Aumann (1976) and in the No Trade theorems that followed. It is
also a basic building block of correlated equilibrium as the ultimate expression of
common knowledge of rationality (Aumann (1987)). Moreover, as pointed out in
that paper, the assumption of a common prior is pervasive and explicit or implicit
in the vast majority of the differential information literature in economics and game
theory. The assumption that players share a common prior, sometimes known as the
Harsnyi doctrine, has been debated, sometimes vehemently. Aumann‘s 1987 paper
sparked a debate between him and Gul (Aumann (1998) and Gul (1998)) in which
the latter argued that an over-reliance on assuming common priors is unrealistic.

The debate over the extent to which common priors should or should not be
automatically assumed leads naturally to the question in the title of this paper:
how common are common priors? In other words, given a (finite) state space Ω, n
players and a partition profile Π = (Π1, . . . ,Πn) associating a partition Πi of the
state space with each player, if one assigns an arbitrarily selected type function to
each player, how likely will the resulting type space have a common prior?

It turns out that the answer to the question depends very much on the partition
profile. If the partition profile Π is what we term tight, as defined in this paper,
then no matter what type functions are associated with the players, a common prior
exists. In contrast, if Π is not tight, the set of type profiles that have a common
prior is nowhere dense in the set of all type profiles for Π.

This leads to a surprising corollary. As we show in the paper, to determine
whether or not a partition profile Π = (Π1, . . . ,Πn) is tight all one needs to know
is how to count, as it depends solely on the total number of partition elements:
a partition profile whose meet is a singleton is tight if and only if

∑n
i=1 |Πi| =

(n− 1)|Ω|+ 1 , and it is always true that
∑n

i=1 |Πi| ≤ (n− 1)|Ω|+ 1. This means
1
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there is a phase change that occurs when the maximal value of the total number
of partition elements is attained i.e. as long as the sum total of partition elements
is less than (n − 1)|Ω| + 1 1, it is almost always the case that an arbitrary type
profile will not have a common prior, but if the sum of partition elements does
equal (n− 1)|Ω|+ 1, a common prior always exists.

2. Preliminaries

Partitions of state spaces. Let Ω be a finite set called a state space, and I =
{1, . . . , n} a set of agents with n ≥ 2. A partition profile for Ω is a vector Π =
(Π1, . . . ,Πn) of partitions of Ω. We write Π′i � Πi when the partition Π′i refines
Πi, and Π′i � Πi when Π′i � Πi and Π′i 6= Πi. For partition profiles Π and Π′, we
write Π � Π′ when for each i, Π′i � Πi, and Π � Π′ when Π � Π′ and Π′ 6= Π.
The meet of Π is the partition Πc which is the finest among all partitions that are
coarser than Πi for each i.1

Types. Denote by ∆(Ω) the set of all probability functions on Ω. A type function
for Πi is a function ti : Πi → ∆(Ω) that satisfies for each π ∈ Πi, ti(π)(π) = 1. The
probability function ti(π) is the type of i in each state of π. A type profile for Π
is a vector of type functions t = (t1, . . . , tn). Denote by T (Π) the set of all type
profiles for Π. We consider T (Π) as a subset of ×n

i=1R
Ω×Πi .

Priors and common priors. A prior for ti is a probability function p ∈ ∆(Ω),
such that for each π ∈ Πi with p (π) > 0, ti(π)(·) = p (·|π). Contrasting a prior
for ti with the probability functions ti(π), the latter are referred to as the posterior
probabilities of i. It is easy to see that p is a prior for ti if an only if it is a convex
combination of i’s types, {ti(π) | π ∈ Πi}. A type profile t has a common prior if
there is a probability function in ∆(Ω) which is a prior for ti for each i.

3. Main results

Definition 1. A partition profile Π is tight if for each partition profile Π′ that
satisfies Π′ � Π, Π′c � Πc.

The Main Theorem. Let Π be a partition profile, for Ω, then
• If Π is tight then each type profiles in T (Π) has a common prior.
• If Π is not tight then the set of type profiles in T (Π) that have a common

prior is nowhere dense in T (Π).

The next proposition characterizes tight partition profiles the meet of which is
a singleton by their size.

Proposition 1. For each partition profile Π the meet of which is a singleton,∑n
i=1 |Πi| ≤ (n−1)|Ω|+1. The partition profile Π is tight if and only if

∑n
i=1 |Πi| =

(n− 1)|Ω|+ 1.

Note that the dimension of the set of types T (Π) is
∑n

i=1 |Ω| − |Πi| and the
dimension of set of priors ∆(Ω) is |Ω| − 1. The inequality in the proposition says
that for each Π with |Πc| = 1, the dimension of the set of types is at least as that
of the set of priors, and equality holds for the tight partition profiles.

