
1

Anonymization of Centralized and Distributed
Social Networks by Sequential Clustering

Tamir Tassa and Dror J. Cohen

Abstract—We study the problem of privacy-preservation in social networks. We consider the distributed setting in which the network
data is split between several data holders. The goal is to arrive at an anonymized view of the unified network without revealing to
any of the data holders information about links between nodes that are controlled by other data holders. To that end, we start with
the centralized setting and offer two variants of an anonymization algorithm which is based on sequential clustering. Our algorithms
significantly outperform the SaNGreeA algorithm due to Campan and Truta which is the leading algorithm for achieving anonymity in
networks by means of clustering. We then devise secure distributed versions of our algorithms. To the best of our knowledge, this is the
first study of privacy preservation in distributed social networks. We conclude by outlining future research proposals in that direction.

Index Terms—social networks; clustering; privacy preserving data mining; distributed computation.

F

1 INTRODUCTION

Networks are structures that describe a set of entities and
the relations between them. A social network, for example,
provides information on individuals in some population and
the links between them, which may describe relations of
friendship, collaboration, correspondence and so forth. An
information network, as another example, may describe sci-
entific publications and their citation links. In their most basic
form, networks are modeled by a graph, where the nodes
of the graph correspond to the entities, while edges denote
relations between them. Real social networks may be more
complex or contain additional information. For example, in
networks where the described interaction is asymmetric (e.g.,
a financial transaction network), the graph would be directed;
if the interaction involves more than two parties (e.g., a social
network that describes co-membership in social clubs) then the
network would be modeled as a hyper-graph; in case where
there are several types of interaction, the edges would be
labeled; or the nodes in the graph could be accompanied by
attributes that provide demographic information such as age,
gender, location or occupation which could enrich
and shed light on the structure of the network.

Such social networks are of interest to researchers from
many disciplines, be it sociology, psychology, market research,
or epidemiology. However, the data in such social networks
cannot be released as is, since it might contain sensitive
information. Therefore, it is needed to anonymize the data
prior to its publication in order to address the need to respect
the privacy of the individuals whose sensitive information is
included in the data. Data anonymization typically trades off
with utility. Hence, it is required to find a golden path in which
the released anonymized data still holds enough utility, on one

• T. Tassa and D. Cohen are with the Department of Mathematics and
Computer Science, The Open University, Ra’anana, Israel.

hand, and preserves privacy to some accepted degree on the
other hand.

A naı̈ve anonymization of the network, in the sense of
removing identifying attributes like names or social security
numbers from the data, is insufficient. As shown in [2], the
mere structure of the released graph may reveal the identity
of the individuals behind some of the nodes. The idea behind
the attack described in [2] is to inject a group of nodes with a
distinctive pattern of edges among them into the network. The
adversary then may link this distinctive structure to some set
of targeted individuals. When the naı̈vely anonymized network
is published, the adversary traces his injected subgraph in
the graph; if successful (namely, there is only one such
subgraph in the graph, an event of probability that can be
made sufficiently high), the targets who are connected to this
subgraph are re-identified and the edges between them are
disclosed. Even less sophisticated adversaries may use prior
knowledge of some property of their target nodes (say, the
number of their neighbors and their interrelations) in order
to identify them in the published graph and then extract
additional information on them.

Hence, one needs to apply a more substantial procedure
of anonymization on the network before its release. The
methods of privacy preservation in networks fall into three
main categories. The methods of the first category [15], [23],
[31] provide k-anonymity via a deterministic procedure of
edge additions or deletions. In those methods it is assumed that
the adversary has a background knowledge regarding some
property of its target node, and then those methods modify
the graph so that it becomes k-anonymous with respect to
that assumed property. The methods of the second category
[5], [8], [10], [26], [27], [28] add noise to the data, in the
form of random additions, deletions or switching of edges,
in order to prevent adversaries from identifying their target in
the network, or inferring the existence of links between nodes.
The methods of the third category [6], [9], [29] do not alter
the graph data like the methods of the two previous categories;

2

instead, they cluster together nodes into super-nodes of size
at least k, where k is the required anonymity parameter, and
then publish the graph data in that coarse resolution.

The study of anonymizing social networks has concentrated
so far on centralized networks, i.e., networks that are held
by one data holder. However, in some settings, the network
data is split between several data holders, or players. For
example, the data in a network of email accounts where two
nodes are connected if the number of email messages that they
exchanged was greater than some given threshold, might be
split between several email service providers. As another ex-
ample, consider a transaction network where an edge denotes a
financial transaction between two individuals; such a network
would be split between several banks. In such settings, each
player controls some of the nodes (his clients) and he knows
only the edges that are adjacent to the nodes under his control.
It is needed to devise secure distributed protocols that would
allow the players to arrive at an anonymized version of the
unified network. Namely, protocols that would not disclose
to any of the interacting players more information than that
which is implied by its own input (being the structure of edges
adjacent to the nodes under the control of that player) and
the final output (the anonymized view of the entire unified
network). The recent survey by X. Wu et al. about privacy-
preservation in graphs and social networks [24] concludes
by recommendations for future research in this emerging
area. One of the proposed directions is distributed privacy-
preserving social network analysis, which “has not been well
reported in literature”.

In this study we deal with social networks where the nodes
could be accompanied by descriptive data, and propose two
novel anonymization methods of the third category (namely, by
clustering the nodes). Our algorithms issue anonymized views
of the graph with significantly smaller information losses than
anonymizations issued by the algorithms of [6] and [29]. We
also devise distributed versions of our algorithms and analyze
their privacy and communication complexity.

Organization of the paper. We begin by formal definitions
in Section 2 and a survey of related work in Section 3. In
Section 4 we stay in the realm of centralized networks and
propose two variants of an anonymization algorithm which is
based on sequential clustering [7]. In Section 5 we describe
a distributed version of our algorithms that computes a k-
anonymization of the unified network by invoking secure
multiparty protocols. The results of our experiments are given
in Section 6. We conclude in Section 7 by outlining future
research directions in the study of privacy preservation in
distributed networks.

2 THE MODEL

2.1 The data
We view the social network as a simple undirected graph,
G = (V,E), where V = {v1, . . . , vN} is the set of nodes
and E ⊆

(
V
2

)
is the set of edges1. Each node corresponds

to an individual in the underlying group, while an edge that

1.
(V
2

)
denotes the set of all unordered pairs of elements from V .

connects two nodes describes a relationship between the two
corresponding individuals.

In addition to the structural data that is given by E, each
node is described by a set of non-identifying attributes, such as
age or zipcode, that are called quasi-identifiers. Combina-
tions of such attributes could be used for unique identification
by means of linking attacks [20], whence, they should be
generalized in order to thwart such attacks. We let A1, . . . , AI

denote the quasi-identifiers, as well as the set of values that
they may attain (e.g., if A1 =gender then A1 = {M,F}).
Then each node vn, 1 ≤ n ≤ N , is described by a quasi-
identifier record, Rn = (Rn(1), . . . , Rn(I)) ∈ A1 × · · · ×AI .
(We adopt herein the notation convention that an integral index
is denoted by a lower-case letter, while the upper limit of that
index is denoted by the corresponding upper-case letter.)

To summarize, a (naı̈vely anonymized) social network is
defined as follows:

Definition 2.1. Let A1, . . . , AI be a collection of quasi-
identifier attributes. A social network over V = {v1, . . . , vN}
is SN = ⟨V,E,R⟩ where E ⊆

(
V
2

)
is the structural data

(edges), describing relationships between individuals in V ,
and R = {R1, . . . , RN}, where Rn ∈ A1 × · · · × AI ,
1 ≤ n ≤ N , are the descriptive data of the individuals in
V .

2.2 Anonymization by clustering
As in [6], [9], [29], we consider anonymizations of a given
social network by means of clustering. Let C = {C1, . . . , CT }
be a partition of V into disjoint subsets, or clusters; i.e., V =∪T

t=1 Ct and Ct ∩ Cs = ∅ for all 1 ≤ t ̸= s ≤ T . The
corresponding clustered graph GC = (VC , EC) is the graph in
which the set of nodes is VC = C, and an edge connects Ct

and Cs in EC iff E contains an edge from a node in Ct to a
node in Cs. Each node Ct ∈ VC is accompanied by two pieces
of information — |Ct| (the number of original V -nodes that
Ct contains), and et, which is the number of edges in E that
connect nodes within Ct. In addition, each edge {Ct, Cs} ∈
EC is labeled by a weight et,s that stands for the number of
edges in E that connect a node in Ct to a node in Cs.

