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ABSTRACT
We suggest a generic data reduction technique with provable
guarantees for computing the low rank approximation of a
matrix under some `z error, and constrained factorizations,
such as the Non-negative Matrix Factorization (NMF). Our
main algorithm reduces a given n × d matrix into a small,
ε-dependent, weighted subset C of its rows (known as a
coreset), whose size is independent of both n and d. We
then prove that applying existing algorithms on the result-
ing coreset can be turned into (1 + ε)-approximations for
the original (large) input matrix. In particular, we provide
the first linear time approximation scheme (LTAS) for the
rank-one NMF.

The coreset C can be computed in parallel and using only
one pass over a possibly unbounded stream of row vectors.
In this sense we improve the result in [4] (Best paper of
STOC 2013). Moreover, since C is a subset of these rows,
its construction time, as well as its sparsity (number of non-
zeroes entries) and the sparsity of the resulting low rank
approximation depend on the maximum sparsity of an input
row, and not on the actual dimension d. In this sense, we
improve the result of Libery [21] (Best paper of KDD 2013)
and answer affirmably, and in a more general setting, his
open question of computing such a coreset.

We implemented our coreset and demonstrate it by turn-
ing Matlab’s NMF off-line function that gets a matrix in the
memory of a single machine, into a streaming algorithm that
runs in parallel on 64 machines on Amazon’s cloud and re-
turns sparse NMF factorization. Source code is provided for
reproducing the experiments and integration with existing
and future algorithms.

1. INTRODUCTION
Matrix Factorization is a fundamental problem that was

independently introduced in different contexts and applica-
tions. In Latent Semantic Analysis (LSA) or Probabilistic
LSA (PLSA), the rows of an input matrix A correspond
to documents in a large corpus of data, its columns corre-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
c© 2015 ACM. ISBN 978-1-4503-3664-2/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2783258.2783312.

spond to terms that may appear in those documents, and
the (i, j)th entry in A denotes the frequency of the jth term
in the ith document (or other nonnegative statistics like tf-

idf). Similarly, in computer vision applications the (i, j)th
entry in A may represent the frequency of the ith feature in
the jth image, and in social networks A may be the adja-
cency matrix of the graph.

An approximate k-ranked factorization such as the thin
Singular Value Decomposition (SVD) of A enables to extract
the k most important topics that are represented in that
data and, by thus, obtain a concise representation of the
data. In nonnegative matrix approximation, each topic is a
linear combination of terms (columns of A), with only non-
negative coefficients. Such techniques have been applied, for
example, to image segmentation [20], information retrieval
[15] and document clustering [26].

In this paper we deal with matrix factorization problems
and their constrained variants. These problems can be de-
scribed geometrically as computing a low-dimensional sub-
space S that minimizes the sum of distances in some power
z ≥ 1 to a given set P of n points in a d-dimensional
Euclidean space,

∑
p∈P dist(p, S)z, where dist(p, S) :=

minx∈S ‖p− x‖2. The input points are the rows of an n× d
matrix A, and their projections on the subspace are the low
rank approximation.

1.1 Problem Statement
Optimal (k, z)-subspace. For a given matrix A ∈ Rn×d

and a pair of integers k, z ≥ 1, the optimal (k, z)-subspace
of A is the k-dimensional subspace S∗ of Rd that minimizes
the sum of distances to the power of z from the set of rows
P = {p1, · · · , pn} of A, i.e., S∗ minimizes costz(P, S) :=∑
p∈P (dist(p, S))z . A (1+ε)-approximation to this optimal

(k, z)-subspace is a k-subspace S that minimizes costz(P, S),
up to a multiplicative factor of 1 + ε,

costz(P, S) ≤ (1 + ε)costz(P, S
∗).

Coreset. For a given ε > 0, a (k, z, ε)-coreset C for the
matrix A is a subset of scaled rows from A such that using
only C (without A) we can compute a (1+ε)-approximation
the optimal (k, z)-subspace of A. In particular, if C is small,
we can apply a (possibly inefficient) algorithm on C to get a
(1 + ε)-approximation for the optimal (k, z)-subspace of A.

Our main motivation is to compute such small coresets
for obtaining the optimal subspace of A also under some
additional constraints, as in the NMF problem.

Non-Negative Matrix Factorization (NMF). In one
of the variants of the Non-Negative Matrix Factorization



problem we wish to project the rows of A on a line `∗ that
minimizes their sum of distances to this line, with the ad-
ditional constraint that `∗ is spanned by a vector u whose
entries are non-negative, i.e, `∗ = Sp(u) and u ∈ L≥0 where

L≥0 =
{

(x1, · · · , xd) ∈ Rd : x1, · · · , xd ≥ 0
}

is the non-negative orthant of Rd. If the rows of A have only
non-negative entries (as is common in many applications),
then their projections on `∗ will also be non-negative. This
results in a factorization auT ∈ Rn×d that approximates A
where a and u are non-negative column vectors.

(L, k, z)-Subspace optimization. A natural generaliza-
tion of NMF is the (L, k, z)-subspace optimization problem:
given a convex cone L in Rd, one looks for a k-dimensional
subspace S∗L(P ) that minimizes costz(P, S) over every k-
dimensional subspace S that is spanned by k vectors in L.
In the special case k = 1 we denote S∗L(P ) by `∗L(P ). A
(1 + ε)-approximation S to the optimal (L, k, z)-subspace is
a subspace S that is spanned by k vectors in L such that
costz(P, S) ≤ (1 + ε)costz(P, S

∗).