1Following Aumann’s (1976) definition of common knowledge in terms of the meet, elements
of the meet are referred sometimes as common knowledge components.
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4. Proofs

Proof of the Main theorem: We state first some well known facts about meets.
Denote by ∪Π the set of the elements in all the partitions in Π. We say that two
elements π and π′ in ∪Π connect if there is a sequence π1, . . . , πc in ∪Π such that
π = π1, π′ = πc, and for k = 1, . . . ,m− 1, πk ∩πk+1 6= ∅. The connectivity relation
is an equivalence relation on ∪Π. Each element of the meet Πc is a union of the
elements of an equivalence class in ∪Π.

We say that a partition profile Π′ is a minimal refinement of Π, if Π′ is obtained
form Π by refining only one partition Πi, and this refinement is obtained by splitting
a single element π ∈ Πi into two sets. We record the following simple result.

Lemma 1. A partition profile Π is tight if and only if for any minimal refinement
Π′ of Π, Π′c � Πc.

Proof: If Π is tight, then by definition the condition in the lemma holds. Con-
versely, suppose that for every minimal refinement Π′ of Π, Π′c � Πc, and let Π′′

be a refinement of Π. Then there exists a minimal refinement of Π, Π′, such that
Π′′ � Π′ � Π. The claim follows since Π′′c � Π′c � Π′c.

We explain now why it is enough to prove the theorem for partition profiles
the meet of which is a singleton. For each element π of the meet Πc of Π, and
for each i, the set Πi(π) of the elements of Πi contained in π, partition it. Thus,
Π(π) = (Π1(π), . . . ,Πn(π)) is a partition profile of π, and π is the only element of
its meet. Obviously, a partition profile Π is tight if and only if for each element
π in the meet Πc, Π(π) is tight. Thus, to prove the first part of the theorem it is
enough to show it for partition profiles the meet of which is a singleton.

Similarly, if π ∈ Πc, and the set of types for Π(π) that have a common prior is
nowhere dense in the set all types for Π(π), then the set of types for Π that have
a common prior is nowhere dense in the set all types for Π. Thus, it is enough to
prove the second part of the theorem for partition profiles the meet of which is a
singleton. Therefore, we assume henceforth that Πm is a singleton.

We prove the first part of the theorem by induction on the size of the state space
Ω. The structure of the proof is simple. Starting with a tight partition profile Π,
we refine it to Π′ where the meet of Π′ has two elements. We prove that these two
elements are tight. Starting with a type profile t for Π, we construct in a obvious
way a type profile t′ for Π′. Using the induction hypothesis we have a common
prior for each of the elements of Π′c. Using these common priors we construct a
common prior for Π.

For |Ω| = 1 the claim is trivial. Suppose that |Ω| ≥ 2 and the claim holds for
all state spaces of size smaller than |Ω|. Let Π be tight. Since Πc is a singleton
there must be an i and π ∈ Πi such that |π| > 1. Let π be such an element, and
consider the minimal refinement of Π, Π′, obtained by splitting π into π1 and π2.
Since Π is tight, the meet Π′c has at least two elements. Since every element in ∪Π
connects with π, it follows that every element in ∪Π′ connects with either π1 or
π2. Thus, Π′c has exactly two elements: Ω1 which contains all elements of Π′ that
connect to π1 and contains, of course, π1 and Ω2 which contains all elements of Π′

that connect to π2 and in particular π2 itself.
For k = 1, 2 and each i denote by Π′i(Ωk) the set of elements of Π′i that are

contained in Ωk. Then Π′(Ωk) = (Π′1(Ωk), . . . ,Π′n(Ωk)) is a partition profile for Ωk.
We claim that Π′(Ωk) is tight. Suppose it is not, then by Lemma 1 there exists a
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minimal refinement of Π′(Ωk), denoted Π̂′(Ωk), the meet of which is a singleton.
Suppose that this minimal refinement is obtained by splitting π̂ into π̂′ and π̂′′.

Examine first the case that π̂ 6= πk. Note, that all the elements in ∪Π̂′(Ωk)
connect with πk. Consider now the minimal refinement of Π, denoted Π̂, obtained
by splitting π̂ as in Π̂′(Ωk). Then, all the elements of ∪Π̂ that are contained in
Ωk connect to π (which is the union of π1 and π2) per our assumption, and all the
elements of ∪Π̂ that are contained in Ω3−k also connect to π. Thus the meet of Π̂
is a singleton contrary to the maximality of Π.

Now, examine the case that π̂ = πk. Then, πk = π̂′ ∪ π̂′′. All the elements in
∪Π̂′(Ωk) connect with π̂′. Consider the minimal refinement of Π, Π̂, obtained by
splitting π into π̂′′ and π̂′ ∪ π3−k. All the elements in ∪Π̂ that are contained in Ωk

connect to π̂′ ∪ π3−k through π̂′, per our assumption, and all the elements of ∪Π̂
that are contained in Ω3−k also connect to π̂′ ∪ π3−k through π3−k. Thus the meet
of Π̂ is a singleton contrary to the maximality of Π.