Let GC = (VC , EC) be a clustered graph that was derived
from a graph G = (V,E) of some social network SN =
⟨V,E,R⟩. Then, in addition to the structural data, which is
given by EC and the integral labels of the nodes, (|Ct|, et),
and of the edges, et,s, one accompanies such a graph with
descriptive data that is derived from the original descriptive
data R. We apply the common method in anonymizing tabular
data, and that is the generalization of the quasi-identifiers.
Each of the quasi-identifiers, Ai, 1 ≤ i ≤ I , is accompanied
by a collection of subsets, Ai, which are the subsets of Ai

that could be used for generalization. For example, Ai could
be a taxonomy for Ai; namely, a hierarchical generalization
tree where each node represents some subset of Ai, the leaves
are all the singleton subsets, the root is the entire set, and the
direct descendants of any node form a partition of the subset
corresponding to that node.

Given a cluster of nodes in V , say Ct = {vn1 , . . . , vnm},
one associates with it a generalized quasi-identifier record,

3

Rt = (Rt(1), . . . , Rt(I)) ∈ A1 × · · · ×AI , called the closure
of Ct, which is the minimal generalized record that general-
izes all of the original quasi-identifier records Rn1 , . . . , Rnm .
Namely, Rt(i), 1 ≤ i ≤ I , is the minimal (with respect
to inclusion) subset in Ai that contains all of the values
Rn1(i), . . . , Rnm(i) ∈ Ai.

Definition 2.2. Let SN = ⟨V,E,R⟩ be a social network
and let A1, . . . , AI be generalization taxonomies for the
quasi-identifier attributes A1, . . . , AI . Then given a clustering
C = {C1, . . . , CT } of V , the corresponding clustered social
network is SN C = ⟨VC = C, EC ,R⟩ where:
• EC ⊆

(
VC
2

)
is a set of edges on VC , where {Ct, Cs} ∈ EC

iff there exist vn ∈ Ct and vn′ ∈ Cs such that {vn, vn′} ∈ E;
• The clusters in VC are labeled by their size and the number

of intra-cluster edges, while the edges in EC are labeled by
the corresponding number of inter-cluster edges in E;
• R = {R1, . . . , RT }, where Rt is the minimal record in

A1 × · · · × AI that generalizes all quasi-identifier records of
individuals in Ct, 1 ≤ t ≤ T .

An example of a network of seven nodes, with two-
dimensional quasi-identifier records (age and gender), and
a corresponding clustered network with three super-nodes, is
given in Figure 1. (The two numbers in each super-node are
its size and the number of intra-cluster edges.)

Fig. 1. A network and a corresponding clustering

Given a social network SN = ⟨V,E,R⟩, a corresponding
clustered social network is called k-anonymous (or a k-
anonymization of SN) if the size of all of its clusters is
at least k. Our goal is to find a k-anonymization in which
the loss of information is minimal (or, in other words, the
utility is maximal). To that end, we need to define measures
of information loss.

2.3 Measuring the loss of information
We shall use here the same measure of information loss that
was used in [6]. Given a social network SN and a clustering
C of its nodes, the information loss associated with replacing
SN by the corresponding clustered network, SN C , is defined
as a weighted sum of two metrics,

I(C) = w · ID(C) + (1− w) · IS(C) ; (1)

here, w ∈ [0, 1] is some weighting parameter, ID(C) is the
descriptive information loss that is caused by generalizing
the exact quasi-identifier records R to R, while IS(C) is the
structural information loss that is caused by collapsing all
nodes of V in a given cluster of VC to one super-node.

We define those two metrics similarly to [6]. For the
descriptive metric we utilize the Loss Metric (LM) measure
[11], [17]. Assume that the original node vn ∈ V , 1 ≤ n ≤ N ,
belongs to a cluster Ct ∈ C, 1 ≤ t ≤ T ; then its quasi-
identifier record, Rn = (Rn(1), . . . , Rn(I)), is generalized
to Rt = (Rt(1), . . . , Rt(I)). The LM metric associates the
following loss of information with each of the nodes in that
cluster,

ID(Ct) =
1

I

I∑
i=1

|Rt(i)| − 1

|Ai| − 1
; (2)

here, |Rt(i)| is the size of the subset Rt(i) which generalizes
the original value Rn(i), and |Ai| is the number of values in
the domain of attribute Ai. Note that ID(Ct) ranges between
zero and one, where ID(Ct) = 0 iff all records in Ct are
equal, whence no generalization was applied, while ID(Ct) =
1 iff all records in Ct are so far off, that all attributes in the
generalized record had to be totally suppressed.

The overall LM information loss is the result of averaging
those losses of information over all nodes in V , i.e.,

ID(C) = 1

N
·

T∑
t=1

|Ct| · ID(Ct) . (3)

Due to averaging, also ID(C) ranges between zero and one.
As for the structural information loss, we distinguish be-

tween two types of such information losses:
• Intra-cluster information loss: Given a cluster Ct, the

structure of Ct in the original graph is lost, and is replaced
by the number of nodes in Ct, and the number et of edges
in E that connected nodes in Ct. The corresponding in-
formation loss is quantified as the probability of wrongly
identifying a pair of nodes in Ct as an edge or as a non-
connected pair, and it equals

IS,1(Ct) := 2et ·
(
1− 2et

|Ct| · (|Ct| − 1)

)
. (4)

• Inter-cluster information loss: Given two clusters, Ct and
Cs, the structure of edges that connect nodes from Ct

to nodes in Cs is lost, and is replaced by the number
et,s of edges between nodes in those two clusters. Here
too, the information loss is quantified as the probability
of wrongly identifying a pair of nodes in Ct and Cs as
an edge or as a non-connected pair, and it equals

IS,2(Ct, Cs) := 2et,s ·
(
1− et,s

|Ct||Cs|

)
. (5)

The overall structural information loss for the clustering C =
{C1, . . . , CT } is then

IS(C) =
4

N(N − 1)

 T∑
t=1

IS,1(Ct) +
∑

1≤t ̸=s≤T

IS,2(Ct, Cs)

 ,

(6)
where, as shown in [6], the normalizing factor 4

N(N−1) guar-
antees that IS(C) ranges between zero and one. The maximal
value of one occurs when all edge counters (et and et,s) fall in
the middle of the intervals where they range (i.e., et =

(|Ct|
2

)
/2

and et,s = |Ct||Cs|/2 for all 1 ≤ t ̸= s ≤ T).

4

2.4 The k-anonymization clustering problem

We are now ready to define the problem of k-anonymizing
a social network by means of clustering. Let SN =
⟨V,E,R⟩ be a social network as defined in Definition 2.1.
Let A1, . . . , AI be generalization taxonomies for the quasi-
identifier attributes A1, . . . , AI . Given an integer 1 < k < n,
the goal is to find a clustering C = {C1, . . . , CT } of V , where
|Ct| ≥ k for all 1 ≤ t ≤ T , that minimizes the information
loss I(C) that is defined in Eqs. (1)–(6).

If we take E = ∅, namely – we totally suppress the struc-
tural information, the social network reduces to a collection
of tabular records and then we are looking at the well-known
problem of k-anonymization in the context of tables. Since
the latter problem is NP-hard [1], so is the problem for social
networks. Hence, one should look at either approximation
algorithms or heuristical algorithms. In Section 3 we describe
existing heuristical algorithms for anonymization by cluster-
ing, and then, in Section 4, we introduce our algorithm.

An important question in this context is how to use the
clustered network for the sake of performing data analysis.
We defer that discussion to Section 6.3.

3 PREVIOUS ALGORITHMS OF
k-ANONYMIZATION BY CLUSTERING

The first study that considered the problem of k-anonymization
of social networks by clustering was by Zheleva and
Getoor [29]. The idea there was to apply any standard k-
anonymization algorithm on the quasi-identifier records de-
scribing the nodes, in order to arrive at a clustering of the
nodes, and then to hide the structural information in one of five
suggested ways. One of the suggested ways was, as described
above, to disclose the edge structure in the resolution of the
super-nodes.

Campan and Truta [6] were the first to apply an anonymiza-
tion algorithm that takes into account both the descriptive and
structural data. Their algorithm, dubbed SaNGreeA (Social
Network Greedy Anonymization), builds the clustering greed-
ily, one cluster at a time, by selecting a seed node and then
keep adding to it the next node that would minimize some
measure of information loss, until it matures into a cluster of
size k. Since that algorithm builds the clustering gradually, it
cannot use the actual information loss measure I(·), Eq. (1),
since it includes the structural information loss, IS(·), Eq. (6),
which may be evaluated only when all of the clustering is
defined. Hence, they replaced IS(·) with a distance metric
between nodes, which was shown experimentally to be an
effective substitute. The sequential clustering algorithm that
we present herein does not suffer from that problem, since in
each stage of its execution it has a full clustering and hence
it may always make decisions according to the real measure
of information loss.

