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Abstract

We prove that every undiscounted multi-player stopping game in discrete time ad-
mits an approximate correlated equilibrium. Moreover, the equilibrium has three
appealing properties: �trembling-hand� perfectness - players do not use non-credible
threats; normal-form correlation - communication is required only before the game
starts; uniformness - it is an approximate equilibrium in any long enough �nite-
horizon game and in any discounted game with high enough discount factor.

1 Introduction

Stopping games have been introduced by Dynkin ([6]) as a generalization
of optimal stopping problems, and later used in several models in economics,
management science and biology, such as job search, research and development
(see e.g., Fudenberg and Tirole [9] and Mamer [12]), the analysis of strategic
exit (see e.g., Fudenberg and Tirole [10], Ghemawat and Nalebu� [11]), and
the war of attrition (see e.g., Nalebu� and Riley [17]).

In this paper we focus on (undiscounted) multi-player stopping games in dis-
crete time. The game is played by a �nite set of players. There is an unknown
state variable, on which players receive a symmetric partial information along
the game. At stage 1 all the players are active. At every stage n, each active
player declares, independently of the others, whether he stops or continues. A
player that stops at stage n, becomes passive for the rest of the game. The

1 This work is in partial ful�llment of the requirements for the Ph.D. in mathematics
at Tel-Aviv University. I would like to thank Eilon Solan for his careful supervision,
for the continuous help he o�ered, and for many insightful discussions.
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payo� of a player depends on the history of players' actions while he has been
active and on the state variable.

Much work has been devoted to the study of 2-player zero-sum stopping games
in discrete time. Dynkin ([6]) proved that this game has a value under an
assumption that at any stage only one of the two players is allowed to stop,
and Neveu ([19]) proved the existence of the value under an assumption that
at each stage each player prefers the other player to be the stopping player.
Rosenberg, Solan and Vieille ([24]) allowed the players to use randomized
strategies, and proved that the game has a value, assuming only integrability
of the payo�s.

The 2-player nonzero-sum problem in discrete time when the payo�s have a
special structure was studied, among others, by Mamer ([12]), Morimoto ([14]),
Ohtsubo ([21,22]), Nowak and Szajowski ([20]) and Neumann, Ramsey and
Szajowski ([18]) and the references therein. Those authors provided various
su�cient conditions under which (Nash) ε-equilibria exist. Recently, Shmaya
and Solan ([27]) have proved the existence of (Nash) ε-equilibria assuming
only integrability of the payo�s. In contrast with the 2-player case, there is no
existence result for ε-equilibria in multiplayer stopping games.

The equilibrium path of Nash equilibrium may be sustained by �non-credible�
threats of punishment. Since by punishing a deviator, some of the punishing
players may receive low payo� (lower than if they do not punish the deviator),
it is not clear whether one should expect players to follow such an equilibrium.
Thus, a few papers study the stronger concept of perfect equilibrium (Selten
[25,26]) in 2-player stopping games, such as: Fine and Li ([7]), Dutta ([5]) and
Mashiah ([13]).

Aumann ([1]) de�ned the concept of correlated equilibrium: a correlated equi-
librium in a �nite normal-form game is a Nash equilibrium in an extended
game that includes a correlation device, which sends to each player, before
the start of play, a private signal; the strategy of each player can then depend
on the private signal that he received. Correlated equilibria have a number of
appealing properties. They are computationally tractable. Existence is veri-
�ed by checking a system of linear inequalities rather than a �xed point. The
set of correlated equilibria is closed and convex. Aumann ([2]) argues that it
is the solution concept consistent with the Bayesian perspective on decision
making.

For sequential games, two main versions of correlated equilibrium have been
studied (see e.g., [8]): normal-form correlated equilibrium, in which each player
receives only private signal before the game starts, and extensive-form corre-
lated equilibrium, in which each player receives a private signal at each stage of
the game. Note that every normal-form correlated equilibrium is an extensive-
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form correlated equilibrium, but the converse is not true.

Communication between the players, that can lead to correlation of strategies,
is natural in many setups, for example: countries negotiate about their actions
to each other and to other countries; �rms decide on their strategies based on
common information such as past behavior of the market; and a manager
coordinates the actions taken by his subordinates. In some situations players
may coordinate before the play starts, but coordination along the play is costly
or impossible, and only the notion of normal-form correlated equilibrium is
appropriate. Two examples of such situations are:

• War of attrition in nature, which is commonly modeled as a stopping game
(see e.g., [17]), where normal-form (but not extensive-form) correlation de-
vices are implemented by evolution of phenotype roles (see e.g., Shmida and
Peleg [28]).
• Brokers of a certain �rm who act in di�erent stock-exchange markets. The
brokers can correlate their moves before the commerce begins, but due to
the need to make many actions in a short period of time, the ability to
communicate during the commerce is limited.

A few papers have de�ned and studied the properties of perfect correlated
equilibria in �nite games, see e.g., Myerson ([15,16]) and Dhillon and Mertens
([4]). Generalizing the de�nition of the last paper, we de�ne a �trembling-
hand� perfect correlated (δ, ε)-equilibrium, where δ > 0 is an upper bound
for the probabilities of the following: an event E in the probability space that
determines the state variable, and an event in which the correlation device
sends signals in some set M ′. The parameter ε > 0 is the maximal pro�t a
player can earn by deviating at any stage of the game and after any history of
play, conditioned on that the state variable is not in E and the signal pro�le
is not inM ′. We hope that the de�nition of an approximate perfect correlated
equilibrium may be useful in future study of other dynamic games.

Our main result shows that for every δ, ε > 0, a multi-player stopping game
admits a normal-form uniform perfect correlated (δ, ε)-equilibrium. This im-
plies the existence of a uniform perfect correlated equilibrium payo�. Due to
the uniformness property, the (δ, ε)-equilibrium is also an approximate equilib-
rium in any long enough �nite-horizon stopping game and in any discounted
stopping game with high enough discount factor. Arguments in favor of the
notion of uniform equilibrium can be found in Aumann and Mashcler ([3]).

The proof relies on two reductions: we �rst de�ne terminating games, as stop-
ping games that immediately end as soon as any player stops, and reduce the
problem of existence of equilibrium from general stopping games to termi-
nating games. 2 This reduction requires us to use correlation devices that are

2 In other papers, both games (terminating and stopping) are referred to as stopping

3



�universal� (depend only on ε and the number of players) and �unrevealing�
(The expected payo� of a player almost does not change when he receives
his signal). Next, we use a stochastic variation of Ramsey's theorem ([27]) to
further reduce the problem to that of studying the properties of correlated
ε-equilibria in multiplayer absorbing games 3 , by adapting the methods of
Solan and Vohra [31] who prove that any multiplayer absorbing game admits
a correlated ε-equilibrium.

The paper is arranged as follows. In Section 2 we provide the model and the
main result. A sketch of the proof appears in Section 3. In Section 4 we make
reductions from existence of equilibria in general stopping games to existence
of equilibria in terminating games with special properties. In Section 5 we
de�ne the notion of games played on a �nite tree and study some of their
properties. In Section 6 we use the stochastic variation of Ramsey's theorem,
which allows us to construct a perfect correlated (δ, ε)-equilibrium in Section
7.