Consider a type profile t = (t1, . . . , tn) for Π. We define a type profile t′ =
(t′1, . . . , t

′
n) for Π′ as follows: t agrees with t′ on all the elements of Π that were

not split. For the two parts of π, π1 and π2, define t′i as follows. If ti(πk) > 0
then t′i(πk)(·) = ti(π)(· | πk). If ti(πk) = 0 then t′i(πk) is defined arbitrarily. The
restriction on t′ to elements in Π′i(Ωk), denoted t′(Ωk), is a type profile for this
partition profile. By the induction hypothesis t′(Ωk) has a common prior pk. We
think of pk as being a probability function on Ω that vanishes on Ω3−k. Using p1

and p2 we construct a common prior for t.
Assume first that either ti(π)(πk) = 0 or pk(πk) = 0. In either case p3−k

is a common prior for t. Assume, then, that for k = 1, 2, ti(π)(πk) > 0 and
p (πk) > 0, and consider the equation ti(π)(π1)/ti(π)(π2) = ap1(π1)/(1− a)p2(π2).
By the positivity assumption, it has a solution a ∈ (0, 1). The probability function
ap1 + (1− a)p2 is a prior for Π.

To prove the second part of the theorem let C be the set of type profiles in T (Π)
that have a common prior. We show first that C is closed. Indeed, suppose that
(tn) is a sequence in C, and tn → t. For each n let pn be a common prior of tn.
Because of the compactness of ∆(Ω), we can assume without loss of generality that
for some p ∈ ∆(Ω), pn → p. Suppose now that for π ∈ Πi, p(π) > 0. Then for n
large enough pn(π) > 0. For such n, tni (π)(·) = pn(·)/pn(π). In the limit we get
ti(π)(·) = p(·)/p(π), which shows that p is a common prior of t, and thus t ∈ C.

Define a type function ti to be positive if for each π ∈ Πi and ω ∈ π, ti(π)(ω) > 0.
Denote by P the set of positive type profiles. Clearly, P is the relative interior of
T (Π). Since C is closed, the set P ∩ Cc is open. Also, its complement contains
C. Therefore to show that C is nowhere dense in T (Π) it is enough to show that
the closure of P ∩ Cc is T (Π). To show this we prove that the closure of P ∩ Cc

contains P ∩ C. Thus the closure of P ∩ Cc contains also P and hence it is indeed
T (Π).

Assume that Π is not tight. By Lemma 1 there exists a minimal refinement,
Π′, of Π the meet of which is a singleton. Suppose that Π′ is obtained by splitting
π ∈ Πi into the two sets π1 and π2.

Let t be a type profile in P ∩ C with a common prior p. We show that we can
find a type profile t̂ ∈ P ∩Cc arbitrarily close to t. Define first a type profile t′ for
Π′ as follows: t′ agrees with t on all elements of Π that were not split. For k = 1, 2,
t′i(πk)(·) = ti(π)(· | πk). It is obvious that p is also a common prior for t′. Define
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now a type profile t̂ for Π as follows: t̂ agrees with t on all elements of all partitions
other than π ∈ Πi. For π define t̂(π)(·) = ati(π)(· | π1) + (1− a)ti(π)(· | π2), where
a = (1 − ε)ti(π)(π1) for small enough positive ε. Thus, on π1 the probabilities
assigned by t̂i(π) are those of ti(π) multiplied by 1 − ε. On π2 the probabilities
assigned by t̂i(π) are those of ti(π) multiplied by 1 + ε. We define the type profile
t̂′ for Π′ in the same way t′ was defined. It is clear that t̂′ = t′.

Suppose now that t̂ has a common prior q, then q is also a prior for t̂′. But t′

is positive and Π′c is a singleton. Therefore, by Samet (1998), t′ can have only one
prior, and thus p = q. But p cannot be a prior for t̂ as p (· | π) = ti(π)(·) 6= t̂i(π)(·).
Therefore, t̂ does not have a common prior, i.e., t̂ ∈ P ∩ Cc.

Proof of Proposition 1: Let Π be a tight partition profile the meet of which
is a singleton. The proof is by induction on the size on Ω. If Ω has a single
element then the equality in the proposition is obvious. Suppose the equality is
proved for all state spaces smaller than Ω, and consider the minimal refinement,
Π′ of Π described in the proof of the first part of the main theorem. Then, by the
induction hypothesis, for k = 1, 2,

∑n
i=1 |Πi(Ωk)| = (n − 1)|Ωk| + 1. Adding the

the two equations and noting that
∑n

i=1 |Πi(Ω1)|+
∑n

i=1 |Πi(Ω2)| =
∑n

i=1 |Πi|+ 1
completes the proof of the equality.

If Π is not tight, then it must have a refinement which is tight, and therefore it
satisfies the inequality in of the proposition.
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