1.2 Related Work
Coresets. Following a decade of research, coresets (i.e.,

subsets of rows from the input matrix) that approximate
any subspace in Rd were suggested in [6, 24] for sums of
distances to the power of z ≥ 1. However, their size is
|C| = O(dkO(z)/ε2), i.e, polynomial in d, which makes them
less suitable for common large matrices (documents-terms,
images-features, and adjacency matrices of graphs) where
d ∼ n. The dependency on d is due to the complexity,
known as pseudo-dimension, of this family of subspaces.

Our work here is based on these results, but we show how
to remove the d factor by reducing the family of subspaces
and using a post-processing algorithm for extracting the de-
sired subspace from the coreset. For the case z = 2, a de-
terministic coreset construction of size independent of d was
very recently suggested in [11]. However, the construction is
heavily tailored for this case of squared distances and SVD,
unlike the above constructions and the construction in our
paper.

To our knowledge, the only coreset for constrained factor-
ization was given in [3] by Boutsidis and Drineas. They con-
centrated on the regression problem of minimizing ‖Ax− b‖
over positive x ∈ Rd. They used a coreset of size roughly
d log(n)/ε2 to approximate this problem, and thus it is use-
ful only if d � n. In addition, the coreset is proved to
approximate only the optimal solution, and it is not clear
how to apply it for the parallel or streaming setting without
the required guarantee for merging a pair of coresets.

It was proved in [23] that for L = Rd and every z ≥
1, the optimal (L, k, z)-subspace is spanned by poly(k, 1/ε)
input rows, using a non-constructive proof of existence. Our
work generalizes this result to the constrained subspace case,
and implies efficient constructions of these “spanning” sets.
Other weaker versions of coresets appear in [7] in the context
of k-means clustering.

Sketches. A sketch in our context is a set of vectors in Rd
that can be used to compute a (1 + ε)-approximation to the
optimal subspace of a given matrix. Unlike coresets, if the
input matrix is sparse, the sketch is in general not sparse.

A sketch of cardinality d that approximates the sum of
squared distances (z = 2) for any subspace in Rd can be

constructed with no approximation error (ε = 0) using the d
rows of the matrix DV T where UDV T = A is the thin SVD
of A. It was proved in [10] that taking the first O(k/ε) rows
of DV T yields such a sketch. This sketch can be constructed
in both the streaming and parallel models by replacing ε
with 1/ logn in the time and memory requirements.

In [21] (Best paper of KDD 2013) the above logn factor
was removed from the streaming setting, as shown by the
analysis of [13]. In [21, 13] the open question of whether we
can construct such coresets (i.e., subsets of the input rows)
of size independent of d was left. In this paper we answer
this question affirmably, also for z ≥ 1 and constrained op-
timization.

Sketches for z 6= 2 of size polynomial in d were suggested
in [9, 5]. First sketch that can be constructed in input spar-
sity time was suggested in [4] (Best paper of STOC 2013).
However, the sketch is dense and thus not applicable for
merge-reduce techniques, and can not be computed in par-
allel or for streaming big data.

Non-negative Matrix Factorization (NMF). Unlike
the optimal (unconstrained) subspace problem, Vavasis [25]
has shown that for general values of k, NMF is NP-hard,
even for z = 2 and L = L≥0. In fact, there are almost
no provable results in the study of the NMF problem. A
notable exception is the paper by Arora et al. [1] which
describes a solution under assumptions that may be hard

to verify in practice and runs in time 2(log( 1
ε
)O(1))poly(n, d)

where poly(n, d) is some implicit polynomial in n and d for
k = 1.

We suggest a PTAS that takes time O(nd2)+O(d·21/εO(1)

)
for this case and makes no assumptions on the input. For the
case k > 1 running the algorithm in [1] on our correspond-
ing coreset would improve their running time to O(nd2) for
constants k and ε.

To our knowledge, all other papers that studied the NMF
problem proposed heuristics for solving it based on greedy
and rank-one downdating e.g. [2, 15, 16, 17, 18, 19, 20].
In the downdating approach, similarly to the SVD recur-
sive algorithm for computing the (unconstrained) k-rank ap-
proximation, existing heuristics solve the (L, k, z)-subspace
optimization problem by applying a solution to the optimal
(L, 1, z)-subspace (line) in k iterations: one starts by solving
the problem for k = 1, and using the obtained solution, the
algorithm then proceeds to “update” the input matrix and
then solve another 1-dimensional problem on the updated
matrix.

All these off-line algorithms can now be applied on our
small coresets to boost both their running time and perfor-
mance. For example, these heuristics usually run a lot of
iterations from an initial guess (seed) until they converge
to a local minimum, and then repeat on other seeds for ob-
taining possibly better local minima. Running them on the
coresets will allow using more iterations and seeds in less
time, which in turn might improve the quality of the result.
We can also run such off-line algorithms on streaming data
and in parallel, by applying them on the coresets for the
data seen so far as explained in [10].

1.3 Our results
Coresets for low-rank approximation. We prove that

for every given matrix A ∈ Rn×d, an error parameter ε > 0,
and an integer z ≥ 1, there is a (k, z, ε)-coreset C of size



kO(z)

ε
log( 1

ε
). In particular, unlike previous results, the size

of the coreset C is independent of the input matrix size,
d and n, and thus its sparsity depends on the maximum
sparsity of each row and not on the size of A. Such a result is
currently known only for the special case z = 2 [11]. In order
to extract the approximated optimal subspace of A from the
coreset C, one needs to compute the optimal subspace S∗ of
C. This subspace is not necessarily a good approximation
to the optimal subspace of A. However, by applying our
post-processing with C, S∗ and L = Rd as its input yields
the desired approximation (see Algorithm 1).