2 Model and Main Result

De�nition 1 A (multi-player) stopping game (in discrete time) is a 6-tuple
G = (I,Ω,A, p,F , R) where:

• I is a �nite set of players;
• (Ω,A, p) is a probability space (the state space);
• F = (Fn)n≥0 is a �ltration over (Ω,A, p);
• R = (Rn)n≥0

⋃
R∞ is an F -adapted process:

· Let HS
n denote the set of all possible histories of realized actions (stop or

continue) before stage n in which the members of S always continue. The
coordinates of Rn are denoted by Ri

S,n,hSn ,
where n ∈ N, i ∈ S ⊆ I is the

set of players that stop at stage n and hSn ∈ HS
n is the history of realized

actions of each player before stage n.
· Let HS

∞ denote the set of all possible in�nite histories of realized actions in
which the members of S always continue and all the members of I\S have
stopped. Given hS∞ ∈ HS

∞, let nhS∞be the last stage in which a player stops
in hS∞. The coordinates of R∞ are denoted by Ri

S,∞,hS∞
where S ⊆ I is the

set of players who have never stopped in the entire game, and hS∞ ∈ HS
∞

is an history of realized actions in which all the players in I\S (and only
them) have stopped. we require that Ri

S,∞,hS∞
is measurable in Fn

hS∞
. The

games. We have chosen to call them by a di�erent name, as the reduction of existence
of correlated equilibrium from stopping games to terminating games is not trivial
due to our requirement of normal-form correlation.
3 An absorbing game is a stochastic game with a single non-absorbing state.
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last requirement means that the payo� of a player who never stops changes
only when other players stop.

A stopping game is played as follows. At stage 1 all the players are active. At
each stage n, each active player is informed about Fn(ω), the minimal set in
Fn that includes the state ω ∈ Ω, and declares, independently of the others,
whether he stops or continues. An active player i that stops, becomes passive
for the rest of the game, and his payo� is given by Ri

S,n,hSn ,
, where i ∈ S ⊆ I

is the set of active players who stop at stage n, and hSn ∈ HS
n is the history of

realized actions until stage n. If a player i never stops, his payo� is Ri
S,∞,hS∞

where i ∈ S ⊆ I is the set of players who never stop, and hS∞ is the in�nite
realized history of actions.

De�nition 2 A (normal-form) correlation device is a pair D = (M,µ) where:

(1) M = (M i)i∈I , where M
i is a �nite space of signals the device can send

player i.
(2) µ ∈ 4 (M) is the probability distribution according to which the device

sends the signals to the players before the stopping game starts.

Given a correlation device D, we de�ne an extended game G (D). The game
G (D) is played exactly as the game G, except that before the game starts, a
signal combination m = (mi)i∈I is drawn according to µ, and each player is
informed of mi. Then, each player may base his strategy on his signal. When
|M | = 1 we say that D is trivial, and in that case G (D) is equivalent to G.

For simplicity of notation, let the singleton coalition {i} be denoted as i,
and let −i = {I\i} denote the coalition of all the players besides player i.
A (behavioral) strategy for player i ∈ I in G (D) is an F -adapted process
xi = (xin)n≥0, where x

i
n : (Ω×M i ×H i

n) → [0, 1]. The interpretation is that
xin (ω,mi, hin) is the probability by which an active player i stops at stage n
after an history of play hin.

A (behavioral) strategy pro�le x = (xi)i∈I is completely mixed if at each stage,
given any history of play, each player has a positive probability to stop and
a positive probability to continue. Formally: for each player i ∈ I, message
mi ∈M i, stage n ∈ N, and history hin ∈ H i

n: 0 < xin (ω,mi, hin) < 1

Let θi be the stage in which player i stops and let θi =∞ if player i never stops.
If θ <∞ let i ∈ S ⊆ I be the coalition that stops at stage θ, and if θ =∞ let
i ∈ S ⊆ I be the coalition that never stop in the game. Let hiθ the history of
realized actions until stage θi. The payo� to player i is Ri

S,θi,hSθi
. The expected

payo� under the strategy pro�le x = (xi)i∈I is given by: γi (x) = Ex

(
Ri
S,θi,hSθi

)
where the expectation Ex is with respect to (w.r.t.) the distribution Px over
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plays induced by x. Given an event E ⊆ Ω, the expected payo� conditioned

on Ω\E is: γi (x| (Ω\E)) = Ex

(
Ri
S,θi,hSθi

| (Ω\E)
)
.

The strategy xi is ε-best reply (ε-best reply conditioned on Ω\E) for player i
when all his opponents follow x−i if for every strategy of player i, yi: γi (x) ≥
γi (x−i, yi)− ε (γi (x | (Ω\E )) ≥ γi (x−i , y i | (Ω\E ))− ε). Note that when xi is
ε-best reply conditioned on Ω\E, player i assumes in his evaluation of his
expected payo� that ω ∈ Ω\E. Let Hn =

⋃
i∈I
H i
n denote the set of all histories

of realized actions before stage n, and Let F̂n ⊆ Fn the set of all minimal sets
in Fn:

F̂n =
{
Fn ∈ Fn|¬∃∅ 6= F̂n ∈ Fn, s.t. F̂n ( Fn

}
Let G(hn, Fn,D,m) be the induced stopping game that begins at stage n af-
ter a signal mi has been sent to each player i, an history of play hn has been
played, and the players are informed that ω ∈ Fn ⊆ F̂n. The active play-
ers when the game G(hn, Fn,D,m) starts, are those who have not stopped in
hn. For simplicity of notation, we denote by x also the induced strategy pro-
�le in G(hn, Fn,D,m). We now de�ne a perfect correlated (δ, ε)-equilibrium,
generalizing the de�nition of perfect correlated equilibria in �nite games ([4]).

De�nition 3 Let G (D) be a stopping game, let E ⊆ Ω be an event, let
M ′ ⊆ M be a set of signal pro�les of the correlation device, and let ε > 0. A
strategy pro�le x = (xi)i∈I is a perfect ε-equilibrium of G (D) conditioned on
Ω\E and given M\M ′, if there exists a sequence (yk)k∈N=(yik)k∈N,i∈I of com-
pletely mixed strategy pro�les in G (D), and a sequence (εk)k∈N (0 < εk < 1)

converging to 0, such that for all i ∈ I, m ∈ M , n ∈ N, hin ∈ H i
n, Fn ∈ F̂n

satisfying Fn /∈ E, xi is ε-best reply for player i ∈ I in the induced game
G(hn, Fn,D,m) conditioned on Ω\E, when all his opponents j ∈ −i use
(1− εk)xj + εky

j
k.

De�nition 4 Let G (D) be a stopping game and let δ, ε > 0. A strategy
pro�le x = (xi)i∈I is a perfect (δ, ε)-equilibrium of G (D) if there exists an
event E ⊆ Ω and a set of signal pro�les M ′ ⊆ M , such that p(E) < δ,
µ(M ′) < δ, and x is a perfect ε-equilibrium of G (D) conditioned on Ω\E and
given M\M ′.

De�nition 5 Let G be a stopping game and let δ, ε > 0. A perfect correlated
(δ, ε)-equilibrium is a pair (D, x) where D is a correlation device and x is a
perfect (δ, ε)-equilibrium in the extended game G (D).

Our main Result is the following:

Theorem 6 Let δ, ε > 0 and let G = (I,Ω,A, p,F , R) be a multi-player
stopping game such that sup

n∈N
⋃
∞
‖Rn‖∞ ∈ L1(p). Then for every δ, ε > 0,
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G has a prefect correlated (δ, ε)-equilibrium. Moreover, the correlation device
D = D(ε) is universal: it depends only on ε and |I|.