In the same year as [6], Hay et al. [9] outlined an al-
gorithm for k-anonymization by clustering. They restricted
their attention to the case of structural information only.
Their algorithm searched for the clustering which minimizes
the number of “possible worlds” (namely, the number of

graphs that are consistent with the information in the released
clustered graph), using simulated annealing [14].

4 ANONYMIZATION BY SEQUENTIAL
CLUSTERING

The sequential clustering algorithm for k-anonymizing tables
was presented in [7]. It was shown there to be a very efficient
algorithm in terms of runtime as well as in terms of the
utility of the output anonymization. We proceed to describe
an adaptation of it for anonymizing social networks.

Algorithm 1 starts with a random partitioning of the network
nodes into clusters. The initial number of clusters in the
random partition is set to ⌊N/k0⌋ and the initial clusters are
chosen so that all of them are of size k0 or k0 + 1, where
k0 = αk is an integer and α is some parameter that needs to
be determined.

The algorithm then starts its main loop (Steps 2-4). In that
loop, the algorithm goes over the N nodes in a cyclic manner
and for each node it checks whether that node may be moved
from its current cluster to another one while decreasing the
information loss of the induced anonymization. If such an
improvement is possible, the node is transferred to the cluster
where it currently fits best.

Algorithm 1.
• Input: A social network SN , an integer k.
• Output: A clustering of SN into clusters of size ≥ k.

1) Choose a random partition C = {C1, . . . , CT } of V into
T := ⌊N/k0⌋ clusters of sizes either k0 or k0 + 1.

2) For n = 1, . . . , N do:
a) Let Ct be the cluster to which vn currently belongs.
b) For each of the other clusters, Cs, s ̸= t, compute the

difference in the information loss, ∆n:t→s, if vn would
move from Ct to Cs.

c) Let Cs0 be the cluster for which ∆n:t→s is minimal.
d) If Ct is a singleton, move vn from Ct to Cs0 and

remove cluster Ct.
e) Else, if ∆n:t→s0 < 0, move vn from Ct to Cs0 .

3) If there exist clusters of size greater than k1, split each
of them randomly into two equally-sized clusters.

4) If at least one node was moved during the last loop, go
to Step 2.

5) While there exist clusters of size smaller than k, select
one of them and unify it with the cluster which is closest.

6) Output the resulting clustering.

During that main loop, we allow the size of the clusters
to vary in the range [2, k1], where k1 = βk for some
predetermined fixed parameter β. When a cluster becomes a
singleton, we remove it and transfer the node that was in that
cluster to the cluster where it fits best, in terms of information
loss (Step 2d). On the other hand, when a cluster becomes too
large (i.e., its size becomes larger than the upper bound k1),
we split it into two equally-sized clusters in a random manner.

The main loop of the algorithm is repeated until we reach
a stage where an entire loop over all nodes in the network
found no node that could be moved to another cluster in order

5

to decrease the information loss. That stopping criterion may
be replaced by another one, in order to avoid iterations with
negligible improvements. A natural criterion of that sort is
to stop the main loop and continue to the next stage if the
improvement in the information loss in the last execution of
the main loop was too small. We used in our experiments the
latter criterion, with a threshold of 0.5%.

At this point, some of the clusters are large, in the sense
that their size is at least k, while others are small. If there exist
small clusters, we apply an agglomerative procedure on them
in the following manner (Step 5): We arbitrarily select one of
them and then find which of the other clusters (of any size)
is closest to it, in the sense that unifying them will cause
the smallest increase in the information loss; after finding
the closest cluster, we unify the two clusters. We repeat this
procedure until all clusters are of size at least k.

The parameters α and β control the sizes of the clusters
and, consequently, the information loss of the final output. The
goal is to find a setting of α and β that would yield lower
information losses. For example, higher values of β would
result in larger clusters at the output, what implies higher
information losses; on the other hand, a too small β would
lead to a greater number of small clusters at the end of the
first phase; those small clusters would need to be unified in
the agglomerative phase (Step 5) and that too might result
in higher information losses since the agglomerative phase is
more crude than the first stage, as it involves the unification
of whole clusters instead of moving just one node. (α has a
much smaller effect on the information loss since it is used
only once at the beginning.) Our experimentation with various
values of α and β revealed that in all types of networks that
we tested, and in all sizes, α = 0.5 and β = 1.5 gave good
or best results. Those were the values that we used in the
experimental evaluation (Section 6).

Sequential clustering, like simulated annealing, is a local
search algorithm. As local search procedures may be attracted
to local minima, it is necessary to devise a mechanism that
would allow the algorithm to explore other domains of the
search space. Simulated annealing uses a temperature that
determines the probability of accepting locally bad decisions.
That temperature begins with a high value and then it is
gradually cooled down until it reaches a predetermined level in
which the search stops. The algorithm’s performance is highly
sensitive to the cooling schedule and how the probability of
moving to a neighboring state is determined by the tempera-
ture. Sequential clustering, on the other hand, may be repeated
several times with different random partitions as the starting
point, in order to find the best local minimum among those
repeated searches. Sequential clustering is known to perform
better both in terms of runtime and quality of the output [19].

Sequential clustering achieves significantly better results
than SanGreeA, in terms of information loss, as we demon-
strate later on in Section 6. One reason is that greedy al-
gorithms, such as SaNGreeA, do not have a mechanism of
correcting bad clustering decisions that were made in an earlier
stage; sequential clustering, on the other hand, constantly
allows the correction of previous clustering decisions. Another

advantage of sequential clustering over SaNGreeA is that it
may evaluate at each stage during its operation the actual
measure of information loss, since at each stage it has a full
clustering of all nodes.

The latter advantage in terms of utility translates to a
disadvantage in terms of runtime. While SaNGreeA requires
O(N2) evaluations of the cost function, the number of cost
function evaluations in the sequential clustering depends on
N3. (The algorithm scans all N nodes and for each one it
considers O(N/k) alternative cluster allocations; the compu-
tation of the cost function for each such candidate alternative
clustering requires to update the inter-cluster costs IS,2(·, ·) for
all O(N/k) pairs of clusters that involve either the cluster of
origin or the cluster of destination in that contemplated move.)
Hence, we proceed to describe a relaxed variant of sequential
clustering which requires only O(N2) evaluations of the cost
function.

4.1 A modified structural information loss measure
In [6], the proposed SaNGreeA algorithm uses a measure of
structural information loss that differs from the measure IS(·)
that is given by Eqs. (4)-(6). We proceed to define it.

Let B be the N × N adjacency matrix of the graph G =
(V,E), i.e., B(n, n′) = 1 if {vn, vn′} ∈ E and B(n, n′) = 0
otherwise. Then, a Hamming-like distance is defined on V as
follows,

D(n, n′) :=
|{ℓ ̸= n, n′ : B(n, ℓ) ̸= B(n′, ℓ)}|

N − 2
. (7)

This definition of distance induces the following measure of
structural information loss per cluster,

I ′S(Ct) =
1(|Ct|
2

) ·
∑

vn,vn′∈Ct

D(n, n′) , (8)

and a corresponding overall structural information loss,

I ′S(C) =
1

N

T∑
t=1

|Ct| · I ′S(Ct) =

T∑
t=1

x(Ct) (9)

where

x(Ct) =
2

N(|Ct| − 1)

∑
vn,vn′∈Ct

D(n, n′) . (10)

In other words, I ′S of a given cluster is the average distance
between all pairs of nodes in that cluster, and I ′S of the whole
clustering is the corresponding weighted average of struc-
tural information losses over all clusters. The corresponding
weighted measure of information loss is then,

I ′(C) = w · ID(C) + (1− w) · I ′S(C) , (11)

where, as before, w ∈ [0, 1] and ID(C) is given by (2)-(3).
The significant difference between I(·) (Eq. (1)) and I ′(·) is

that the former cannot be evaluated before the entire clustering
is determined, while the latter one can, since it is defined as a
sum of independent intra-cluster information loss measures. As
the SaNGreeA algorithm needs to make clustering decisions
before all clusters are formed, it uses a distance function
between a node and a cluster that is geared towards minimizing

6

the measure I ′(·). As opposed to SaNGreeA, the sequential
clustering algorithm can use either I(·) or I ′(·). In Section
6 we show that sequential clustering which is guided by I(·)
offers much better utility than the same algorithm when it is
guided by I ′(·).

