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Abstract

The notion of Generalized Oblivious Transfer (GOT) was introduced by
Ishai and Kushilevitz in [12]. In a GOT protocol, Alice holds a set U of mes-
sages. A decreasing monotone collection of subsets of U defines the retrieval
restrictions. Bob is allowed to learn any permissable subset of messages from
that collection, but nothing else, while Alice must remain oblivious regarding
the selection that Bob made. We propose a simple and efficient GOT protocol
that employs secret sharing. We compare it to another secret sharing based
solution for that problem that was recently proposed in [18]. In particular,
we show that the access structures that are realized by the two solutions are
related through a duality-type relation that we introduce here. We show that
there are examples which favor our solution over the second one, while in
other examples the contrary holds. Two applications of GOT are considered
— priced oblivious transfer, and oblivious evaluation of multivariate polyno-
mials.
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1 Introduction
Oblivious transfer (OT) is one of the fundamental building blocks for secure
multiparty computation [20]. It was first introduced by Rabin [17]. A closely
related variant, called “1-out-of-2 OT”, was later introduced and discussed by
Even, Goldreich and Lempel [8]. In their setting, Alice (the sender) has two
bits, b0 and b1, and Bob (the receiver) has a selection bit s. The goal is for
Bob to receive bs and remain oblivious of b1−s while Alice remains oblivious
of s. The importance of OT was established in [11, 13] where it was shown
that OT is necessary and sufficient for general multiparty computation. In
the following two decades, many constructions of special-purpose multiparty
computation protocols that are based on OT were introduced, e.g. [5, 9, 15].

Brassard, Crépeau and Robert [4] extended the basic notion of 1-out-of-2
OT to 1-out-of-n OT. Namely, the sender has n messages, and the receiver is
allowed to learn exactly one of them, while the sender is required to remain
oblivious regarding the receiver’s selection. They gave information-theoretic
reductions to construct 1-out-of-n OT protocols from n− 1 invocations of a
1-out-of-2 OT protocol. More efficient implementations were later proposed
by Naor and Pinkas [16].

The next step in extending the notion of OT was k-out-of-n OT. In such
protocols, Alice holds a set of n messages; she is willing to allow Bob to
learn any k messages from U , but she refuses to allow Bob to learn any
information regarding the remaining n−k messages. Bob, on the other hand,
demands that Alice remains oblivious regarding his selection of k messages.
Constructions for k-out-of-n OT were presented in [14] and [16]. The basic
tools in the constructions in [14] are symmetric and asymmetric encryptions;
they apply for all values of 0 < k < n. The constructions in [16], on the
other hand, use 1-out-of-2 OT, string OT [5] and pseudorandom functions;
they work for k ≤ n

1
4−", where " > 0.

The final extension of OT, called generalized oblivious transfer (GOT),
was introduced by Ishai and Kushilevitz in [12]. In a GOT protocol, Alice
holds a set of n messages, U = {M1, . . . ,Mn}. A decreasing monotone
collection of subsets of U , A ⊆ 2U , defines the retrieval restrictions. The
decreasing monotonicity means that if B ∈ A and B′ ⊂ B then also B′ ∈ A.
Bob is allowed to retrieve any subset of messages B ⊂ U provided that
B ∈ A. As before, Bob cannot learn any information on the complement set
of messages, U ∖B, while Alice must not learn any information on the subset
B that Bob selected. The solution proposed in [12] uses parallel invocations
of 1-out-of-2 OT.

Our contributions. In this study we propose a simple and efficient GOT
protocol; the protocol invokes a k-out-of-n OT and a secret sharing scheme
for a certain access structure that is induced by the GOT access structure A.

Another GOT protocol that is based on secret sharing was recently pro-
posed in [18]. That protocol too invokes a simpler notion of OT (1-out-of-2
OT) and a secret sharing scheme, but for a different access structure which
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is induced by A. Specifically, while our protocol invokes a secret sharing
scheme that realizes an access structure on U that is induced by the maximal
sets in A, the protocol in [18] invokes a secret sharing scheme that realizes
an access structure on U that consists of the complements of the subsets in
A. We show that those two access structures are related through a duality-
type relation, that we introduce and characterize herein. In particular, the two
access structures may have different information rates. Moreover, we show
here an example where the access structure that is invoked by our GOT pro-
tocol has a simple and ideal linear secret sharing scheme, while the related
access structure which is invoked by the other GOT protocol does not seem
to have a practical (even non-ideal) secret sharing scheme that realizes it.

Hence, depending on the collection A, Alice and Bob may select the
GOT protocol that relies on the access structure which admits a more efficient
secret sharing scheme.