Remark 7 The perfect correlated (ε, δ)-equilibrium that we construct is uni-
form in a strong sense: it is a (δ, 3ε)-equilibrium in every �nite n-stage game,
provided that n is su�ciently large. This can be seen by the construction itself
(Prop. 30) or by applying a general observation made by [29, Prop. 2.13].

De�nition 8 A payo� vector r ∈ R|I|is a (uniform) perfect correlated payo�
if for every ε, δ, ε′ > 0 there is a perfect correlated (ε, δ)-equilibrium x with a
payo� r − ε′ ≤ γ(x) ≤ r + ε′.

Corollary 9 let G = (I,Ω,A, p,F , R) be a multi-player stopping game such
that sup

n≥0
‖Rn‖∞ ∈ L1(p). Then G admits a (uniform) perfect correlated payo�.

3 Sketch of the Proof

In this section we provide the main ideas of the proof. Let a terminating game
be a stopping game in which as soon as any player stops, the payo�s to all
the players are determined. Let G be a terminating game. To simplify the
presentation, assume that Fn is trivial for every n, so that the payo� process
is deterministic, and that payo�s are uniformly bounded by 1. For every two
natural numbers k < l, de�ne the periodic game G(k, l) to be the game that
starts at stage k and, if not stopped earlier, restarts at stage l. Formally,
G(k, l) is a stopping game in which the terminal payo� at stage n is equal to
the terminal payo� at stage k + (nmod l − k) in G.

This periodic game is equivalent to an absorbing game, where each round of T
corresponds to a single stage of the absorbing game (a stochastic game with
a single non-absorbing state). Moreover, G(k, l) has two special properties: It
is recursive (the payo� in the non-absorbing state is 0), and there is a single
action pro�le with a zero absorbing probability.

Solan and Vohra ([31]) proved a classi�cation result for absorbing games (Prop.
4.10). Applying it to the two special properties of G(k, l) yields that G(k, l)
has one of the following: (1) A perfect stationary absorbing equilibrium. (2)
A perfect stationary non-absorbing equilibrium. (3) A correlated distribution
η over the set of action pro�les in which a single player stops. The special
properties of η allows the construction of a perfect correlated ε-equilibrium in
G(k, l).

Assign to each pair of non-negative integers k < l an element from a �nite set
of colors c(k, l) that denotes which case of the classi�cation result holds and
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the (ε)-approximation of the equilibrium payo�. 4 A consequence of Ramsey's
theorem ([23]) is that there is an increasing sequence of integers 0 ≤ k1 <
k2 < ... such that c(k1, k2) = c(kj, kj+1) for every j.

Assume �rst that k1 = 0. This allows to construct a perfect correlated ε-
equilibrium for G. The constriction depends on the case indicated by c(k1, k2).
If the case is 1 or 2, then between stages kj and kj+1 the players follow a
periodic (δ, ε)-equilibrium in the game G(kj, kj+1) with a payo� in an ε neigh-
borhood of the payo� indicated by c(k1, k2). For this concatenated strategy to
indeed be a 3ε-equilibrium in G in case 1, it is needed to verify that the game is
absorbed with probability 1. This is done by giving appropriate lower bounds
to the stopping probability of each G(kj, kj+1) in the �rst round. These bounds
are adaptations to the multi-player case of the bounds given for 2-player games
in Shmaya and Solan ([27]).

If the indicated case c(k1, k2) is 3, then we adept the procedure presented by
Solan and Vohra ([30, Section 4.2]) to the requirement of perfection and to
the use of a universal correlation device. Originally, their procedure allows
the construction of a correlated ε-equilibrium in quitting games - stationary
terminating games where the payo� matrix is the same at all stages. As part
of the adaptation, we verify that at stage k1, with high probability the signal
a player receives does not a�ect his expected payo� by more than ε.

If k1 > 0, then Between stages 0 and k1, the players follow an equilibrium in
the k1-stage game with the terminal payo� that is implied by c(k1, k2). From
stage k1 and on, the players follow the strategy described above. It is easy to
verify that this strategy pro�le forms a 5ε-equilibrium.

We now consider a general stopping game. Assume by induction that any
m-player stopping game admits a perfect correlated payo� vector. Given a
stopping game G with m + 1 players we construct an auxiliary terminating
game G′ with m + 1 players by setting the payo� of a player i /∈ S when the
non-empty coalition S stops at stage n, as his perfect correlated payo� in the
induced (m+ 1− |S|)-player game that begins at stage n + 1. The perfect
correlated (δ, ε)-equilibrium in G′ implies naturally a perfect correlated (δ, ε)-
equilibrium in G.

When the payo� process is general, a periodic game is de�ned now by two
stopping times µ1 < µ2: µ1 indicates the initial stage and µ2 indicates when
the game restarts. We analyze this kind of periodic games, by adapting the
methods presented in [27] for 2-player stopping games, and by using their

4 If more than one case holds, or there is more than one pro�le in one of the
cases, then we choose arbitrarily according to some lexicographic order. In case 3
the color indicates the ε-approximations of two payo� vectors: the payo� under the
distribution η, and the maximal payo� of each player when he stops alone.
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stochastic version of Ramsey's theorem.

4 Reductions

In this section we make three reductions to the problem of existence of perfect
correlated (δ, ε)-equilibrium in stopping games:

(1) We reduce the problem to that of existence of perfect correlated (δ, ε)-
equilibrium in terminating games (Subseq. 4.1).

(2) We further reduce it to the problem of existence of such equilibrium in
tree-like terminating games (Subseq. 4.2), by relying on [27, Sec. 6].

(3) We make a last reduction to the problem of existence of such equilibrium
in an induced terminating game GF , deep enough in the original game-
tree, where with high probability each approximate matrix payo� occurs
in�nitely often or does not occur at all (Subseq. 4.4).

4.1 Terminating games

De�nition 10 A terminating game is a 6-tuple G = (I,Ω,A, p,F , R) where:

• I is a �nite set of players;
• (Ω,A, p) is a probability space;
• F = (Fn)n≥0 is a �ltration over (Ω,A, p);
• R = (Rn)n≥0 is an F -adapted R|I|·(2

|I|−1)-valued process. The coordinates
of Rn are denoted by Ri

S,nwhere i ∈ I and ∅ 6= S ⊆ N .

A terminating game is played as follows. At each stage n ∈ N, each player is
informed about Fn(ω), the minimal set in Fn that includes ω, and declares,
independently of the others, whether he stops or continues. If all players con-
tinue the game continues to the next stage. If at-least one player stops, say a
coalition S ⊆ I, the game terminates, and the payo� to player i is Ri

S,n. If no
player ever stops, the payo� to everyone is normalized to zero.

A (behavioral) strategy for player i ∈ I in G (D) is an F -adapted process xi =
(xin)n≥0, where x

i
n : (Ω×M i)→ [0, 1]. The interpretation is that xin (ω,mi) is

the probability by which player i stops at stage n, provided the game has not
stopped before that stage. A perfect correlated (δ, ε)-equilibrium and a perfect
correlated payo� vector are de�ned in an analog way to Def. 4, 5 and 8.

Proposition 11 Assume that every terminating game with bounded payo�s
(sup
n∈N
‖Rn‖∞ ∈ L1(p)) admits a perfect correlated (δ, ε)-equilibrium for every
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δ, ε > 0, and that the correlation device is universal (depends only on ε and
|I|). Let δ, ε > 0 and let G = (I,Ω,A, p,F , R) a stopping game with bounded
payo�s. Then G admits a prefect correlated (δ, ε)-equilibrium.