While I ′ offers results of lesser utility than I , using I ′ leads
to shorter runtimes. Whenever the sequential clustering algo-
rithm implements one of its decisions – be it moving a node
from one cluster to another, splitting a large cluster, or unifying
two small clusters – all that is needed in order to update I ′ is to
update the intra-cluster information loss measures of the two
clusters that are involved in such an action; there is no need
to update also the inter-cluster information loss measures that
involve all other clusters (as is the case when using I). This
is why the number of cost function evaluations that sequential
clustering needs to perform reduces from O(N3) to O(N2),
when switching from I to I ′, in similarity to the SaNGreeA
algorithm.

5 THE DISTRIBUTED SETTING

Here we consider the distributed setting, in which the network
data is split among M sites (or players) in the following
manner: player m, 1 ≤ m ≤ M , holds Nm of the nodes, say
V m = {vm1 , . . . , vmNm

}. The overall number of nodes is N =∑M
m=1 Nm and the unified set of nodes is V =

∪M
m=1 V

m. As
for the structural data, E ⊆

(
V
2

)
, it is split between the players

in the following manner: Edges that connect two nodes in V m

are known only to player m; edges that connect nodes in V m

and V m′
are known only to players m and m′.

There are two scenarios to consider in this setting:
1) Scenario A: Each player needs to protect the identities of

the nodes under his control from other players, as well
as the existence or non-existence of edges adjacent to his
nodes.

2) Scenario B: All players know the identities of all nodes
in V ; the information that each player needs to protect
from other players is the existence or non-existence of
edges adjacent to his nodes.

To illustrate the difference between the two scenarios, let us
return to the toy network in the left of Figure 1. Assume
that it is split between three players — the “circular”, the
“square”, and the “triangular” players; namely, the circular
player controls the three circular nodes in the graph, while
the square and triangular players control the corresponding
square and triangular nodes. Assume that those players are
banks, that the nodes are accounts in those banks, and that
the edges denote financial transactions between the accounts.
Here, each node is identified by an account number, but the
bank is trusted to protect the identity of the clients that hold
those accounts. Hence, the square bank is expected to hide the
information that one of his clients is a 62 year old female and
the other is a 31 year old female (as indicated by the quasi-
identifier records (62,F) and (31,F) next to his nodes in Figure
1) since that might reveal the identity of the account holders. In
addition, the square bank is expected to hide from the circular
bank the internal transactions among his clients (there is one
such edge in the illustrated graph) or between his clients and

clients of the triangular bank (there are two such edges in the
graph). This is an example of Scenario A. However, assume
that the network is a correspondence network between email
addresses. Here it is natural to assume that the identity of the
nodes is not confidential, since typical email addresses disclose
the name of the individual that holds them. In this case, it is
needed only to protect the existence of edges between the
nodes. Namely, even though the identity of the individuals
behind the email addresses MeTarzan@Site1.com and
YouJane@Site2.com is expected to be known to player
3, players 1 and 2 are trusted to withhold from player 3 the
fact that those two individuals exchanged emails. This is an
example of Scenario B.

The goal is to arrive at a k-anonymization of the combined
social network. A naı̈ve solution would be to unify the
network data from all players and apply any anonymization
algorithm on that unified network. However, such an approach
is unacceptable since it requires each player to reveal to the
other players sensitive information of his clients. (In Scenario
A, the sensitive information that each player must withhold
from the other players is the quasi-identifier records of his
clients, as well as the structure of edges adjacent to his clients;
in Scenario B the sensitive information is just the edges.) If
there exists a trusted third party, each player may surrender to
him his corresponding partial view of the network, and then
the trusted third party will have a complete view of the entire
network, on which he may apply any anonymization algorithm.
Alas, such an ideal setting cannot always be assumed, whence
the players must rely on themselves in order to carry out
this computation while still respecting privacy. Therefore, a
distributed protocol that protects the sensitive information
from being disclosed is in order. Herein, we describe such a
distributed protocol which is based on the sequential clustering
algorithm that we presented in Section 4. Like all previous
studies on anonymization protocols in distributed settings, we
too assume that the players are semi-honest, i.e., they respect
the protocol, but try to learn as much as they can (even by
means of forming coalitions) from their own view of the
protocol on the private information held by other players.
(See [12], [18], [30] for a discussion and justification of that
assumption.)

In this study we focus on Scenario B; Scenario A is
significantly harder and is left for future research (see more
about it in Section 7). We present here a distributed version
of the sequential clustering that uses the modified information
loss measure, I ′(C), as defined in (11). A distributed sequential
clustering which is guided by the original information loss
measure, I(C), Eq. (1), goes along the same lines. We describe
the distributed protocol in Section 5.1 and analyze it in
Sections 5.2–5.5.

5.1 Distributed sequential clustering

5.1.1 Overview

In order to implement Algorithm 1 in the distributed setting,
the players need to compute differences of the form

I ′(C)−I ′(Ĉ) = w ·(ID(C)−ID(Ĉ))+(1−w)·(I ′S(C)−I ′S(Ĉ))

7

where I ′(·) is the weighted measure of information loss, (11),
C is the current clustering, and Ĉ is a contemplated clustering.
During the main loop of the algorithm, Ĉ are clusterings
that differ from C in the location of just one node; in the
agglomerative stage that follows, the clusters of Ĉ coincide
with those of C, except for one cluster that equals the union
of two clusters in C. Such computations are needed in order
to make the right decision – what is the currently best cluster
for a given node, or which two clusters are closest and should
be unified.

In Scenario B, the descriptive information of all nodes
can be made known to all players. Hence, the difference in
the descriptive information loss, ID(·), can be computed in
an open public manner. It is the difference in the structural
information loss, I ′S(·), that must be computed in a secure
manner since it depends on the edge structure of the graph
which is split between the various players and must not
be disclosed. We proceed to describe a secure multi-party
protocol (SMP hereinafter) that performs such computations.

Throughout this section, we shall assume that the nodes in
V =

∪M
m=1 V

m = {v1, . . . , vN} are ordered so that the first
N1 nodes are those from V 1, the next N2 nodes are those
from V 2 and so forth. For each 1 ≤ m ≤ M , let Ωm = {1 +∑m−1

i=1 Ni, . . . ,
∑m

i=1 Ni} be the set of indices in {1, . . . , N}
that correspond to the nodes from V m.

Section 5.1 is organized as follows. In Sections 5.1.2 to 5.1.4
we revisit the three main stages of Algorithm 1 and explain
how they can be implemented securely in the distributed set-
ting. In Section 5.1.5 we explain how the players can securely
compute the clustered social network that corresponds to the
clustering of the nodes of the unified network that they jointly
computed. In Section 5.1.6 we comment on how the number
of SMP calls may be reduced by means of parallelization.
Then, in Section 5.1.7 we describe the SMP that our algorithm
invokes for secure computation of sums.

5.1.2 Initial partitioning (Step 1)
In Step 1 of Algorithm 1, each player generates a random and
uniform labeling of his own nodes by labels from {1, . . . , T :=
⌊N/k0⌋}. The cluster Ct, 1 ≤ t ≤ T , consists of all nodes in
V that have the label t. The allocation of nodes to clusters is
made known to all players.

5.1.3 Single node transitions (Step 2)
During the main loop in Algorithm 1 (Step 2), it is needed to
compute the difference in the structural information loss if a
given node vn would move from its current cluster Ct to any
of the other clusters, Cs, s ∈ [T] \ {t}. In view of Eq. (9),
that difference equals

δ(n : t → s) := (12)

(x(Ct \ {vn}) + x(Cs ∪ {vn}))− (x(Ct) + x(Cs)) .

We proceed to define a set of values δm(n : t → s), 1 ≤
m ≤ M , with the following properties: δm(n : t → s) can be
computed independently by the mth player; and

δ(n : t → s) =
M∑

m=1

δm(n : t → s) . (13)

Hence, each player may compute his value δm(n : t → s),
and then, using the SMP that we describe in Section 5.1.7, the
players may arrive at the sought-after change in the structural
information loss, δ(n : t → s), if vn is moved from Ct to Cs.

Let B be the N ×N adjacency matrix of the unified graph
(V,E), as defined in Section 4.1. By our assumption, player m
knows only the Nm rows (and columns) of B that correspond
to the nodes in V m, i.e., only the entries B(n, n′) where n ∈
Ωm or n′ ∈ Ωm. Hence, he may compute the N ×N matrix
Hm which is defined as follows,

Hm(n, n′) =
|{ℓ ∈ Ωm \ {n, n′} : B(n, ℓ) ̸= B(n′, ℓ)}|

N − 2
.