Coresets for constrained optimization. As in most
of the existing algorithms for NMF (see related work), we
use an algorithm for solving the case k = 1 in order to
solve the more general (L, k, z)-subspace optimization for
any k > 1. We prove that any such algorithm that computes
a (1 + ε)-approximation for the (L, 1, z)-subspace of a given
matrix A, can be applied on our coreset C to obtain a (1 +
ε)-approximation ` to the optimal (L, 1, z)-subspace of A.
This property of the coreset holds simultaneously for every
cone L of Rd. The (L, 1, z)-subspace (line) ` is computed
by (i) applying the given approximation algorithm on the
coreset C to get an output line `∗, and then (ii) rotate `∗ for
the given tuple (C,L, ε, `∗) using our post-processing that
returns the final approximated line `; see Algorithm 1.

LTAS for constrained factorization. Unfortunately,
although C is small, we could not find any polynomial time
algorithm in the input that can provably compute the opti-
mal subspace of C or its approximation, even for the case
of Non-Negative Matrix Factorization where k = 1 and
L = L≥0 . We thus design the first linear time approx-
imation algorithm (LTAS) for computing such a (1 + ε)-

approximation ˜̀ to the optimal (L, 1, z)-subspace, for any
given cone L and z ≥ 1. For the case z = 2 its running time

is O(nd2) +O(d · 21/εO(1)

) when applied on our coreset.
Unlike previous results that apply only for the Frobenius

norm (z = 2), and non-negativity constraints, our coreset
and LTAS can be computed for a more general family of
constraints and any z ≥ 1 to obtain a sparse approximation.

Streaming and parallel coreset construction. Via
traditional map-reduce or merge-and-reduce techniques, our
coresets can be computed using one pass over a possibly un-
bounded stream of rows, and in parallel over M machines
(e.g. GPU, network, smartphones or a cloud). The size of
the coreset and the required memory, as well as the update
time per point is similar to the off-line case, where ε is re-
placed by ε/ logn and n is the number of rows seen so far;
see [14, 10] for details. Using M machines in parallel, the
running time is reduced by a factor of M .

Experimental results. We implement both our coreset
construction algorithm and the post-processing algorithm
using Matlab. We then demonstrate how to boost this na-
tive off-line solver for NMF by applying it on our coreset and
then using the post-processing algorithm on the resulting
subspace to obtain an approximated solution for the original
data. Note that we boost Matlab’s solver only for demon-
stration: our coreset and post-processing algorithm can be
applied on any existing or future heuristic that aims to com-
pute approximation for a constrained factorization such as
the NMF. Only the call to the Malab function should be
replaced in our test code.

Although Matlab’s NMF solver does not support parallel
or streaming computation, by combining it with our coreset

and the merge-and-reduce technique, we were able to com-
pute the NMF of few datasets on 64 machines on Amazon
cloud. On small datasets we obtained even better approx-
imation compared to its result on the original (complete)
data. While this phenomenon can not happen for running
optimal (exact) solution, it usually occurs in the context of
coresets.

Open source code. An open source code can be found
in [12] for reproducing the experiments and applying the
coreset for boosting existing and future algorithms.

1.4 Overview and organization
In Section 2 we provide the necessary background on core-

sets and give a birdseye view of our approach. In Section 3
we prove our main technical result: for the optimal con-
strained line ((L, 1, z)-subspace) that is spanned by L, there
is always an approximated line that is spanned by few vec-
tors in the union of L and the input points. In Section 4
we show the coreset construction which is similar to previ-
ous constructions except for the fact that its size is smaller
and independent of d, and it approximates the constrained
optimal subspace and not every subspace. Using exhaustive
search to compute the optimal solution from the coreset we
then obtain the first LTAS for the NMF problem. In Sec-
tion 5 we demonstrate the efficiency of our algorithm and
evaluate the quality of the results that it issues by replacing
the LTAS by existing NMF heuristic. We conclude in Sec-
tion 6. Due to space limitations, the proofs of most of the
claims are omitted; they will be provided in the full version
of this paper.

2. CORESETS

2.1 A General Framework for Coresets
In this section we summarize our main technical result

and the new approach for computing coresets for constrained
optimization problems. It is based on the general framework
for coreset constructions from [6]. That framework assumes
that we have a set P of n items that is called the input
set, a (usually infinite) set Q which is called the family of
queries, and a function dist that assigns every pair p ∈ P
and q ∈ Q a non-negative real number. For example, in the
optimal (1, 1)-subspace problem, P is a set of n points in Rd
(the rows of an n × d matrix), Q is the set of lines in Rd,
and dist(p, `) is the distance from p ∈ P to the line ` ∈ Q.
Given an error parameter ε ∈ (0, 1), the main algorithm of
that framework outputs a pair (S,w), called an ε-coreset,
which consists of a subset S ⊆ P and a weight function
w : S → [0,∞) over the points in S such that the following
holds. For every query q ∈ Q, the sum of distances from P
to q is approximated by the sum of weighted distances from
C to q, up to 1± ε factor, i.e.,

(1− ε)
∑
p∈P

dist(p, q) ≤
∑
p∈S

w(p)dist(p, q)

≤(1 + ε)
∑
p∈P

dist(p, q).

It is proved in [6] that such a coreset (S,w) can be con-
structed by taking a non-uniform sample from P , where each
sample s ∈ S is chosen to be p ∈ P with probability that is
proportional to its sensitivity (sometimes called importance



or leverage score)

σ(p) := max
q∈Q

dist(p, q)∑
p′∈P dist(p′, q)

.