PROOF. We prove the proposition by induction on the number of players.
Let G = (I,Ω,A, p,F , R) be a stopping game with m = |I| players. By the
induction hypothesis every stopping game with k < m players has a perfect
correlated (δ, ε)-equilibrium with a universal correlation device Dε,k. For each
induced stopping game G(hn, Fn,Dε,k) with k players, let xhn,Fn,Dε,k be a per-
fect correlated (δ, ε)-equilibrium with a payo� of vhn,Fn,Dε,k . We de�ne an
auxiliary terminating game G′ = (I,Ω,A, p,F , R′), where the payo� process

R′ =
(
R′iS,n

)
i∈I.S⊆I,n∈N

is de�ned as follows for each n ∈ N and Fn ∈ F̂n:

• For each i ∈ S ⊆ I: R′iS,n(Fn) = Ri
S,n,hIn

− Ri
I,∞,hI∞

, where hIn is the history
of realized actions, in which all players continue at all stages before stage n.
• For each i /∈ S ⊂ I: R′iS,n(Fn) = vi

h
(I\S)∗
n+1 ,Fn,Dε,|I\S|

−Ri
I,∞,hI∞

, where h
(I\S)∗
n+1 is

the history of realized actions, in which all the players continue at all stages
before stage n, and the players in S stop at stage n.

The terminating game G′ has a perfect correlated (δ, ε)-equilibrium (x′, D′)
according the assumption of Prop. 11. Let Dε = D′ × ∏

k<m
Dε,k, and let the

strategy x in G(D) be as follows: x = x′ as long as no player stops, and
x = xhS∗n+1,Fn,Dε,|I\S| after a coalition S ⊆ I stops at stage n. The construction

of x implies that it is a perfect correlated
(
2|I| · δ, ε

)
-equilibrium in G. QED.

Thus, in the rest of this paper, we focus only on terminating games.

4.2 Tree-like stopping game

De�nition 12 A terminating game G = (I,Ω,A, p,F , R) is tree-like if for
every n ∈ N , |Fn| <∞.

Shmaya and Solan prove ([27, Sec. 6]) that any 2-player terminating game
can be approximated by a tree-like terminating game such that any approxi-
mate equilibrium of the tree-like game is also an approximate equilibrium of
the original game. With minor changes, the proof can be adapted for multi-
player terminating games, and for perfect correlated equilibria. This implies
the following lemma (the proof is omitted):

Lemma 13 Assume that any tree-like terminating game with bounded pay-
o�s admits a perfect correlated (δ, ε)-equilibrium for every δ, ε > 0. Let ε, ε > 0
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and let G = (I,Ω,A, p,F , R) a terminating game with bounded payo�s . Then
G admits a perfect correlated (δ, ε)-equilibrium.

Thus, in the rest of this paper, we assume without loss of generality (w.l.o.g.)
that the terminating game is tree-like.

4.3 Preliminaries

The de�nitions imply that for every two payo� processes R and R̃ such that

E

(
sup
n≥0

∥∥∥Rn − R̃n

∥∥∥
∞

)
< ε, every perfect correlated (δ, ε)-equilibrium in the

terminating game G = (I,Ω,A, p,F , R) is a (δ, 3ε)-equilibrium in the ter-

minating game G̃ =
(
I,Ω,A, p,F , R̃

)
. Hence we can assume w.l.o.g. that the

payo� process R is uniformly bounded and that its range is �nite. Actually, we
assume that for some K ∈ N, Ri

S,n ∈
{

0,± 1
K
,± 2

K
, ...,±K

K

}
for every n ∈ N.

Let D =
∏

i∈I, ∅6=S⊆I

{
0,± 1

K
,± 2

K
, ...,±K

K

}
be the set of all possible one-stage

payo� matrices of the terminating game G. Let Rn(ω) be the payo� matrix
at stage n. Let τ : Ω→ N a bounded terminating time. The partition F̂τ is:

F̂τ =
⋃
n∈N

{
Fn ∈ F̂n|∃ω, s.t. Fn(ω) = Fn, τ(ω) = n

}

Given any payo� matrix d ∈ D, let Ad ⊆
∨Fn
n∈N

be the event that d occurs

in�nitely often: Ad = {ω ∈ Ω|i.o. Rn(ω) = d}, and let Bd,k ⊆
∨Fn
n∈N

be the event

that d never occurs after stage k : Bd,k = {ω ∈ Ω|∀n ≥ k, Rn(ω) 6= d}. Since
all Ad and Bd,k are in

∨Fn
n∈N

, there exist N0 ∈ N and sets
(
Ād, B̄d

)
d∈D
∈ FN0

such that:

(1) For each d ∈ D: Ād
⋂
B̄d = ∅ and

(
Ād
⋃
B̄d

)
= Ω.

(2) ∀d ∈ D, p
(
Ad|Ād

)
≥ 1− ε

4·|D|

(3) ∀d ∈ D, p
(
Bd,N0|B̄d

)
≥ 1− ε

4·|D|

Let E =
⋃
d∈D

({
ω ∈ Ād|ω /∈ Ad

}⋃{
ω ∈ B̄d|ω /∈ Bd,N0

})
. Observe that p(E) <

ε
2
. For any F ∈ F let DF =

{
d ∈ D|F ∈ Ād

}
, and let αiF = max

(
di{i}|d ∈ dF

)
.

11



4.4 The Induced Game GF

The induced game GF is the terminating game that begins at stage τ when
the players know that F (ω) ⊆ F̂τ .

De�nition 14 Let G = (I,Ω,A, p,F , R) be a terminating game, let N0 ∈ N
be as de�ned in the last subsection, τ > N0 a bounded terminating time,
and F ⊆ F̂τ . The game GF is the terminating game that is restricted to F
and starts at stage τ : GF =

(
I, F,AF , p|F , (Fτ+k)k≥0 , (Rτ+k)k≥0

)
where: AF

is the σ-algebra over F induced by A, and p|F is the probability distribution
p conditioned on F .

A strategy pro�le x in G(D) is ε-unrevealing if when each player obtains his
message mi ∈M i, his expected payo� is changed by at most ε.

De�nition 15 Let G be a terminating game, ε > 0, D = (M,µ) a cor-
relation device, and x a pro�le in G(D) . The pro�le x is ε-unrevealing if
there is a set M ′ ⊆ M satisfying µ(M ′) ≤ ε, such that for every player
i ∈ I and every message mi ∈ (M\M ′)i: |γi(x|mi)− γi(x)| ≤ ε, where

γi(x|mi) = Ex

(
Ri
S∗,θ1{θ<∞}|m

i
)
is the expected payo� of player i where the

players play according to x, conditioned on receiving a message mi.

The following lemma is standard (An extension of Lemma 7.3 in [27]).

Lemma 16 LetG be a terminating game, δ, ε > 0, τ a bounded stopping time,
and E ⊆ Ω an event with p(E) < δ. Assume that for every F ∈ Fτ satisfying
F /∈ E, there is a a correlation device DF = (MF , µF ), a set of signals M ′

F ⊆
MF satisfying µF (M ′

F ) ≤ δ and a perfect correlated ε-unrevealing ε-equilibrium
xF of GF (DF ) conditioned on Ω\E and givenMF\M ′

F . Moreover, assume that
the correlation device DF = (MF , µF ) depends only on ε and DF (the set of
matrix payo�s that occur i.o.). Then the game G admits a perfect correlated(
2|D| · δ, 3 · ε

)
-equilibrium with a universal correlation device .