(14)
The distance (7) between every two nodes is then

D(n, n′) =
M∑

m=1

Hm(n, n′) . (15)

Assume that the players wish to compute the information loss
x(Ct), (10), of some cluster which typically consists of nodes
from all players. To that end, the mth player computes

xm(Ct) :=
2

N(|Ct| − 1)
·

∑
vn,vn′∈Ct

Hm(n, n′) , (16)

and then, by Eqs. (10) and (15),

x(Ct) =
M∑

m=1

xm(Ct) . (17)

Hence, we may define

δm(n : t → s) := (18)

(xm(Ct \ {vn}) + xm(Cs ∪ {vn}))− (xm(Ct) + xm(Cs)) .

Indeed, in view of Eqs. (12) and (17), such values satisfy the
sum property (13).

5.1.4 The agglomerative stage (Step 5)

The change in I ′S if clusters Ct and Cs would be unified is,
as implied by Eq. (9),

δ(t, s) := x(Ct ∪ Cs)− (x(Ct) + x(Cs)) . (19)

In order to compute it, the mth player, 1 ≤ m ≤ M , computes

δm(t, s) = xm(Ct ∪ Cs)− xm(Ct)− xm(Cs) , (20)

where xm(·) is as in Eq. (16). Eq. (17) implies that δ(t, s) =∑M
m=1 δm(t, s). Hence, it may be computed by the sum SMP.
We note that in the main loop, if we move a node from

a singleton cluster Ct to another cluster Cs, it is actually a
unification of Ct and Cs; in that case player m computes
δm(t, s), Eq. (20), rather than δm(n : t → s), Eq. (18), and
then they proceed to compute the corresponding sum.

8

5.1.5 Computing the clustered social network
After the completion of the distributed implementation of
Algorithm 1, the players have the clustering C. At this point,
they need to jointly compute the corresponding clustered social
network, SN C , see Definition 2.2. Specifically, for every
super-node they need to compute its number of intra-cluster
edges, while for every pair of super-nodes it is necessary
to compute the number of edges in the original graph that
connect nodes in those two clusters. To that end, player
m, 1 ≤ m ≤ M , computes the following counters for all
1 ≤ t ≤ s ≤ T ,

Em
t,s =

∑
{B(n, ℓ) : n ∈ Ωm, ℓ > n, and

(vn, vℓ) ∈ [Ct × Cs]
∪

[Cs × Ct]
}
, (21)

where B is the adjacency matrix of the unified graph. By
invoking the sum SMP, the players may compute the sum of
those counters,

Et,s =
M∑

m=1

Em
t,s =

∑
{B(n, ℓ) : ℓ > n, and

(vn, vℓ) ∈ [Ct × Cs]
∪

[Cs × Ct]
}
, (22)

for all 1 ≤ t ≤ s ≤ T . It is easy to see that Et,t is the number
of intra-cluster edges within Ct, while Et,s is the number of
inter-cluster edges between Ct and Cs, 1 ≤ t ̸= s ≤ T . After
the completion of those computations, the players have a k-
anonymization of the unified network.

5.1.6 Parallelizing summation computations
In each stage in Algorithm 1, there are several candidate
clustering decisions. During the main loop, if vn is a node in
cluster Ct, the players need to compute

∑M
m=1 δm(n : t → s)

for all s ∈ [T] \ {t}, in order to check all possible alternative
clusters for that node. Hence, in order to reduce the time
and message communication costs, each player computes the
vector (δm(n : t → s))s∈[T]\{t} and then the players engage in
a single SMP to securely compute the sum of those vectors.
Similarly, in the agglomerative stage, when looking for the
best cluster to unify with a given small cluster Ct; each player
computes the vector (δm(t, s))s̸=t, and then the players engage
in a single SMP to securely compute the sum of those vectors,
in order to make the optimal decision regarding which cluster
to unify with Ct.

5.1.7 A secure multiparty protocol for computing sums
Computing the sum of private integers has well known simple
SMPs (e.g. [4], [13]). Here, as mentioned above, it is necessary
to add private vectors. The components of the vectors are
rational numbers, as can be seen in Eqs. (18) and (20), together
with (14) and (16). The denominators of those numbers are
common and known to all, but their numerators depend on
private integers (those are the private integers that appear in
the numerator of Eq. (14)). Hence, that problem reduces to
computing sums of private vectors over the integers. Moreover,
it is possible to compute upfront an upper bound p on the size
of those integers and of their sum. Hence, the problem may

be further reduced to computing sums of private vectors over
Zp. Algorithm 2 (due to Benaloh [4]) does that.

Algorithm 2. Secure computation of sums
• Input: Each player m, 1 ≤ m ≤ M , has a private input

vector am ∈ Zd
p.

• Output: a =
∑M

m=1 am.
1) Player m selects M random share vectors am,ℓ ∈ Zd

p,
1 ≤ ℓ ≤ M , such that

∑M
ℓ=1 am,ℓ = am mod p.

2) Player m sends am,ℓ to the ℓth player, for all 1 ≤ ℓ ̸=
m ≤ M .

3) Player ℓ, 1 ≤ ℓ ≤ M , computes sℓ =
∑M

m=1 am,ℓ mod
p.

4) Players ℓ, 2 ≤ ℓ ≤ M , send sℓ to the player 1.
5) Player 1 computes a =

∑M
ℓ=1 sℓ mod p and broadcasts

it.

5.2 Distributed and centralized implementations of
Algorithm 1
By applying an M -distributed version of Algorithm 1 on a
social network SN and anonymity parameter k, we obtain
a sequence of clusterings σ = (C1, . . . , Cz), where C1 is the
initial random clustering and Cz is the final one. That sequence
depends on the random selections made by the players in
Steps 1 and 3. Let ΣM (SN , k) denote the set of all possible
sequences σ that may be realized during an M -distributed
implementation of Algorithm 1 on inputs SN and k. Then:

Theorem 5.1. The set ΣM (SN , k) is independent of M .

Namely, each sequence of clusterings that can be realized
during an M -distributed implementation of Algorithm 1 on
given inputs, is a possible sequence also in a centralized
implementation (M = 1), and vice-versa.

Proof: Let σ = (C1, . . . , Cz) be a sequence of clustering
in an M -distributed implementation of Algorithm 1. We prove
by induction that every prefix of length i in σ can be realized
in any other distribution setting, with any number of players.
When i = 1, any initial random clustering C1 can clearly be
realized in any setting. If Ci+1 is obtained from Ci without
randomization, then Ci+1 will follow Ci in any distribution
setting since it is implied by Algorithm 1. If Ci+1 is obtained
from Ci by randomization (namely, Ci+1 results from applying
Step 3 on Ci), then it can be obtained from Ci in any
distribution setting, since any random partition is possible
in any distributed setting. Since the termination condition is
independent of M , the sequence σ can be realized in any
distribution setting.

5.3 Privacy
A perfectly secure multiparty protocol does not reveal to any of
the participating parties more information than what is implied
by their own input and the final output. While such perfect
security may be theoretically achieved, as was shown by Yao
in [25], some relaxations are usually inevitable when looking
for practical solutions, provided that the excess information is
deemed benign (see examples of such protocols in e.g. [13],
[21], [30]). Our protocol is not perfectly secure. In Theorem

9

5.3 we bound the excess information that it may leak to
the interacting players. We then proceed to argue why such
leakage of information is benign.

Our protocol invokes the basic SMP for computing sums
of private vectors that are held by the players. That SMP is
perfectly secure, as stated in the following theorem:

Theorem 5.2. Algorithm 2 computes the required sum a =∑M
m=1 am. It offers perfect privacy with respect to semi-honest

players in the following sense: Any coalition of players cannot
learn from their view of the protocol about the input vectors of
other players more information than what is implied by their
own input vectors and the final output.

The proof of Theorem 5.2 is standard and omitted due to
page limitations.

Hence, after each invocation of the SMP, the players of any
possible coalition learn the sum of the input vectors, but they
receive no information on other input vectors beyond what is
implied by their own input vectors and the final sum. (In case
M − 1 players collude, they will be able to infer the input
vector of the last player; but that is not a limitation of the
protocol, as it is a natural consequence of the computation
even if it would be executed using a trusted third party.)

The perfect security of the sum SMP implies that whenever
it is invoked by the sequential clustering algorithm, the only
information that is disclosed to the players is the difference
I ′S(C)− I ′S(Ĉ) for each of the potential clusterings that were
contemplated at that stage. The definition of I ′S(·), Eqs. (8)–
(9), implies that the difference I ′S(C) − I ′S(Ĉ) is a linear
combination of the entries of the distance matrix D.