Intuitively, if there is a query q ∈ Q where the distance from
p to q dominates the sum of distances, then it is more im-
portant to select p to the coreset. Of course, the sensitivity
of a point is at most 1, but we hope that not all points are
important. The assigned weight for a sampled point s = p is
inversely proportional to σ(p). It is then proved that given
a probability of failure δ ∈ (0, 1), this sampling procedure
yields an ε-coreset (S,w) with probability at least 1 − δ,
where the size of S is |S| = O(Σ2/ε2)(v + log(1/δ)). Here,
Σ :=

∑
p∈P σ(p) is called the total sensitivity and v is called

the pseudo-dimension of the pair (P,Q) which represents
the complexity of this pair in a VC dimension-type sense
that is defined formally in [6]. Usually, (but not always) v
is the number of parameters needed to define a query. For
example, the family of lines in Rd has pseudo-dimension d;
indeed, every such line can be defined by O(d) parameters
that represents its O(d) degrees of freedom (direction and
translation from the origin).

2.2 Weak Coresets
To obtain a coreset for the optimal (k, z)-subspace prob-

lem, we let P be the input set of n points in Rd, Q be
the set (family) of k-subspaces in Rd, and distz(p,X) =
minx∈X ‖p − x‖z, where p ∈ P and X ∈ Q. It was proved
in [24] that the total sensitivity for this setting is indepen-
dent of both n and d (see proof of Theorem 4.1 for details),
but its pseudo-dimension is O(d). Note that in order to com-
pute an approximation to the optimal (k, z)-subspace for
P using the coreset, we only need that the optimal (k, z)-
subspace for the coreset will be a good approximation to
the optimal (k, z)-subspace for P . In this sense, the require-
ment made in [24] that an ε-coreset must approximate all
subspaces in Q is too strong.

In order to reduce the pseudo-dimension, a generalized
version of a pseudo-dimension was suggested in [6]. It was
used there to construct what is sometimes called a weak
coreset [7, 8]. The resulting coreset C is weak in the sense
that instead of approximating every query it approximates
only a subset of queries Q(C) ⊆ Q that depends on the
output coreset C. The generalized pseudo-dimension is then
defined in [6] for such a function Q that assigns a subset
Q(S) ⊆ Q for every subset S ⊆ P .

2.3 Novel approach: more constraints,
smaller coresets

Variants of weak coresets for subspace approximation were
used in [8, 6]. However, the size of the coreset in [8] was ex-
ponential in k, and, furthermore, the original input set P
was needed to extract the approximate subspace from the
coreset. In [6] the coreset was based on recursively pro-
jecting the points on their (k′, z)-optimal subspace, for all
1 ≤ k′ ≤ k, and thus the output was a sketch (and not a
subset of P ). In addition, those weak coresets can not be
used to approximate the constrained optimal subspace, be-
cause such an approximation may not be spanned by few
input points.

To this end, we prove that a (1 + ε)-approximation to
the constrained (L, 1, z)-subspace is spanned by a small set
which is not a subset of the input, but still depends on only

O(2O(z)/ε) input points and their projections on the cone
L that represents the constraints. This implies a general-
ized pseudo-dimension of size independent of d for the con-
strained (L, k, z)-subspace problem. Based on the previous
subsection and the bound on the total sensitivity from [24, 6]
we thus obtain a coreset construction C of size independent
of d.

While the construction is very similar to this in [24, 6]
(for “strong” coresets), we can not simply apply an existing
approximation algorithm on C, since the optimal (L, k, z)-
subspace S∗ for C is not necessarily a good approximation
to the optimal (L, k, z)-subspace for P . This is because S∗

may not be spanned by few points, i.e., S∗ 6∈ Q(C). Instead,

we need to rotate S∗ to obtain another subspace S̃ that is (i)
a member in the set Q(C) of queries that are approximated
well in P , and (ii) approximates the optimal (k, z)-subspace
S∗ of C.

Indeed, our proof that there is a (1 + ε)-approximation
to the constrained (L, k, z)-subspace is constructive. It gets
as input an optimal subspace S∗ that was computed for the
small coreset C, and carefully and iteratively rotates it in
order to obtain a subspace S̃ that satisfies properties (i) and
(ii) above.

The subspace S∗ can be computed using exhaustive search
on C, which yields the first PTAS for the rank-1 NMF prob-
lem; See Theorem 4.2. Alternatively, we can apply existing
heuristics to compute a k-subspace S that hopefully approx-
imates the (L, k, z)-subspace S∗, and then apply our post-
processing rotation; see Theorem 4.3.

For simplicity, in the next sections we focus on coresets
for the case z = 2. The generalizations for z 6= 2 can be
obtained by using the results from [24] that bound the total
sensitivity for these cases. The generalization of our post-
processing algorithm for z 6= 2 is also straightforward using
the generalization of the triangle inequality to the weak tri-
angle inequality (or Hölder inequality) as explained in the
appendix of [23].

3. CONSTRAINED OPTIMIZATION
The constraints on the approximating subspaces have a

geometric representation: the approximating subspace must
have a basis of vectors that belong to some convex cone L
in Rd. A convex cone is a collection of half-lines in Rd that
start at the origin, which forms a convex subset of Rd; e.g.,
L≥0 is a convex cone, and the corresponding constrained
problem is NMF. See an illustration of a cone in Figure 1.

Let L be a convex cone, P be a set of points in Rd, `∗ =
`∗L(P ) be the solution to the (L, 1, 2)-subspace optimization
problem, and ε > 0. In this section we construct a PTAS
for finding a line ` that approximates `∗ in the sense that

cost(P, `) ≤ (1 + ε)cost(P, `∗) , (1)

where hereinafter cost := costz for z = 2 (namely,
cost(P, `) =

∑
p∈P (dist(p, `))2).

First (Section 3.3) we show that any arbitrary line `∗ (not
necessarily `∗ = `∗L(P )) has a line ` that approximates it
in the sense of inequality (1) and is spanned by a sparse
subset of P ; the construction of that sparse subset and of
` uses `∗ as an input. We then use this result in order to
approximate the optimal line `∗ = `∗L(P ) even though it is
not known upfront (Section 3.4).