PROOF. As eachMF and µF depend only on DF and ε, we identifyMF with
MDF ,ε and µF with µDF ,ε . LetM =

∏
D′⊆D

MD′,ε, µ =
∏

D′⊆D
µD′,ε and D = (M,µ).

Let M ′ =
⋃

D′⊆D

{
m ∈M |mD′,ε ∈M ′

D′,ε

}
. Note that µ(M ′) ≤ 2|D| · δ. It is well

known that any �nite-stage game admits a 0-equilibrium (see, e.g., [24, Prop.
3.1]). Since τ is bounded, p(E) ≤ ε and µ(M ′) ≤ 2|D| ·δ, the following strategy
pro�le x is a

(
2|D| · δ, 3 · ε

)
-equilibrium in G(D) :

• Until stage τ , play a 0-equilibrium in the game that terminates at τ , if no
player stops before that stage, with a terminal payo� γi(xF ) where F =

12



Fτ(ω) ∈ F̂τ .
• If the game has not terminated by stage τ , play from that stage on the
pro�le xF in GF .

Thus in order to prove Theorem 6, it remains to show that there exists a
bounded terminating time τ ≥ N0, such that for every ε > 0 and for every
F ∈ F̂τ , there is a correlation device DF = (MF , µF ) that depends only on
DF and ε, a set of signals M ′

F ⊆ MF satisfying µF (M ′
F ) ≤ δ and a perfect

correlated ε-unrevealing ε-equilibrium xF of GF (DF ) conditioned on Ω\E and
given MF\M ′

F .

5 Terminating Games on Finite trees

An important building block in our analysis is terminating games that are
played on �nite trees. In the present subsection we de�ne these games. discuss
their equivalence with absorbing games, and study some of their properties.

5.1 Finite trees

De�nition 17 A terminating game on a �nite tree (or simply a game on a

tree) is a tuple T =
(
I, V, Vleaf , r, Vstop, (Cv, pv, Rv)v∈V \Vleaf

)
, where:

• I is a �nite non-empty set of players.
•
(
V, Vleaf , r, (Cv)v∈V \Vleaf

)
is a tree, V is a nonempty �nite set of nodes,

Vleaf ⊆ V is a nonempty set of leaves, r ∈ V is the root, and for each
v ∈ V \Vleaf , Cv ⊆ V \ {r} is the nonempty set of children of v. We denote
by V0 = V \Vleaf the set of nodes which are not leaves.
• Vstop ⊆ V0 is the set of nodes the players can choose to stop in. Observe
that players can not stop at the leaves.

and for every v ∈ V0:

• pv is a probability distribution over CV ; We assume that ∀ṽ ∈ Cv: pv(ṽ) > 0.

• Rv =
(
Ri
v,S

)
i∈I,∅6=S⊆I

∈ D is the payo� matrix at v if a nonempty set of

players stops at that node.

A terminating game on a �nite tree starts at the root and is played in stages.
Given the current node v ∈ Vstop, and the sequence of nodes already visited,
the players decide, simultaneously and independently, whether to stop or to
continue. Let S be the set of players that decides to stop. If S 6= ∅, the play
terminates and the terminal payo� to each player i is Ri

v,S. If S = ∅, a new

13



node v ∈ CV is chosen according to ps . The process now repeats itself, with
v being the current node. If v ∈ V \Vstop then the players can not stop at that
stage, and a new node v ∈ CV is chosen according to pv. If v ∈ Vleaf then the
new current node is the root r. The game on the tree is essentially played in
rounds, where each round starts at the root and ends once it reaches a leaf.

A stationary strategy of player i is a function xi : VStop → [0, 1]; xi(v) is the
probability that player 1 stops at v. Let x = (xi)i∈I be a stationary strategy
pro�le. Let ci be the stationary strategy of player i that never stops, and let
c = (ci)i∈I . Denote by γ

i
T (x) = γi(x) the expected payo� under x, and denote

by πT (x) = π(x) the probability the game that the game is stopped at the
�rst round (before reaching a leaf).

De�nition 18 A pro�le of stationary strategies x = (xi)i∈I is an ε-equilibrium
of the game on a tree T if, for each player i ∈ I, and for each strategy yi,
γi (x) > γi (x−i, yi)− ε.

Assuming no player ever stops, the collection (pv)v∈V0
of probability distribu-

tions at the nodes induces a probability distribution over the set Vleaf of leaves
or, equivalently, over the set of branches that connect the root to the leaves.
For each set V̂ ⊆ V0, we denote by pV̂ the probability that the chosen branch

passes through V̂ . For each v ∈ V , we denote by Fv the event that the chosen
branch passes through v.

We �nish this this subsection by de�ning the game on a �nite tree Tn,σ(F ).

The game begins at stage n, when ω ∈ F ⊆ F̂n is randomly chosen (according
to p|F ). If the game has not absorbed before reaching stage τ(n), the game

restarts at stage n again (and a new ω ∈ F ⊆ F̂n is randomly chosen).

De�nition 19 Let G = (I,Ω,A, p,F , R) be a tree-like terminating game, n ∈
N a number, n < τ a bounded terminating time, and F ∈ F̂n. The terminat-
ing game on the �nite tree Tn,σ(F ) is

(
I, V, Vleaf , r, Vstop, (Cv, pv, Rv)v∈V \Vleaf

)
where:

• V =
⋃
ω∈F

n≤k≤τ(ω)

{Fk(ω)}, Vleaf =
⋃
ω∈F
{Fτ (ω)}, r = F

• Rv,Cv, pv are de�ned by induction. Assume that v ∈ V \Vleaf and v ∈ F̂k
for some n ≤ k, then: Rv = Rn(v), Cv =

{
Fk+1 ∈ F̂k+1|Fk+1 ⊆ v

}
, and

pv(Fk+1) = p (Fk+1|v).
• Vstop = {v ∈ V |dv ∈ DF}.
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5.2 Equivalence with Absorbing Games

A terminating game on a �nite tree T is equivalent to an absorbing game,
where each round of T corresponds to a single stage of the absorbing game.
An absorbing game is a stochastic game with a single non-absorbing state.
Solan and Vohra ([31]) proved that every absorbing game admits a correlated
ε-equilibrium for every ε > 0.

As an absorbing game, the game T has two special properties:

• It is a recursive game: the payo� in the non-absorbing state is 0.
• There is a single action pro�le that is non-absorbing. In all other action
pro�les the game has a positive probability to be absorbed.

Adapting [31]'s Prop. 4.10 to the two special properties described above gives
the following proposition:

De�nition 20 Let T be a game on a tree, and i ∈ I a player. gi = max
v∈Vstop

(
Ri
i,v

)
is the maximal payo� a player can get in T by terminating alone. Let ṽi be a
node that maximizes the last expression, and let dṽi ∈ D be the payo� matrix
in that stage. 5

Proposition 21 (an adaptation of Prop. 4.10 from [31]). Let T be a game
on a �nite tree. Then T has one of the following:

(1) A stationary absorbing equilibrium x 6= c.
(2) For each player i ∈ I and for each node v ∈ Vstop, : Ri

i,v ≤ 0. This implies
that c is a stationary equilibrium.

(3) There is a distribution η ∈ ∆(I × {ṽi}) such that:
(a)

∑
i∈I

Pη(ṽ
i, i) = 1.

(b) For each player j ∈ I :
∑
i∈I

Pη(ṽ
i, i) ·Rj

{i},ṽi ≥ gj.