Prior to the execution of the protocol, each of the players
knows only the entries of D that correspond to his nodes;
the remaining nodes are unknown to him at that stage. More
generally, if some of the players collude (even M − 1 out
of the M players), they know only the entries of D that
correspond to nodes under their control, but not the entries
corresponding to nodes under the control of players outside
the coalition. As described above, during the execution of the
distributed protocol, the players learn differences of the form
I ′S(C)−I ′S(Ĉ). Let {I ′S(Ci)−I ′S(Ĉi)}

q
i=1 be all differences that

the players learnt throughout the execution of the sequential
algorithm. Then the information that is being disclosed to the
players is q linear equations in the entries D(n, n′) of the
distance matrix. Those linear equations may enable the players
to learn the value of the entries of D which were not known
to them a-priori.

If q is smaller than the number of unknowns in the matrix D,
then the given under-determined system of linear equations en-
able to confine the matrix D to some subspace of RN(N−1)/2,
whence, any entry D(n, n′) that is not determined completely
by the available equations can be of any value. However, if q
is sufficiently large so that the players, or coalition of players,
may assemble a full system of independent linear equations
in the unknown entries of D, it is possible to fully recover
D. Therefore, our protocol is not perfectly secure, as it may
leak to the interacting players excess information that is not
implied by their own input and the final output. However, the

players cannot learn more than D. Theorem 5.3 summarizes
our discussion above by bounding the worst case information
leakage:

Theorem 5.3. At the completion of the distributed sequential
clustering protocol, the excess information that the interacting
players may learn, even when there are coalitions of size M−
1, is at the worst case the distance matrix D.

Our simulations on graphs of 1000-4000 nodes, distributed
evenly among M ≤ 10 non-colluding players, showed that q
is sufficiently large for k ≤ 30, but becomes too small for
larger values of k. Namely, for small values of k the players
will be able to recover all of D, but for larger values of k they
might not assemble a sufficient number of linear equations.

Coalitions help to reduce the number of unknown entries in
D. Hence, larger coalitions would need to assemble a smaller
number of linear equations before being able to recover D.
But Theorem 5.3 applies even to coalitions of size M − 1,
in the sense that even such coalitions cannot learn anything
beyond the matrix D.

Despite the above described leakage of information, we
deem our distributed protocol safe, for two reasons which we
proceed to discuss.

The first reason is that the distance matrix (typically) does
not surrender the sensitive information which is the link
information. Assume that the first player, to whom we refer
hereinafter as Bob, wishes to learn whether vr and vs are
connected or not. (As Bob controls the first N1 nodes, we
assume that r, s > N1.) Then if Bob was able to recover
the distance matrix D, he would be able to use it in order to
derive a probability for the event that vr and vs are connected.
(Only rarely that probability would be definitive, namely zero
or one; for example, if the distance of vr to one of the nodes
which Bob controls is exactly 0 or 1.) However, a similar type
of information is leaked also by the final clustered network.
Indeed, if vr and vs belong to the same cluster Ct in the
final output, then the probability that they are connected is

2et
|Ct|·(|Ct|−1) , where et is the number of intra-cluster edges;
in case et = 0 (or et = |Ct| · (|Ct| − 1)/2), the output
reveals that vr and vs are (not) connected; similarly when
vr and vs belong to two different clusters. Moreover, as
opposed to the probabilities that may be inferred easily from
the final clustering, the computational process by which edge
probabilities may be derived from the distance matrix D is
computationally harder by far. We postpone the discussion of
that computational problem to Section 5.3.1 below.

Another reason is that even if it is possible to assemble a
full system of linear equations, the number of unknowns may
be very large; for example, even for a modest value of N =
104, the number of unknowns is in the tens of millions. Such
systems can be solved only approximately by iterative methods
(e.g., Generalized Minimal Residual or Nonlinear Conjugate
Gradient methods). The approximation errors of such methods
together with the rounding errors might be larger than 1/(N−
2), which is the resolution of the distance values in D. Larger,
and still very reasonable values of N , would lead to systems of
linear equations of dimensions that currently cannot be solved,
not even approximately.

10

5.3.1 Deriving edge probabilities from the distances
Assume that the first player, Bob, was able to recover the
matrix D. Bob’s goal is now to learn whether vr and vs (where
r, s > N1) are connected (B(r, s) = 1) or not (B(r, s) = 0).
Let us denote the n-th row in the adjacency matrix B by bn

(namely, bn is a binary vector of length N). Bob knows the
vectors bn for all 1 ≤ n ≤ N1, since those vectors describe
the adjacency relations of the nodes under his control. Bob
does not know the vectors br or bs and he wishes to learn
information about the bit br(s) = bs(r). The information that
he possesses and could be used towards that goal is as follows:

1) D(r, n) = dist(br,bn) and D(s, n) = dist(bs,bn) for
all 1 ≤ n ≤ N1.

2) The first N1 components in br and bs. (As B is sym-
metric, its first N1 rows reveal its first N1 columns.)

Let Wr (respectively, Ws) denote the set of all N -length
binary vectors that satisfy the two conditions above about
br (bs). Define Wr(0) (Wr(1)) to be the subset of vectors
in Wr in which the s-th bit is zero (one). Similarly, Ws(0)
(Ws(1)) is the subset of vectors in Ws in which the r-th bit is
zero (one). Then, since by symmetry of the adjacency matrix
br(s) = bs(r), the set of all possible values for the ordered
pair (br,bs) is

(Wr(0)×Ws(0)) ∪ (Wr(1)×Ws(1)) .

Hence, the probability of the event br(s) = bs(r) = b, where
b is either zero or one, is

pb =
|Wr(b)×Ws(b)|

|Wr(0)×Ws(0)|+ |Wr(1)×Ws(1)|
.

The number of vectors in the above sets is, in the general case,
exponential. Hence, it is practically impossible to derive the
probabilities p0 and p1 by enumerating all vectors in the sets
Wr(b) and Ws(b), b = 0, 1. It is not clear to us whether it
is possible to compute the size of the sets |Wr(b) ×Ws(b)|,
b = 0, 1, in polynomial time.

5.4 The limitations of k-anonymity
Several studies have pointed out weaknesses of the k-
anonymity model in the context of tabular data. The main
weakness of k-anonymity is that it does not guarantee suf-
ficient diversity in the private attribute in each equivalence
class of indistinguishable records. Machanavajjhala et al. [16]
proposed to make sure that the anonymized table respects
ℓ-diversity, in the sense that the private attribute in each
equivalence class will have at least ℓ “well represented” values.

Similar problems may occur also with the structural in-
formation in anonymizing social networks. For example, the
nodes in a given cluster Ct may form a clique; in such cases,
the corresponding intra-cluster count et would equal

(|Ct|
2

)
,

whence it would leak the fact that all nodes in the cluster
are connected. To avoid such cases, we define the notion of
structural ℓ-diversity.

Definition 5.4. Let SN = ⟨V,E,R⟩ be a social network and
let SN C = ⟨VC = C, EC ,R⟩ be a corresponding clustered
social network. SN C respects structural ℓ-diversity, for some

ℓ > 0, if for all clusters Ct, Cs ∈ C, it holds that IS,1(Ct) ≥ ℓ
and IS,2(Ct, Cs) ≥ ℓ.

Recall that IS,1(Ct), Eq. (4), is the probability of wrongly
identifying a pair of nodes in Ct as an edge or as a non-
connected pair. Similarly, IS,2(Ct, Cs), Eq. (5), is the prob-
ability of wrongly identifying a pair of nodes in Ct and
Cs as an edge or as a non-connected pair. Hence, if SN C
satisfies structural ℓ-diversity for some ℓ > 0, it leaves all
edge information in the original graph with uncertainty of at
least ℓ.

Algorithm 1 may be modified so that it accepts as an addi-
tional input parameter a minimal structural diversity threshold
ℓ and then it outputs k-anonymizations of the input network
that respect structural ℓ-diversity. To do that, it starts by
selecting an arbitrarily initial clustering that respects structural
ℓ-diversity and then it rules out contemplated changes in the
clustering that would result in violation of that property.

Structural ℓ-diversity may be used by the different players
in the distributed implementation of Algorithm 1 in order to
protect their private structural information from full disclosure
to other players. To that end, each player makes sure, as
described above, that the clustered social network, when
restricted to his nodes only, respects structural ℓ-diversity. By
doing so, he guarantees that even if all other players collude
against him, they will not be able to infer links between his
nodes with success probability greater than 1− ℓ.