We begin with some preliminary discussions in Sections
3.1–3.2. In what follows when we speak of lines in Rd we
refer only to subspaces, namely lines that pass through the
origin o of Rd.

3.1 Projection of lines
An important notion in our analysis is that of a projection

of a line onto a convex cone.

Definition 3.1 (L-projection). For any two lines in
Rd, `1 and `2, if α is the angle between them, β(`1, `2) :=
sinα. The function η(·) is called an L-projection if it gets

a line ` and returns a line η(`) ∈ L, such that β(η(`), ˆ̀) ≤
β(`, ˆ̀) for all ˆ̀∈ L.

See in Figure 1 an example of a line `, its projection η(`)
on the depicted cone, and the angle between η(`) and `, the
sinus of which is denoted by β(η(`), `).

Lemma 3.2. Let L be a convex cone. Let η(·) be a func-
tion that gets a line ` in Rd and returns a line `′ = η(`) ∈ L
that minimizes β(`′, `) in L, where ties are broken arbitrar-
ily. Then η is an L-projection.

Figure 1: A cone and a projection of a line on the
cone (Definition 3.1).

Lemma 3.2 can be used to compute an L-projection η for
a given convex cone L. In what follows, we assume that η(`)
is computable in time O(d) for any ` in Rd.

3.2 Centroid sets
The following definitions play a central role in our analysis

that follows.

Definition 3.3. Let ` and `′ be lines in Rd and let 0 <
ε ≤ 1. Denote by α and π − α the two angels between `
and `′. Let Fα(`, `′, ε) (resp. Fπ−α(`, `′, ε)) denote the set of
d1/εe+1 lines in Rd that includes ` and `′ and partitions the
angle α (resp. π−α) to d1/εe equal parts. Then G(`, `′, ε) :=
Fα(`, `′, ε) ∪ Fπ−α(`, `′, ε).

An illustration of the fan of lines G(`, `′, ε) is given in
Figure 2.

Definition 3.4 (Centroid Set). Let Q =
(q1, · · · , qm) be a sequence of m points from Rd \ {o},

Figure 2: An illustration of the fan of lines defined
in Definition 3.3.

L be a convex cone, η be an L-projection, and ε > 0. Set
G1 = {Sp(q1)} and then, for every 1 ≤ i ≤ m − 1
define Gi+1 =

⋃
`i∈Gi

G(η(`i), Sp(qi+1), ε). Then

Γ(Q, η, ε) :=
⋃
`∈Gm

η(`) is called a centroid set.

Lemma 3.5. The size of the set Γ(Q, η, ε) is O( 1
εm−1 ),

and the time to compute it is O( d
εm−1 ).

3.3 Approximating an arbitrary line `∗

Let P be a finite set of n points in Rd \{o}, L be a convex
cone and η be an L-projection. Assume further that `∗ is
any line in L and that 0 < ε < 1/2. Algorithm RotateLine
accepts inputs of the form (P,L, ε, `∗) and outputs a line `
which approximates `∗ in the sense of inequality (1). The
line ` belongs to L and it is contained in a centroid set (Def-
inition 3.4) that could be described using a small (sparse)
subset of points from P , where the size of that subset does
not depend on n nor on d (Theorem 3.7).

Algorithm 1 RotateLine(P,L, ε, `∗)

Input: A set P = {p1, · · · , pn} in Rd; a convex cone L,
ε ∈ (0, 1

2
), and a line `∗ ∈ L.

Output: A line ` ∈ L that approximates `∗ in the sense of
inequality (1), where ` ∈ Γ(Q, η, ε2/216) for some sequence
Q of points from P .

1: Set q1 to be a point q ∈ P that minimizes β(Sp(q), `∗).
2: Set `1 := Sp(q1).
3: Return Improve(P,L, ε, `∗, `1)

Algorithm 2 Improve(P,L, ε, `∗, `i)

1: Set ` := η(`i).
2: if cost(P, `) ≤ (1 + ε) · cost(P, `∗) then
3: Return `.
4: end if
5: Compute a point qi+1 ∈ P such that dist(qi+1, `) > (1 +

ε
3
) · dist(qi+1, `

∗).

6: Compute a line `i+1 ∈ G(`,Sp(qi+1), ε
2

216
) such that

β(`i+1, `
∗) ≤ (1− ε

12
)β(`, `∗).

7: Return Improve(P,L, ε, `∗, `i+1).

Algorithm RotateLine calls the recursive sub-algorithm
Improve. The computations in Steps 5 and 6 of Algo-



rithm Improve are well defined. Indeed, if we reach Step 5,
then cost(P, `) > (1 + ε) · cost(P, `∗). Therefore, there ex-
ists at least one point qi+1 ∈ P for which dist(qi+1, `)

2 >
(1 + ε)(dist(qi+1, `

∗))2. Hence, dist(qi+1, `) > (1 +

ε)1/2dist(qi+1, `
∗) > (1 + ε

3
)dist(qi+1, `

∗), where the latter

inequality follows from our assumption that ε < 1
2
. As for

Step 6, a line `i+1 as sought there is guaranteed to exist in
view of the next lemma.

Lemma 3.6. Let `′, `∗ be two lines in Rd. Let 0 < ε ≤ 1
and q ∈ Rd be such that

dist(q, `′) > (1 + ε) · dist(q, `∗). (2)

Then there exists a line ` ∈ G(`′, Sp(q), ε2/24) such that
β(`, `∗) ≤ (1− ε/4) · β(`′, `∗).