(c) Let the players i ∈ I that satisfy Pη(ṽ
i, i) > 0 be denoted as the

stopping players. For every stopping player i ∈ I there exists a player
ji 6= i, the punisher of i, such that: gi ≥ Ri

{ji},ṽji .

When we want to emphasize the dependency of these variables on the game
T, we write giT , ṽ

i
T , ηT , xT .

In the original prop. 21, the equilibrium in case 1 may not be perfect, as players

5 Originally part 3 of Prop. 21 requires that every player would have a unique
pure action that maximizes his payo�, conditioned on that the other players always
continue. This can be achieved by small (o (ε)) perturbations on the payo�s, such
that Ri

i,ṽi
is strictly larger than any other payo� Rii,v where v ∈ Vstop.
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may use non-credible threats after a node where the game is terminated with
probability 1. The following lemma asserts that a perfect ε-equilibrium exists.

Lemma 22 In case 1 of prop. 21, the game admits a stationary absorbing
perfect ε-equilibrium x 6= c.

PROOF. Let Tε be a perturbed version of the game on a tree T : In Tε when
a non-empty coalition stops at some node, there is a probability ε2 that the
stopping is ignored, and the game continues to the next stage as if no player
has stopped. In Tε under any pro�le x, any node is reached with a positive
probability, thus non-credible threats cannot be used in an equilibrium. Thus
if case 1 of prop. 21 applies, then the game Tε admits a perfect equilibrium
xε, and xε is a perfect stationary absorbing ε-equilibrium in T.

5.3 Limits on Per-Round Probability of Termination

In this subsection we bound the probability of termination in a single round
when a stationary equilibrium x 6= c exists (case 1 of Prop. 21), by adapting to
the multi-player case the methods presented in [27, Subsec. 5.2] for two players.
We �rst bound the probability of termination in a single round when the ε-
equilibrium payo� is low for at least one player. The lemma is an adaptation
of Lemma 5.3 in [27]. The proof is omitted as the changes compared with [27]
are minor.

Lemma 23 (An adaptation of Lemma 5.3 in [27]) Let G be a terminating
game, n ∈ N , σ > n a bounded stopping time, F ∈ F̂n, and ε > 0. Let
x 6= c be a stationary ε

2
-equilibrium in Tn,σ(F ) such that there exists a player

i ∈ I with a low payo�: γi(x) ≤ αiF − ε. Then π(ci, x−i) ≥ ε
6
· qi, where

qi = qiT = p

( ⋃
v∈Vstop

{
Fv|Ri

{i},v = αiF
})

is the probability that if all the players

never stop, the game visits a node v ∈ Vstop with Ri
{i},v = αiF in the �rst round.

De�nition 24 Let T =
(
I, V, Vleaf , r, Vstop, (Cv, pv, Rv)v∈V0

)
and let T ′ =(

I , V ′, V ′leaf , r
′, V ′stop, (C

′
v, p
′
v, R

′
v)v∈V ′0

)
be two games on trees. We say that T ′

is a subgame of T if: V ′ ⊆ V , V ′stop = Vstop
⋂
V ′, r′ = r, and for every v ∈ V ′0 ,

C ′v = Cv, p
′
v = pv and R

′
v = Rv.

In words, T ′ is a subgame of T if we remove all the descendants (in the

strict sense) of several nodes from the tree
(
V, Vleaf , r, (Cv)v∈V0

)
and keep all

other parameters �xed. Observe that this notion is di�erent from the standard
de�nition of a subgame in game theory.
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Let T be a game on a tree. For each subset D ⊆ V0, we denote by TD the
subgame of T generated by trimming T from D downward. Thus, all strict
descendants of nodes in D are removed. For every subgame T ′ of T and every
subgame T ′′ of T ′, let pT ′′,T ′ = pV ′′

leaf
,V ′
leaf

be the probability that the chosen

branch in T passes through a leaf of T ′′ strictly before it passes through a leaf
of T ′.

The following de�nition divides the sets in F̂n into 2: simple and complicated.

De�nition 25 Let G be a terminating game, ε > 0, and N0 ≤ n ∈ N. The
set F ∈ F̂n is ε-simple if one of the following holds:

(1) For every i ∈ I: αiF < 0. or
(2) There is a distribution θ ∈ ∆(DF × I) such that for each player i ∈ I:

(a) θ(d, i) > 0⇒ Ri
{i},d = αiF . and

(b) αiF + ε ≥ ∑
j∈I, d∈DF

θ(d, j) ·Ri
{j},d ≥ αiF − ε.

F is simple if it is ε-simple for every ε > 0. F is complicated if it is not simple,
i.e.: there is an ε0 > 0 such that F is not ε0-simple. In that case we say that
F is complicated w.r.t. ε0. Observe that Fn ∈ F̂n is ε-simple if and only if
FN0 ∈ F̂N0 is ε-simple.

The next proposition analyzes stationary ε−equilibria that yield a high payo�
to all the players. The proposition is an adaptation of Prop. 5.5 in [27, Sec.
8]. The proof is omitted as the changes compared with [27] are minor.

Proposition 26 Let G be a terminating game, N0 ≤ n ∈ N , σ > n a
bounded stopping time, F ∈ F̂n a complicated set (w.r.t. ε0), ε <<

ε0
|I|·K2 , and

for each i ∈ I let ai ≥ αiF − ε. Then there exists a set U ⊆ V0 of nodes and a
strategy pro�le x in T = Tn,σ(F ) such that:

(1) No subgame of TU has an ε-equilibrium with a corresponding payo� in∏
i∈I

[ai, ai + ε]

(2) Either: (a) U = ∅ (so that TU = T ) or (b) x is a 9ε-equilibrium in T,
and for every i ∈ I and for every strategy yi: ai− ε ≤ γi(x), γi(x−i, yi) ≤
ai + 8ε, and π(x) ≥ ε2 · pU .

6 The Use of Ramsey Theorem

In this section we use a stochastic variation of Ramsey theorem ([27]), to
disassemble an in�nite terminating game into games on �nite trees with special
properties.
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We begin by de�ning an F -consistent C-valued NT-function.

De�nition 27 An NT -function is a function that assigns to every integer
n > 0 and every bounded stopping time τ an Fn-measurable r.v. that is
de�ned over the set {τ > n}. We say that an NT -function f is C -valued,
for some �nite set C, if the r.v. fn,τ is C -valued, for every n > 0 and every
bounded stopping time τ .

For every A,B ∈ A, A holds on B if and only if p(Ac
⋂
B) = 0.

De�nition 28 An NT -function f is F-consistent if for every n > 0, every
Fn-measurable set F, and every two stopping times τ1, τ2, we have: τ1 = τ2 > n
on F implies fn,σ1 = fn,σ2 on F.

When f is an NT -function, and τ1 < τ2 are two bounded stopping times we
denote fτ1,τ2(ω) = fτ1(ω),τ2(ω). Thus fτ1,τ2 is an Fn-measurable r.v.

The following proposition was proved by Shmaya and Solan ([27, Theorem
4.3]):

Proposition 29 For every �nite set C, every C -valued F-consistent NT -
function f, and every ε > 0, there exists an increasing sequence of bounded
stopping times 0 < σ1 < σ2 < σ3 < ... such that: p (fσ1,σ2 = fσ2,σ3 = ...) > 1−ε.