It is possible that the network of some player cannot be
ℓ-“diversified”. For example, if all nodes under the control of
player 1 are connected to each other, that player could never
find a clustering of his own nodes that respects structural ℓ-
diversity for any ℓ > 0. In such cases, that player may choose
not to participate. Another possibility is that each player will
determine his own level of diversity, ℓm, depending on the
structure of his private network and the level of protection
that the nodes under his control demand.

5.5 Communication complexity
Let L denote the number of iterations in the sequential
algorithm. During the main loop, we need to compute for
each node the differences in the structural information loss
if that node moves to any of the other clusters. As explained
in Section 5.1, this may be done by one invocation of an
SMP to compute a sum of private vectors (Algorithm 2).
Hence, the number of SMP calls in the main loop is NL.
In the agglomerative stage that follows, there is a need in
one invocation of the SMP for each small cluster. Since Step
5 may be repeated at most N times (and typically much
less) the overall number of SMP calls in the entire protocol
is bounded by N(L + 1). Finally, as Algorithm 2 entails 3
communication rounds, the overall round complexity of the
protocol is bounded by 3N(L+ 1).

While the round complexity is independent of M (as
implied by Theorem 5.1 and the constant round complexity
of Algorithm 2), the bit complexity of the protocol depends
on M , since the bit complexity of Algorithm 2 does. In
Step 2 of Algorithm 2, each player sends a message to each
of the other M − 1 players, and then, in Step 4, M − 1

11

players send a message to player 1. That gives a total of
M(M − 1)+ (M − 1) = M2 − 1 messages of length d log2 p
each (where d is the number of candidate clustering decisions
that the players need to choose from and p is as described in
Section 5.1.7).

We have no theoretical bounds on L. However, from ex-
perimentation (Section 6), L appears to be weakly correlated
with N , and it decreases with k. (In view of the discussion in
Section 5.2, L is independent of M .)

6 EXPERIMENTAL RESULTS

6.1 Experimental setup
We tested our algorithms on three types of graphs: A random
graph generated by the Watts-Strogatz (WS) model [22]; a
random graph generated by the Barabási-Albert (BA) model
[3]; and a subset of the DBLP co-authorship graph. Table 1
describes all of the graphs that we tested — their type, number
of nodes, and number of edges.

Graph Type |V | |E|
WS1 WS 1000 20000
WS2 WS 2000 40000
WS3 WS 4000 80000
BA1 BA 1000 1954
BA2 BA 2000 3920
BA3 BA 4000 8072
DBLP1 DBLP 1000 2534
DBLP2 DBLP 2000 6110
DBLP3 DBLP 4000 12304
DBLP4 DBLP 8000 26302
DBLP5 DBLP 16000 78328

TABLE 1
Graph types and sizes

The descriptive data was extracted from the CENSUS2

dataset; that data consists of 7 attributes (age, gender,
education level, marital status, race, work
class, country).

Fig. 2. Average information losses in the WS, BA and DBLP graphs

We tested the two versions of sequential clustering; the
original version is denoted in the plots by Sq, while the
modified one (that uses I ′S instead of IS) is denoted by SqM.
We compared them against the SaNGreeA algorithm due to

2. http://www.ipums.org/

Campan and Truta [6] (denoted SNG) and the cluster-edge
algorithm of Zheleva and Getoor [29] (denoted ZhG).3 Our
code was implemented in C-sharp and ran on an Intel Quad
Core 2.8GHz machine with 2GB of RAM.

6.2 Measuring the information loss
Figure 2 displays the average information losses I(·) (Eq. (1))
that were achieved by those algorithms on the WS (upper left),
BA (upper right), and DBLP (lower left) graphs with w = 0.5
and the WS graph with w = 0 (lower right), where the average
is over the results that were obtained on the graphs with
1000, 2000, and 4000 nodes. As can be seen, both variants
of sequential clustering always achieve significantly better
results than SaNGreeA and the Zheleva-Getoor algorithm
when w = 0.5. When w = 0, the sequential clustering
algorithm still issues the best results, but the modified version
issues comparable results to SaNGreeA. (The Zheleva-Getoor
algorithm is irrelevant for the case w = 0 since it totally
ignores the structural data.)

6.3 Graph statistics
Next, we measured certain graph statistics in the original graph
and compared them to measurements of the same statistics
extracted from the anonymized graphs. The statistics that we
measured were the clustering coefficient, (i.e., the fraction
of closed triplets of nodes among all connected triplets), the
average distance among pairs of nodes, the diameter (i.e.,
the maximum distance among pairs of nodes), the effective
diameter (the 90th percentile distance, i.e., the minimal value
for which 90% of the pairwise distances in the graph are no
larger than), and the epidemic threshold (the inverse of the
largest eigenvalue of the adjacency matrix of the graph).

To extract the statistics from an anonymized clustered graph,
we first sampled from it a full graph on N nodes by randomly
selecting from it one of the possible original graphs, and then
we measured the statistics on that graph. In other words, given
an anonymized clustered graph (Definition 2.2) with clusters
C = {C1, . . . , CT }, cluster sizes |Ct|, intra-cluster edge counts
et, and inter-cluster edge counts et,s, where 1 ≤ t ̸= s ≤ T ,
we generated a graph on N =

∑T
t=1 |Ct| nodes in the fol-

lowing manner: First, we separated the N nodes into clusters
of the given sizes; then, within each cluster Ct we randomly
connected et pairs of nodes by edges; finally, between every
pair of clusters, Ct and Cs, we randomly connected et,s of
the pairs of nodes. We then measured the required statistics on
that graph. In our experiments we repeated the above process
of random sampling and statistics measuring ten times, and
we report the average value and the corresponding standard
deviation.

Figures 3, 4 and 5 include the five statistics measurements
on the WS, BA and DBLP graphs with 4000 nodes. They
show the value of each of those statistics in the original
graphs and the average value and standard deviation of the

3. We did not compare against the clustering algorithm which was outlined
in [9] since its description omitted critical ingredients such as how the
candidate neighboring clustering were selected, the cooling schedule, and the
dependence of the probability of making bad choices on the temperature.

12

Fig. 3. Statistics comparison for the WS graph

Fig. 4. Statistics comparison for the BA graph

Fig. 5. Statistics comparison for the DBLP graph

Fig. 6. Statistics comparison for the DBLP graph against perturbed graphs

measurement of the same statistics that were obtained from
anonymizations by clustering of that graph, with k = 10. We
see that the non-modified sequential clustering (Sq) almost
always gave the best results; the only exceptions are the
epidemic threshold in the BA and DBLP graphs in which the
modified sequential clustering issued the value that was closest
to the actual clustering coefficient, and the average distance
in the DBLP graph, where the SaNGreeA algorithm issued a
slightly better value. The SaNGreeA algorithm issued results
that were almost always furthest from the correct values. The
only two exceptions are the case that was mentioned above

and the clustering coefficient in the WS graph in which it
issued a better result than SqM (but still less good than that
of Sq). In addition, the SaNGreeA algorithm appears to be
more sensitive to random samplings: In most experiments, the
standard deviation in the SaNGreeA experiments was highest.

6.4 Comparison to anonymization by perturbation
Here, we compare the utility of graphs that were anonymized
by clustering to that of graphs that were anonymized by
means of random perturbations. There are two main graph
perturbation strategies: random addition and deletion of edges,

13

Fig. 7. Anonymity levels

and random switching of edges. In the first strategy one deletes
every existing edge with probability p and adds every non-
existing edge with probability q = q(p) that is chosen so that
the expected number of edges remains like in the original
graph [5], [10], [26]. In the second strategy, one selects h
quadruples of nodes {u, v, x, y} where (u, v) and (x, y) are
edges and (u, y) and (v, x) are not, and switches between
them, so that the two former edges become non-edges and
the two latter non-edges become edges [26], [27], [28]; such
techniques preserve the degree of all nodes in the graph. We
concentrate here on the first strategy. Figure 6 shows the
five statistics that were measured in the previous section in
anonymizations of the DBLP graph with 4000 nodes (DBLP3),
as achieved by the sequential clustering algorithm, and by
random perturbations with different values of p.