Theorem 3.7. Assume that Algorithm RotateLine is
applied on the input (P,L, ε, `∗). Then:

(i) The algorithm stops after at most

m(ε) =

 log 3
ε

log
(

1
1− ε

12

)
+ 1 = O

(
1

ε
log

(
1

ε

))
(3)

recursive calls, and outputs a line ` ∈ L.

(ii) The overall runtime of the algorithm is O(
nd log 1

ε
ε

) +

O( d
ε3

log 1
ε
).

(iii) cost(P, `) ≤ (1 + ε) · cost(P, `∗).

(iv) There exists a sequence Q of at most m = m(ε) points
from P , such that ` ∈ Γ(Q, η, ε2/216).

Proof of (i). Let us denote α(`′) := β(`′, `∗) for every line
`′ in Rd. Fix i, 1 ≤ i ≤ m, and consider the value of `
during the ith recursive call of the algorithm. As implied by
Step 1 of Improve, we have α(`) = α(η(`i)). Therefore, by
the properties of η, see Definition 3.1, we have α(`) ≤ α(`i).
By Step 6 of Improve we have α(`i+1) ≤ (1 − ε

12
)α(`).

Combining the last two inequalities yields α(`i+1) ≤ (1 −
ε
12

)α(`i). Hence, by Eq. (3),

α(`m) ≤
(

1− ε

12

)m−1

α(`1) ≤ ε

3
α(`1). (4)

We shall now prove that for every fixed p ∈ P , dist(p, `m) ≤
(1 + ε

3
) · dist(p, `∗). By the triangle inequality,

dist(p, `m) ≤ dist(p, `∗) + dist(proj(p, `∗), `m)

= dist(p, `∗) + ‖proj(p, `∗)‖ · α(`m)

≤ dist(p, `∗) + ‖p‖ · α(`m).

(5)

By the definition of `1 in Algorithm RotateLine, by the
properties of η as an L-projection, and by the choice of q1,
we have

α(`1) = α(η(Sp(q1))) ≤ α(Sp(q1)) ≤ α(Sp(p)) . (6)

By (4) and (6), we infer that α(`m) ≤ εα(Sp(p))/3. Using
the last inequality with (5) yields

dist(p, `m) ≤ dist(p, `∗) + ‖p‖ · εα(Sp(p))/3

=
(

1 +
ε

3

)
· dist(p, `∗).

(7)

Squaring inequality (7) and summing over p ∈ P yields

cost(P, `m) =
∑
p∈P

(dist(p, `m))2

≤
∑
p∈P

(
1 +

ε

3

)2
· (dist(p, `∗))2 < (1 + ε) · cost(P, `∗) ,

where the last inequality holds for all ε < 1
2
. Hence, if

Algorithm Improve did not stop before the mth recursive
call, it would stop then. That concludes the proof of the
first claim of the theorem. 2

3.4 Approximating `∗ = `∗L(P )

In Section 3.3 we showed that every given line `∗ has an
approximating line ` that can be described by a sparse sub-
set of P . The construction of that sparse subset and of `
uses `∗ as an input. However, we wish to approximate the
line `∗ = `∗L(P ) which is not known upfront. The claims
of Theorem 3.7 enable us to overcome this problem. That
theorem guarantees that `∗ has an approximating line ` in
Γ(Q, η, ε2/216), where Q is some sequence of at most m (Eq.
(3)) points from P and η is any L-projection. Hence, we in-

fer that ` can be found in the set of lines Γ̂(P, η, ε) which is
defined as follows.

Definition 3.8. Let P be a set of points in Rd \ {o}, L
be a convex cone, η be an L-projection, and ε > 0. Then
Γ̂(P, η, ε) :=

⋃
Q Γ(Q, η, ε2/216), where Γ is as defined in

Definition 3.4, and the union is taken over all sequences
Q = (q1, . . . , qm) of at most m = m(ε) (see Eq. (3)) points
from P .

Theorem 3.9. There exists a PTAS for `∗ = `∗L(P ).
Specifically, a line that approximates `∗L(P ) in the sense of
inequality (1) can be found in time O(d · poly(n)) for any
constant ε > 0.

4. CORESET CONSTRUCTION
Algorithm 3, which we present and analyze below, de-

scribes how to construct a coreset C for the input set of
points P and parameters ε ∈ (0, 1/2) and δ ∈ (0, 1]. A gen-
eralized version for distances to the power of z ≥ 1 and for
k ≥ 1 is described in [24]. However, unlike [24], the size of
C is independent of d.

To that end, the algorithm first constructs a pair (S,w),
where S is a multiset of points from P (namely, it is a subset
of P in which points may be repeated), and w is a weight
function on S (Steps 1-12). Then, it converts the pair (S,w)
into a set of points C in Rd (Step 13). That set is called the
coreset.

The size of C is bounded by the size of S, which is shown
in Step 7. That size depends on some sufficiently large con-
stant, c0, that can be determined from the analysis in this
section and in the previous section. Our claims regarding
the algorithm and the properties of the coreset C are sum-
marized in Theorem 4.1

Theorem 4.1. Let P be a set of n points in Rd, ε ∈
(0, 1

2
), δ ∈ (0, 1], L be a convex cone, and η be an L-

projection. Let C be the set that Algorithm 3 outputs when
applied on the input (P, ε; δ). Then the following hold:

(i) With probability at least 1−δ, every line ` ∈ {`∗L(P )}∪
Γ̂(C, η, ε) (Definition 3.8) satisfies

(1−ε)·cost(P, `) ≤ cost(C, `) ≤ (1+ε)·cost(P, `) , (8)



Algorithm 3 Coreset(P, ε; δ)

Input: P = {p1, · · · , pn} ⊂ Rd, ε ∈ (0, 1/2), δ ∈ (0, 1].
Output: A set C of points in Rd.