Organization of the paper. The paper is organized as follows. In Sec-
tion 2 we describe our protocol. Then, in Section 3, we describe the protocol
that was proposed in [18]. In Section 4 we discuss the underlying access
structures in the two protocols and their relation. Here we define the novel
duality-type notion of the complemented access structure, discuss its prop-
erties and characterize it. Finally, we describe in Section 5 two applications
of GOT, and illustrate the above described differences in the information rate
and complexities between the secret sharing access structures in the two GOT
protocols.

2 A GOT protocol based on secret sharing
Let A be the monotone decreasing collection of subsets of U that Alice al-
lows Bob to retrieve. Let A0 be the basis of A, namely, the collection of all
maximal subsets in A,

A0 = {B ∈ A : B ⊂ C ⇒ C /∈ A} .

Clearly, for any B,C ∈ A0, neither B ⊂ C, nor C ⊂ B. Hence, we may
consider the monotone increasing closure of A0,

Γ = {C ⊆ U : ∃B ∈ A0, B ⊆ C} .

In other words, Γ is the access structure on U whose basis is A0. Our protocol
will rely on a secret sharing scheme that realizes that access structure.

Hereinafter we let F be a large finite field of cardinality greater than n =
∣U ∣. We assume that U is embedded in F, in the sense that every message
Mi ∈ U is a field element.

The case of uniform bases. We begin by considering the case where
the basis A0 is uniform, in the sense that all sets in it have the same size,
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which we denote by k. In that case, the protocol proceeds as follows. Let Σ
be a secret sharing scheme realizing Γ, let s ∈ F be a secret random value
selected by Alice, and let si be the corresponding share of Mi. Then Alice
and Bob engage in a k-out-of-n OT for the following set of pairs of values:

W := {⟨Mi + xi, si⟩ : 1 ≤ i ≤ n} ;

here, xi ∈ F, 1 ≤ i ≤ n, are random and independent field elements selected
by Alice.

If Bob wishes to learn the values in the subset B = {Mi1 , . . . ,Mik} ∈
A0, he will chose to learn the corresponding k pairs of values in W , i.e.,

⟨Mij + xij , sij ⟩ , 1 ≤ j ≤ k .

As B is a permissable subset, Bob may then recover the secret s from the
shares si1 , . . . , sik . Once he does, he will send the value s to Alice. Alice
verifies the correctness of the value that Bob sent to her; if it is the correct
value, she will send to him the complete set of random shifts, {x1, . . . , xn}.
Finally, Bob will use the values xi1 , . . . , xik in order to recover the sought-
after messages in B = {Mi1 , . . . ,Mik}.

The general case. In the general case, A0 may have subsets of different
sizes. Hence, there exists k > 0 and d ≥ 0 for which

min{∣B∣ : B ∈ A0} = k − d , max{∣B∣ : B ∈ A0} = k . (1)

In that case, Alice augments the original set of messages, U , with d messages
that are selected randomly and independently from F,

U ′ := U ∪ {Mn+1, . . . ,Mn+d} . (2)

Next, we define a new monotone increasing access structure on U ′. To that
end, we let

Aj = {B ∈ A0 : ∣B∣ = k − j} , 0 ≤ j ≤ d , (3)

and then set

A′ =
d∪

j=0

{B ∪ {Mn+1, . . . ,Mn+j} : B ∈ Aj} . (4)

In other words, we turn the original, possibly non-uniform basis A0 to a
uniform one, A′, by augmenting every set in A0 with the required number
of dummy messages so that its size becomes k. (Note that A′ is a legal basis
since it does not include two sets where one is a subset of the other.) Finally,
Γ′ is the access structure on U ′ that is induced by the basis A′, i.e.,

Γ′ = {C ⊆ U ′ : ∃B ∈ A′, B ⊆ C} . (5)
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Now, since all minimal subsets in Γ′ are of the same size k, we may apply
the previous protocol.

We proceed to prove that the protocol is correct (in the sense that it re-
alizes its desired functionality) and secure (in the sense that it respects both
Alice’s and Bob’s privacy).

Theorem 2.1. Let U = {M1, . . . ,Mn} ⊂ F be a set of n messages and let
A be a monotone decreasing collection of subsets of U . Let Γ′ be a monotone
increasing access structure on U ′, where U ′ and Γ′ are defined in Eqs. (1)–
(5). Then, assuming that the k-out-of-n OT protocol used by Alice and Bob
is correct and secure, and assuming that Σ is a perfect secret sharing scheme
realizing Γ′, the above protocol is correct and secure.