Such a comparison must be made between anonymizations
that provide a similar level of anonymity. Alas, it is not
straightforward to compare the anonymity levels in those
two different models of anonymization. While anonymity
by clustering, much like k-anonymity, provides a clear and
uniform notion of security (each node is indistinguishable,
in the information theoretic sense, from at least k − 1 oth-
ers), anonymity by random perturbations is more elusive and
highly non-uniform. One must assume some property that the
adversary knows about his target node and then the level of
anonymity of a given node (with respect to that property) is
defined as the inverse of the maximal probability of linking
that node to a given node in the anonymized graph [5], [10].
Figure 7 shows the anonymity levels with respect to the degree
property; for each level k ≤ 30, it shows how many nodes
in the anonymized graph failed to achieve it. As expected,
higher values of the perturbation parameter p obfuscate better
the original degrees of the nodes and hence provide higher
anonymity levels. However, there are few nodes in the graph
(usually hubs with high degree) that defy anonymity since
their degree is far off from the degrees of most other nodes,
and, consequently, they remain distinguishable even in the
perturbed graph. In particular, the perturbation method fails
to provide a minimal anonymity level of k = 10 (the value
that was used in the sequential clustering) even with the high
perturbation parameter of p = 0.3.

6.5 Runtime
Here we report runtime-related results. Figure 8 shows the
runtimes of the SNG, Sq and SqM algorithms on the DBLP
graph with N = 4000 nodes (DBLP3), as a function of

k. Figure 9 shows the runtimes of the SNG, Sq and SqM
algorithms on the DBLP graphs, for k = 25, as a function of
N , ranging from N = 1000 to N = 16000.

Figure 10 shows the average values of L (the number of
iterations in the main loop of the sequential clustering) on the
three graphs BA, WS and DBLP, as a function of k and N .
Figure 11 shows the corresponding average numbers of SMP
calls in a distributed implementation of that algorithm. (Recall
that the number of SMP calls is independent of the number
of interacting players.)

As expected, Sq has the largest runtime, and SqM offers a
significant improvement. As anonymization is applied on data
repositories that were collected during a long span of time,
runtime is a secondary consideration. Hence, an anonymiza-
tion algorithm that runs several hours is preferable over an
algorithm that runs several minutes but issues anonymized
views with less utility. Therefore, the non-modified sequential
clustering algorithm (Sq) appears to be the algorithm of choice
when the network size allows reasonable runtimes. In larger
networks, the modified sequential clustering algorithm (SqM)
could be used instead, as it still offers a great advantage in
terms of utility when compared to SaNGreeA.

Fig. 8. Runtime vs. k on the DBLP graph (N = 4000)

Fig. 9. Runtime vs. N on the DBLP graph (k = 25)

Fig. 10. Number of iterations (L)

14

Fig. 11. Number of SMP calls

7 CONCLUSIONS

We presented sequential clustering algorithms for anonymizing
social networks. Those algorithms produce anonymizations by
means of clustering with better utility than those achieved by
existing algorithms. We devised a secure distributed version
of our algorithms for the case in which the network data is
split between several players. We focused on the scenario in
which the interacting players know the identity of all nodes
in the network, but need to protect the structural information
(edges) of the network (Scenario B, as defined in Section 5).

One research direction that this study suggests is to devise
distributed algorithms also to Scenario A. In that scenario,
each of the players needs to protect the identity of the nodes
under his control from the other players. Hence, it is more
difficult than Scenario B in two manners: It requires a secure
computation of the descriptive information loss (while in
Scenario B such a computation can be made in a public
manner); and the players must hide from other players the
allocation of their nodes to clusters.

Another research direction that this study suggests is to
devise distributed versions of the k-anonymity algorithms
in [15], [23], [31]; those algorithms might require different
techniques than those used here.

REFERENCES
[1] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy,

D. Thomas, and A. Zhu. Anonymizing tables. In ICDT, volume 3363
of LNCS, pages 246–258, 2005.

[2] L. Backstrom, C. Dwork, and J. M. Kleinberg. Wherefore art thou
r3579x?: anonymized social networks, hidden patterns, and structural
steganography. In WWW, pages 181–190, 2007.

[3] A. Barabási and R. Albert. Emergence of scaling in random networks.
Science, 286:509–512, 1999.

[4] J. Benaloh. Secret sharing homomorphisms: Keeping shares of a secret
secret. In Crypto, pages 251–260, 1986.

[5] F. Bonchi, A. Gionis, and T. Tassa. Identity obfuscation in graphs
through the information theoretic lens. In ICDE, pages 924–935, 2011.

[6] A. Campan and T. M. Truta. Data and structural k-anonymity in social
networks. In PinKDD, pages 33–54, 2008.

[7] J. Goldberger and T. Tassa. Efficient anonymizations with enhanced
utility. TDP, 3:149–175, 2010.

[8] S. Hanhijärvi, G. Garriga, and K. Puolamaki. Randomization techniques
for graphs. In SDM, pages 780–791, 2009.

[9] M. Hay, G. Miklau, D. Jensen, D. F. Towsley, and P. Weis. Resisting
structural re-identification in anonymized social networks. In PVLDB,
pages 102–114, 2008.

[10] M. Hay, G. Miklau, D. Jensen, P. Weis, and S. Srivastava. Anonymizing
social networks. Uni. of Massachusetts Technical Report, 07(19), 2007.

[11] V. Iyengar. Transforming data to satisfy privacy constraints. In ACM-
SIGKDD, pages 279–288, 2002.

[12] W. Jiang and C. Clifton. A secure distributed framework for achieving
k-anonymity. The VLDB Journal, 15:316–333, 2006.

[13] M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining
of association rules on horizontally partitioned data. IEEE Trans. Knowl.
Data Eng., 16:1026–1037, 2004.

[14] S. Kirkpatrick, D. G. Jr., and M. P. Vecchi. Optimization by simmulated
annealing. Science, 220(4598):671–680, 1983.

[15] K. Liu and E. Terzi. Towards identity anonymization on graphs. In
SIGMOD Conference, pages 93–106, 2008.

[16] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam.
ℓ-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov.
Data, 1(1):3, 2007.

[17] M. E. Nergiz and C. Clifton. Thoughts on k-anonymization. In ICDE
Workshops, page 96, 2006.

[18] A. Schuster, R. Wolff, and B. Gilburd. Privacy-preserving association
rule mining in large-scale distributed systems. In CCGRID, pages 411–
418, 2004.

[19] N. Slonim, N. Friedman, and N. Tishby. Unsupervised document
classification using sequential information maximization. In SIGIR,
pages 129–136, 2002.

[20] L. Sweeney. Uniqueness of simple demographics in the U.S. population.
In Laboratory for International Data Privacy (LIDAP-WP4), 2000.

[21] J. Vaidya and C. Clifton. Privacy preserving association rule mining in
vertically partitioned data. In KDD, pages 639–644, 2002.

[22] D. Watts and S. Strogatz. Collective dynamics of ’small-world’ net-
works. Nature, 393:409–410, 1998.

[23] W. Wu, Y. Xiao, W. Wang, Z. He, and Z. Wang. k-Symmetry model for
identity anonymization in social networks. In EDBT, pages 111–122,
2010.

[24] X. Wu, X. Ying, K. Liu, and L. Chen. A survey of privacy-preservation
of graphs and social networks. In C. Aggarwal and H. Wang, editors,
Managing and mining graph data, chapter 14. Springer-Verlag, first
edition, 2010.

[25] A. Yao. Protocols for secure computation. In Symposium on Foundations
of Computer Science (FOCS), pages 160–164, 1982.

[26] X. Ying and X. Wu. Randomizing social networks: A spectrum
preserving approach. In SDM, pages 739–750, 2008.

[27] X. Ying and X. Wu. Graph generation with prescribed feature con-
straints. In SDM, pages 966–977, 2009.

[28] X. Ying and X. Wu. On link privacy in randomizing social networks.
In PAKDD, pages 28–39, 2009.

[29] E. Zheleva and L. Getoor. Preserving the privacy of sensitive relationship
in graph data. In PinKDD, pages 153–171, 2007.

[30] S. Zhong, Z. Yang, and R. Wright. Privacy-enhancing k-anonymization
of customer data. In PODS, pages 139–147, 2005.

[31] B. Zhou and J. Pei. Preserving privacy in social networks against
neighborhood attacks. In ICDE, pages 506–515, 2008.

Tamir Tassa is with the Department of Com-
puter Science at The Open University of Is-
rael. Previously, he served as a lecturer and
researcher in the School of Mathematical Sci-
ences at Tel Aviv University, and in the Depart-
ment of Computer Science at Ben Gurion Uni-
versity. During the years 1993-1996 he served
as an assistant professor of Computational and
Applied Mathematics at UCLA. He earned his
Ph.D. in applied mathematics from the Tel Aviv
University in 1993. His research interests include

cryptography, privacy preserving data publishing and data mining.

Dror J. Cohen is a senior developer in Microsoft
Research and Development, Israel. He earned
his B.Sc. in computer science in 2005 and his
M.Sc. in computer science in 2011, both from
the Open University of Israel. He is currently
completing his studies towards a bachelor de-
gree in philosophy.