In the rest of this section we provide an algorithm that attaches a color cn,σ(F )

and several numbers (λj,n,σ(F ))j for every F ∈ F̂n, s.t. cn,σ(F ) is a C -valued
F-consistent NT -function.

If F ∈ F̂N0 is complicated, let ε0(F ) > 0 satis�es that F is complicated w.r.t.

ε0(F ). Otherwise let ε0(F ) = 1. From now on we �x 0 < ε << min
F∈F̂N0

ε0(F )
|I|·K2 .

A hyper-rectangle ([ai, ai + ε])i∈I is bad if for every i ∈ I αiF − ε ≤ ai. It is
good if there exists a player i ∈ I such that ai + ε ≤ αiF − ε.

Let M be a �nite covering of [−1, 1]|I| with (not necessarily disjoint) hype-
rectangles ([ai, ai + ε])i∈I , all of which are either good or bad. Thus, for every

u ∈ [−1, 1]|I| there is a rectangle m ∈M such that u ∈ m. We denote by B =
{b1, b2, ..., bJ} the set of bad rectangles inM and denote by O = {o1, o2, ..., oW}
the set of good rectangles in M.

Set C = (simple
⋃
allbad

⋃ {1×O}⋃ {2}⋃ {3×M ×M})
Let G be a terminating game, n ∈ N , σ > n a bounded stopping time, and
F ∈ F̂n. If F is ε-complicated then the color cn,σ(F ) is determined by the
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following procedure 6 :

• Set T (0) = Tn,σ(F ).
• For 1 ≤ j ≤ J apply Prop. 21 to T (j−1) and the bad rectangle hj =∏

i∈I

[
aij, a

i
j + ε

]
to obtain a subgame T (j) of T (j−1) and strategy pro�le xj

in T (j) such that:
(1) No subgame of T (j) has a stationary ε-equilibrium with a corresponding

payo� in hj.
(2) Either T (j) = T (j−1) or the following three conditions hold:

(a) For every i ∈ I, aij − ε ≤ γi(xj).

(b) For every i ∈ I and every strategy yi: γi(x−ij , y
i) ≤ aij + 8ε.

(c) We have π (xj) ≥ ε2 × pT (J),T (j−1) , where pT (J),T (j−1) is the probability

that a randomly chosen branch passes through a leaf of T (J) which
is not a leaf of T (J−1).

• If T (J) is trivial (i.e., the only node is the root), set cn,σ(F ) = allbad;
otherwise due to Prop. 21 and our procedure one of the following must
hold:

(1) T (J) has a perfect stationary absorbing ε-equilibrium x, with a payo� γ(x)
in one of the good hyper-rectangles. Let cn,σ(F ) = (1, ol), where ol is the
good rectangle that includes γx .

(2) T (J) has a perfect stationary non-absorbing equilibrium c, with a payo�
0. Let cn,σ(F ) = (2).

(3) There is a correlated strategy pro�le η ∈ ∆(A) in T (J) that satis�es
3(a)+3(b)+3(c) in Prop. 21. Let cn,σ(F ) = (3,m1,m2) where m1 is the
hyper-rectangle that includes γT (J)(η), and m2 is the hyper-rectangle that
includes g(T (J)).

The strategy pro�le xJ , as given by Prop. 21, are strategies in T (j−1). We
consider them as strategies in T by letting them continue from the leaves of
T (j−1) downward.

We also de�ne, for every j ∈ J , λj,n,σ(F ) = pT (j),T (j−1) . Observe that due to

Prop. 21: π(x(j)) ≥ ε2 × λj,n,σ(F ).

If F is ε-simple we let cn,σ(F ) = simple.

By Prop. 29 there exists an increasing sequence of bounded stopping times
0 < σ1 < σ2 < σ3 < ... such that: p (cσ1,σ2 = cσ2,σ3 = ...) > 1 − ε. For every
F ∈ F̂σ1 , let cF = cσ1,σ2(F ).

Let (Aε,j, A∞,j)j∈J ∈
∨

n=1..∞
Fn be:A∞,j =

{
w ∈ Ω| ∑

k=1..∞
λj,σk,σk+1

(
Fσk(ω)

)
=∞

}
,

6 The procedure is an adaptation of the 2-player procedure described in [27, Sec. 5]
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Aε,j =
{
w ∈ Ω| ∑

k=1..∞
λj,σk,σk+1

(
Fσk(ω)

)
≤ ε
|J |

}
. As (Aε,j, A∞,j)j∈J ∈

∨
n=1..∞

Fn,

there is large enough N1 ≥ N0 and sets
(
Āε,j, Ā∞,j

)
j∈J
∈ FN1 such that:

(1) For each j ∈ J :Āε,j
⋂
Ā∞,j = ∅ and

(
Āε,j

⋃
Ā∞,j

)
= Ω.

(2) p
(
Aε,j|Āε,j

)
≥ 1− ε

2·|J |

(3) p
(
A∞,j|Ā∞,j

)
≥ 1− ε

2·|J |

Let E ′ be de�ned as follows (where E was de�ned in Subseq. 4.3):

E ′=E
⋃
j∈J

{
ω ∈ Āε,j|

∑
k=1..∞

λj,σk,σk+1

(
Fσk(ω)

)
>

ε

|J |

}
⋃
j∈J

{
ω ∈ Ā∞,j|

∑
k=1..∞

λj,σk,σk+1

(
Fσk(ω)

)
<∞

}

Observe that p(E ′) ≤ ε. We assume w.l.o.g. that σ1 ≥ N1.

7 ε-Unrevealing Correlated 9ε- Equilibria in GF

In this subsection we �nish the proof of the main theorem by the following
proposition:

Proposition 30 Let G be a tree-like terminating game, let the event E ′ ⊆ Ω
and the stopping time σ0 be de�ned as in the last subsection, and let F ∈ F̂σ1.
Then there is a correlation device DF = (MF , µF ) and a strategy pro�le xF in
the game GF (DF ), such that:

• DF depends only on ε and the set of payo�s DF .
• The pro�le xF is a perfect correlated ε-unrevealing ε-equilibrium in the game
GF (DF ) conditioned on Ω\E and given M\M ′.

PROOF. The proof is divided to a few cases according to the color of cF and
to whether F ∈ Ā∞,j. The proof in the �rst 3 cases is an adaptation of [27,
Sec.7].

7.1 There exists j ∈ J s.t. F ∈ Ā∞,j

Let 1 ≤ j ≤ J be the smallest index such that F ∈ Ā∞,j. Let xj,σk,σk+1
be the

jth pro�le in the procedure described in Section 6, when applied to Tσk,σk+1
.
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Let xF be the following strategy pro�le in GF : between σk and σk+1 play
according to xj,σk,σk+1

. The procedure of Section 6 implies the following:

• Conditioned on that the game was absorbed between σk and σk+1 the pro�le
xj,σk,σk+1

gives each player a payo�: aij − ε ≤ γiσk,σk+1
(xj) ≤ aij + 8ε.

• For each player i ∈ I and for each strategy yi in Tσk,σk+1
:

· γiσk,σk+1
(x−ij , y

i) ≤ aij + 8ε.

· πσk,σk+1
(xj) ≥ ε2 × λj(Tσk,σk+1

)

The fact that F ∈ Ā∞,j implies that outside E ′ the game is absorbed with
probability 1. All those facts imply that xF is a 11ε-equilibrium in Ω\E ′.
Observe that cF = allbed implies that there exists j ∈ J such that F ∈ Ā∞,j.