Proof. Assume that Bob wishes to learn the values of the messages in some
permissable set B ∈ A0. Let j = k−∣B∣. Then Bob will select to learn the k
pairs from W that correspond to the k messages in B∪{Mn+1, . . . ,Mn+j}.
Since the shares si in the pairs that Bob retrieves correspond to an authorized
set in Γ′, he will be able to recover the secret s and, consequently, retrieve
from Alice the random shifts that mask the value of the messages in B ∪
{Mn+1, . . . ,Mn+j}.

Next, we show that the above protocol respects Alice’s privacy. Under
our assumption regarding the OT protocol, Bob can learn the values of no
more than k messages from W . If the k pairs of values that Bob selected
do not correspond to k messages of the form B ∪ {Mn+1, . . . ,Mn+j}, for
some 0 ≤ j ≤ d and B ∈ Aj , then the shares delivered in those pairs do not
correspond to an authorized set of Γ′. Hence, as Σ is perfect, Bob will not
learn any information regarding the value of s. Consequently, Bob can only
guess the value of s in order to convince Alice into sending him the values of
the shifts xi. Bob may succeed in doing so in probability 1/∣F∣.

Finally, Bob’s privacy is respected under the assumption that the OT pro-
tocol respects his privacy; namely, Alice remains oblivious regarding the se-
lection that Bob made. □

3 A different GOT protocol
Given a collection A ⊆ 2U , we define the collection Ac as follows,

Ac = {U ∖B : B ∈ A} . (6)

As A is monotone decreasing, Ac is monotone increasing, whence it is a
monotone access structure. The protocol of [18] implements a secret sharing
scheme for Ac. The protocol proceeds as follows:

1. Alice selects n random field elements x1, . . . , xn ∈ F and computes
yi = Mi + xi, 1 ≤ i ≤ n.
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2. Alice chooses a random secret s ∈ F and creates n shares, si, 1 ≤ i ≤
n, according to the access structure Ac.

3. Alice and Bob engage in n invocations of 1-out-of-2 OT, where in the
ith invocation Bob selects one of the two messages yi or si.

4. Let B ∈ A be a set of messages that Bob wishes to receive. Then if
Mi ∈ B Bob will retrieve yi, otherwise he will retrieve si.

5. Bob will recover s from the shares {si : Mi ∈ U ∖B} and will send it
to Alice.

6. Alice verifies that the value received from Bob is the correct secret s.
If it is, she will send to him the n random shifts x1, . . . , xn.

7. Bob will use the values {xi : Mi ∈ B} to recover Mi from yi for all
Mi ∈ B.

It is easy to see that if the 1-out-of-2 OT protocol is correct and secure,
and if Alice uses a perfect secret sharing scheme to realize Ac, the above
protocol is correct and secure.

4 Comparing the underlying access structures in
the two protocols
Here we identify the relation between the access structure that is realized in
our protocol and the one that is realized in the second protocol. We concen-
trate on the case where all sets in A0 are of the same size, in order not to
obfuscate the discussion with the messages with which we augment U in our
protocol in case where not all the sets in A0 are of the same size.

We begin with some definitions. Let U be a finite set and Γ ⊆ 2U be a
monotone increasing access structure on U . Such an access structure induces
the following collections in 2U :

∙ The dual access structure is Γ∗ = {U ∖B : B /∈ Γ}.

∙ The basis Γ0 of Γ is the collection of all minimal sets in Γ.

∙ The complemented basis is defined as

Γc
0 = {U ∖B : B ∈ Γ0} .

∙ The complemented access structure, Γc, is defined as the monotone
increasing closure of Γc

0.

We refer to Γc
0 as the complemented basis and not as the complement

basis in order to distinguish it from the collection 2U ∖ Γ0. It is easy to see
that Γc

0 is also a basis of an access structure since if B,C ∈ Γc
0 then neither

B ⊂ C nor C ⊂ B. Hence, we may speak of the complemented access
structure that is induced by it,

Γc = {B ⊆ U : ∃C ∈ Γc
0 such that C ⊆ B} . (7)
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Example 1. Let Γ be the k-threshold access structure on U , i.e. Γ = {B ⊂
U : ∣B∣ ≥ k}, and assume that ∣U ∣ = n. Then in this case:

∙ The dual access structure is Γ∗ = {B ⊆ U : ∣B∣ ≥ n− k + 1};

∙ The basis is Γ0 = {B ⊂ U : ∣B∣ = k};

∙ The complemented basis is Γc
0 = {B ⊂ U : ∣B∣ = n− k};

∙ The complemented access structure is Γc = {B ⊆ U : ∣B∣ ≥ n− k}.