1: Use SVD to compute a line `∗ that minimizes
cost(P, `) :=

∑
p∈P (dist(p, `))2 over all lines ` in Rd

passing through the origin o.
2: For every p ∈ P : set p′ ∈ Rd to be the projection of p

onto `∗.
3: Set µ := 1

n

∑
p∈P p

′.
4: For every p ∈ P set

m̃p :=
2(dist(p, `∗))2∑
q∈P (dist(q, `∗))2

+
4‖p′ − µ‖2∑
q∈P ‖q′ − µ‖2

+
16

n

5: For every p ∈ P set Pr(pi) :=
m̃p∑
q∈P m̃q

.

6: Set S := ∅.
7: Set t :=

c0
ε3

log2(1/ε) log(1/δ), where c0 is a sufficiently

large constant (that can be determined from the proof
of Theorem 4.1).

8: Repeat t times:
9: Select a point p ∈ P according to the

probability distribution Pr(·).
10: S := S ∪ {p}.
11: Set w(p) :=

n

tPr(p)
.

12: End Repeat
13: C := {

√
j(p)w(p)p | p ∈ S}, where j(p) is the number of

times that p appears in S.
14: Return C.

where cost(P, `) =
∑
p∈P (dist(p, `))2.

(ii) |C| = O
(

1
ε3

log2( 1
ε
) log( 1

δ
)
)
.

(iii) The runtime of Coreset is O(nd2) +
O( 1

ε3
log2( 1

ε
) log( 1

δ
) logn).

Proof of (i) (sketch). The proof is based on [6, Theorem
4.1] that shows how to construct a set of size

O((v + log(1/δ)) · t2/ε2), (9)

which is an ε-coreset with probability at least 1 − δ. Here,
v is the pseudo-dimension of the corresponding query space
and t is its total sensitivity; see more details in Section 2.
and full details in [6]. The total sensitivity t for the family of
all possible k-dimensional subspaces of Rd, and for distances
to the power of z is t = O(kO(z)) for z ≥ 1. [24, Theorem
19].

The pseudo-dimension of this family is v = O(d) and core-
sets of size linear in d that approximate all possible sub-
spaces of Rd can be constructed by substituting v = O(d)
and the value of t above in (9). The coreset construction
of [24] is essentially the same as in Algorithm 3 (for the case
z = 2), except for the smaller size of the coreset that is out-
put by our algorithm, which is independent of d. This is
because our coreset aims to approximate only a constrained
(smaller) subset of the family of lines, namely the lines in
the centroid set Γ(Q, η, ε) (Definition 3.4). This subset has
pseudo-dimension v that depends on ε but not on d, as fol-
lows from Lemma 3.5. By Eq. (3), we conclude that the
total sensitivity is t = O

(
1
ε3

log2
(
1
ε

)
log
(
1
δ

))
. 2

Applying exhaustive search on the small coreset yields a
polynomial time approximation scheme:

Theorem 4.2. Let `∗ = `∗L(P ) be the line that minimizes
the sum of squared distances to the points of P over every
line ` in a convex cone L. Then, with probability at least
9/10, a line ` such that

cost(P, `) ≤ (1 + ε) · cost(P, `∗) , (10)

can be computed in O(nd2) +O(d · 21/εO(1)

).

More generally, instead of applying our PTAS, we can use
any existing heuristic that aims to compute the optimal line
`∗. In our experimental results we show that this approach
can work even without a provable guarantee for the heuris-
tics, given the proof above for the reduction to coresets. If
the chosen heuristic has an approximation guarantee, then
we get similar guarantees on its outcome when applied on
the coreset. This is stated in the following theorem.

Theorem 4.3. Let C :=Coreset(P, ε; δ) and let `′ be a
line that approximates the optimal solution of the coreset C,
i.e., `′ ≤ (1 + ε)`∗L(C). Then, with probability at least 1− δ,
cost(P, `′) ≤ (1 + ε) · `∗L(P ).

5. EXPERIMENTAL RESULTS
Hardware. We used Amazon EC2 AWS cloud service of
64 machines (workers) and its S3 storage support. The cho-
sen machine type was Standard (cc2.8xlarge, 64 core). The
service was run from a popular laptop Lenovo W520, CPU:
Intel Core i7-3940XM, Memory: 32.0GB, DDR3-1600MHz
SDRAM, Hard drive: 256GB 2.5“ (SATA3) Mobility Solid

State Drive. Intelő vProŹ)

Software. All the code was written in Matlab 2013b
(64bit), with the support of Matlab GPU toolbox (for most
of the basic linear algebra functions). As for NMF heuris-
tics, we use the nnmf function of Matlab’s Statistics toolbox.
This function supports mainly two heuristics: ’als’ (the de-
fault) uses an alternating least-squares algorithm, and ’mult’
that uses a multiplicative update algorithm. The other pa-
rameters of this function were assigned default values. The
function returns a matrix H whose columns span a subspace
of dimension at most k.

Data. We used a public dataset from the UCI reposi-
tory, called“YouTube Multiview Video Games Dataset” [22].
This dataset contains instances, each described by 91 feature
types, with class information for exploring multiview topics.
The number of records (rows) is n ∼ 106 and the number of
features (columns, dimension) is d = 91.

Experiment. The rows of the original dataset were par-
titioned into batches on the local hard drive of our laptop
computer. Then, an empty coreset tree was initialized in
each worker on the cloud; see Fig. 3(a). The streaming was
implemented by sending the batches one-by-one to the next
worker on the cloud. This is done using a parallel execution
of the command: “Send the ith batch to the ith worker”
for i = 1, · · · , 64, which is implemented in Matlab using the
command “spmd”. Each of the 64 workers then computes
its coreset, and the “spmd” command returned an array of
64 coresets. The main process then recomputes a coreset for
these 64 coresets locally on the laptop, and runs Matlab’s
nnmf locally on the small coreset.