7.2 F ∈ ⋂
j∈J
Āε,j and cF = 2

Let xF be the pro�le in which everyone continues. It is implied that no player
can pro�t more than ε by deviating, conditioned on ω ∈ Ω\E ′.

7.3 F ∈ ⋂
j∈J
Āε,j and cF = (1, ow) ∈ (1×O)

Let xσk,σk+1
be a stationary absorbing equilibrium in T (J) with a payo� γσk,σk+1

in the good hyper-rectangle ow:
∏
i∈I

[aiw, a
i
w + ε]. As ow is good, there is a player

i ∈ I s.t.: aiw ≤ αiF−2ε. Let xF be the following strategy pro�le in GF : between
σk and σk+1 play according to xσk,σk+1

. Lemma 23 implies that π(ci, x−iσk,σk+1
) ≥

ε
6
· qiσk,σk+1

, where qiσk,σk+1
= p(∃σk ≤ n < σk+1, R

i
i,n = αiF , R

i
i,n ∈ DF ).

Outside E ′, Ri
i,n = αiF in�nitely often and

∑
j=1..J

∑
k=1..∞

λj,σk,σk+1
< ε

2
. This

implies that under xF the game is absorbed with probability 1, and that xF
is a 4ε-equilibrium in G, conditioned on Ω\E ′.

7.4 F ∈ ⋂
j∈J
Āε,j and cF = (1,mw,mw′) ∈ (1×M ×M)

The construction in this case is as an adaptation of the procedure of [30],
which deals with quitting games - terminating games where the payo� matrix
is the same in all the stages.

Let η = ησ1,σ2 be a correlated strategy pro�le in Tσ1,σ2 that satis�es 3(a), 3(b)
and 3(c) in Prop. 21. The de�nition of αiF implies that αiF = gi(η) ∈ mi

w′ .
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This implies that there is a distribution θ = θ(η) ∈ ∆(DF × I) such that for
each player i ∈ I:

(1) θ(d, i) > 0 ⇒ Ri
{i},d = αiF , ∀d′ ∈ DF θ(d′, i) = 0. Let d(i) ∈ DF be the

single matrix payo� that satis�es θ(di, i) > 0. If no such payo� exists, let
d(i) = ∅.

(2)
∑

j∈I, d∈DF
θ(d, j) ·Ri

{j},d ≥ αiF

(3) If there is d ∈ DF such that θ(d, i) > 0, then there exists a punisher
ji ∈ I such that: d(ji) 6= ∅ and d(ji)

i
{ji} ≤ αiF .

Let ζ ∈ ∆(I) be: ζ(i) = η(d(i), i). Let (τ ik)i∈I.k=1..∞ be an increasing sequence

of stopping times de�ned by induction: τ i01 is the �rst stage n such that Rn =
d(i0). τ

i0
n+1 is the �rst stage n > max

i∈I
(τ in) such that Rn = d(i0). Observe that

in Ω\E ′ each τ ik <∞.

We now describe the correlation device DF = (MF , µF ). Let M i
F = {1, ..., T̂ +

T +1}, where T ∈ N is su�ciently large, and T̂ >> T . Let µF , the probability
according to which the signals are sent to the players, be as follows:

(1) A number l̂ ∈ N is chosen uniformly over
{

1, T̂
}
.

(2) The quitter i ∈ I is randomly chosen according to ζ. Player i receives
the signal l̂.

(3) A number l ∈ N is chosen uniformly over
{
l̂ + 1, l̂ + T

}
(4) Let player j be the punisher of player i. Player j receives the signal l.
(5) Each other player ĩ 6= i, j receives the signal l + 1.

Observe that DF is universal: it depends only on DF (ε) and the number of
players. Let M ′

F ⊆ MF be those signal pro�les in which some of the players
receive an �extreme� signal: relative close to 1 or to T̂ + T . If T, T̂ are large
enough, we can assume that µ(M ′) ≤ δ. De�ne now the following strategy xiF
for each player i ∈ I: let mi be the signal of player i. Player i stops in stage
τmi , and continues in all other stages.

If the players follow the strategy pro�le xF then the game is absorbed with
probability 1 in Ω\E ′ and the expected payo� satis�es αiF ≤ γiF (x) ∈ mi

w .
Moreover, if T̂ >> T , then immediately after receiving his signalmi (assuming
m ∈M\M ′) no player can infer from his signal whether or not he is the quitter,
thus xF is ε-unrevealing w.r.t. DF .

We now verify that if T, T̂ are su�ciently large, no player can gain too much
by deviating conditioned on that ω ∈ Ω\E ′ and given m ∈ M\M ′. First, the
probability the quitter i ∈ I correctly guesses the punishment stage is very
low, and thus he cannot pro�t too much by deviating. Similarly, any other
player (j 6= i ∈ I) has a low probability to correctly guess τ i

l̂
, the stage the

quitter stops . Moreover, if T is su�ciently large, then, with high probability,
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player j does not know whether he is the punisher or not, and thus he cannot
infer which of the other players is more likely to be the quitter. Therefore,
player j can't earn much by stopping before stage l̂. Observe that when the
quitter deviates and does not stop. his punisher, say player i, does not know
that he is a punisher, but when he has to stop, he believes that he is the
quitter (assuming m ∈ M\M ′). This implies that the players ε-best-respond
while punishing, and the ε-equilibrium is in-deed perfect. Thus it is implied
that xF is a perfect ε-equilibrium in GF (DF ) conditioned on ω ∈ Ω\E ′ and
given m ∈M\M ′.

7.5 cF = simple

If for every i ∈ I: αiF ≤ 0, then the pro�le in which all the players always
continue is an equilibrium in Ω\E ′. Otherwise, the fact that cF = simple
implies that there is a distribution θ ∈ ∆(DF × I) such that for each player
i ∈ I:

(1) θ(d, i) > 0⇒ Ri
{i},d = αiF

(2) αiF + ε ≥ ∑
j∈I, d∈DF

θ(d, j) ·Ri
{j},d ≥ αiF − ε

Thus we can use a simpler version of the procedure of the previous case.
Let (τ ik)i∈I.k=1..∞ be as de�ned earlier. We now describe the correlation device

DF = (MF , pF ). LetM i
F =

{
1, ..., T̂ + T + 1

}
×DF , where T ∈ N is su�ciently

large, and where T̂ >> T . Let µF , the probability according to which the
signals are sent to the players before the game starts, be as follows:

(1) A number l̂ ∈ N is chosen uniformly over
{

1, T̂
}
.

(2) The couple (d, i) ∈ DF × I is randomly chosen according to θ. Player i

receives the signal
(
l̂, d
)
.

(3) A number l ∈ N is chosen uniformly over
{
l̂ + 1, l̂ + T

}
(4) The couple (d′, j) ∈ DF×I is randomly chosen according to θ, conditioned

on that j 6= i. Player j receives the signal (l, d′).
(5) For each other player ĩ 6= i, j s.t.,

∑
d∈DF

θ(d, ĩ) > 0: dĩ is randomly chosen

according to θ, conditioned on that the chosen player is ĩ. Player ĩ receives
the signal (l + 1, dĩ).

M ′
F is de�ned as in the previous case. De�ne now the following strategy xiF

for each player i ∈ I: let mi be the signal of player i. Player i stops in stage
τmi , and continues in all other stages. It is straightforward to see that xiF
is ε-unrevealing w.r.t. DF , and that xiF is a perfect ε-equilibrium in GF (DF )
conditioned on ω ∈ Ω\E ′ and given m ∈M\M ′.
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