Evaluation. For comparison, we applied the experiment
above also using uniform random sample T instead of our
coreset S. In addition, we ran the nnmf function on the full
original matrix A using a single computer. We then com-
puted the sum of squared distances from the rows A to the
subspaces that are spanned by the corresponding output ma-
trices HT , HS and HA, after applying the appropriate rota-
tion. These sums are denoted by cost(A,HT ), cost(A,HS),
and cost(A,HA) respectively.

The empirical approximation error of the resulting core-
set S is then ε := cost(A,HS)/cost(A,HA) − 1. Hence,
cost(A,HS) = (1+ε)cost(A,HA). Note that, since nnmf im-
plements heuristics, the value of ε might be negative, which
is indeed the case in Fig. 5(a) for the case of coresets. In
this case the cost obtained by the coreset to the rows of A
is actually smaller than the cost of a run on the full matrix
A. Interestingly enough, we never got such a result by using
uniform sampling.

We repeat the experiments for (i) uniform random sample
(with replacement) instead of coresets, (ii) different values
of k, (iii) different heuristics implementation of nnmf: ’als’
(the default) uses an alternating least-squares algorithm,
and ’mult’ uses a multiplicative update algorithm. (iv) syn-
thetic input data (standard Gaussian noise)

Results on synthetic data. We show results for one of the
coreset constructions on one arbitrary worker. As expected,
the properties of the coresets look essentially the same for
the other workers and the resulting set. In Fig 3(b) we show
how the memory (RAM) used by the worker increases when
we add more points to its coreset from the synthetic. These
results are common to other coresets papers. The “zig-zag”
corresponds to the number of coresets in the tree that each
new point needs to update.

For example, the first point in a streaming tree is updated
in O(1), however the 2ith point for some i ≥ 1 climbs up
through O(log i) levels in the tree, so O(log i) coresets need
to be merged. The error ε reduces roughly polynomially on
1/ε for the synthetic data, as shown in Fig. 5(b).

Results on the real dataset. Fig. 4 shows results for
k = 1 dimensional subspace (number of columns of H). Note
that (i) for small sample values the coreset already converges
to zero. The error of the random sample is still very high
and even increases with sample size for such values; (ii) the
variance of the error seems to be much smaller for the coreset
compared to the uniform sample; (iii) for large sample values
(∼ 2500), the coreset error is essentially zero and the ratio
compared to the uniform sample seems to be very high.

Fig. 5(a) shows results for k = 10. Similar results were
obtained for other values of k. The results on the coreset are
almost always better than the uniform sample, on both of
the nnmf algorithms. As noted above, for the case k = 10,
the results on the coresets are sometimes better than the
result on the original data (ε < 0). While we do not have
a formal explanation, this is a common phenomena when
running heuristics on coresets, although it cannot happened
when computing optimal solutions. It seems that the heuris-
tics compute local extreme points and sometimes converges
to such “bad pitfalls” in the original data, while the core-
set compressed the data and “cleaned” or smoothed a lot of
these bad local extreme points.

6. CONCLUSION
We presented in this study a scalable and provable algo-

rithm for general problems in constrained low rank approx-
imation. Our technique is based on two cornerstones: A
constructive proof that an approximation to the constrained
1-subspace is spanned by few input points and constraints;
and a method to extract from the Big Data input a small
coreset on which we may apply this construction, in lieu of
the original large input. We extended the scope of previous
art by considering general constraints and general metrics.
Our algorithms significantly boost existing techniques with
respect to runtime, applicability to streaming data, and by
being embarrassingly parallelizable. Our experimental re-
sults indicate that coresets constitute a theoretical as well
as a practical bridge that enables running traditional “small
data” algorithms (which are typically off-line, non-parallel
and sometimes inefficient) on modern Big Data. The prov-
able guarantee which we offer is only with respect to the case
where the approximating subspace is 1-dimensional. The
extension of this algorithm to higher dimensions combines
heuristical ingredients. An important goal for a future re-
search is to devise a PTAS, or any other algorithm with a
provable guarantee, also for the higher dimensional prob-
lems. Another target of future research is to demonstrate
the benefits of our proposed techniques in various applica-
tions and settings.
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(a) Coresets Tree (b) Memory Used
Figure 3: (a) The input stream of points at the bottom is partitioned into odd and even subsets (green
and pink). The odd subsets will be sent to the left worker and the even sets – to the right worker. Each
worker maintains a merge-and-reduce tree of size roughly logarithmic in its input (blue frames). Each worker
computes a single coreset for its tree and sends it to a central machine. The union of these two coresets forms
a coreset for all the input points seen so far in the stream. (b) The memory that is used to save the coresets
tree by each worker is only logarithmic in the input size n, since at most one coreset is stored in each of the
logn levels.
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Figure 4: Approximation error ε of the input matrix A using the output subspace that was obtained from
running Matlab’s nnmf(S, k,′Algorithm′, Alg) function. Here S is either the coreset or uniform random sample,
k = 1, and Alg is the chosen Matlab’s heuristic als (left) or mult (right).

0 500 1000 1500 2000 2500
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Error vs Sample Size, k=10

E
rr

or
 (

ep
si

lo
n)

Sample Size (|S|)

 

 
Coreset −− mult
Coreset −− als
Uniform Sample −− mult
Uniform Sample −−als

(a) (b)

Figure 5: (a) Same as Figure 4, using k = 10 in both coreset construction and the call to nnmf . (b) Coreset
empirical error on a fixed synthetic random Gaussian data and different coreset size.