Example 2. Let U = {1, 2, 3, 4}1 and Γ be the access structure that consists
of all subsets of size at least 2 that include participant 4. (This is an example
of a hierarchical threshold access structure [19].) Here:

∙ Γ∗ = {4, 14, 24, 34, 123, 124, 134, 234, 1234};

∙ Γ0 = {14, 24, 34};

∙ Γc
0 = {12, 13, 23};

∙ Γc = {12, 13, 23, 123, 124, 134, 234, 1234}.

The action of duality is an involution, namely, (Γ∗)∗ = Γ. It is easy to
see that so is the action of complementing an access structure.

Lemma 4.1. For any monotone access structure Γ on U , it holds that (Γc)
c
=

Γ.

Proposition 4.2. Let Γ be the access structure that is realized in the first
protocol and Δ be the access structure that is realized in the second protocol.
Then Δ = Γc.

Proof. Both access structures are defined through the decreasing monotone
collection A. While Γ is the monotone closure of the collection A0 of all
maximal sets in A, the second access structure, Δ, is defined through (6),
namely,

Δ = {U ∖B : B ∈ A} . (8)

By (8), a minimal set in Δ is a complement of a maximal set in A. Hence,
the basis of Δ consists of the complements of all sets in A0. But as A0 is the
basis of Γ, we infer that Δ = Γc. □

Next, we characterize the structure of the complemented access structure
and its relation to the dual access structure. To that end, we define circuit-free
access structures.

Definition 4.3. An access structure Γ is called circuit-free if for all unau-
thorized sets B /∈ Γ there exists a minimal authorized set A ∈ Γ0 such that
B ⊂ A.

1Hereinafter we adopt a shorthanded style where the participants in U are denoted by digits, e.g.
1, 2, 3, and subsets are denoted by the corresponding number, e.g. 12, 234.
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The terminology circuit-free is borrowed from the matroidal representa-
tion of ideal access structures. If an access structure is ideal, then there is
a matroid that reflects its structure. On the other hand, every matroid that
is representable over some finite field is the reflection of some ideal access
structure. An ideal access structure is circuit-free if and only if the matroid
reflection of any unauthorized set does not include circuits.
Example 3. A threshold access structure is circuit-free since any unautho-
rized set is of size which is smaller than the threshold and, hence, it may
be expanded to a set of size that equals the threshold, which is a minimal
authorized set.
Example 4. Assume that U is composed of two disjoint subsets, U =
U1

∪
U2, where U1 consists of all executives in the organization U . Let Γ

be the access structure consisting of all B ⊂ U in which there are at least t1
executives, or t2 participants in total (where t2 > t1). In this case, Γ0 con-
sists of all sets of exactly t1 executives and all sets of exactly t2 participants
which do not include t1 executives. It is easy to see that Γ is circuit-free
since any unauthorized set may be extended to a minimal authorized set of
the first kind, if it includes only executives, or to a minimal authorized set of
the second kind otherwise.
Example 5. Assume the same structure of U as in Example 4, but this time
Γ consists of all B ⊂ U in which there are at least t1 executives and t2
participants in total (i.e., the authorized sets are characterized this time by the
conjunction of the two threshold conditions, and not by their disjunction as in
the previous example). Here, the minimal sets include exactly t2 participants,
of whom at least t1 are executives. Hence, any subset that consists only of
non-executives and is of size that is greater than t2 − t1 cannot be embedded
in a minimal authorized subset.

We note that Examples 4 and 5 are of hierarchical access structures, that
were characterized and studied in [19]. Using the terminology in [19], Exam-
ple 4 is of a disjunctive hierarchical access structure (with two levels) while
Example 5 is of the conjunctive type. All disjunctive hierarchical access
structures are circuit-free, while all conjunctive hierarchical access structures
are not circuit-free.

We are now ready to characterize the structure of the complemented ac-
cess structure and its relation to the dual access structure.

Theorem 4.4. The complemented access structure may be decomposed into
the following disjoint union, Γc = Γ1 ∪ Γc

0, where Γ1 ⊆ Γ∗. In addition,
Γ1 = Γ∗ if and only if Γ is circuit-free. Finally, Γc

0

∩
Γ∗ = ∅.

Proof. Equality (7) that defines Γc implies that Γc = Γ1 ∪ Γ2, where

Γ1 = {B ⊆ U : ∃C ∈ Γc
0 such that C ⊊ B} ,
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and
Γ2 = {B ⊆ U : ∃C ∈ Γc

0 such that C = B} .
The two collections Γ1 and Γ2 are disjoint since Γc

0 is a basis (and, hence,
it cannot contain two subsets in which one is a proper subset of the other).
As Γ2 clearly equals Γc

0, it is left to show that Γ1 ⊆ Γ∗ in order to establish
the first assertion of the theorem. Assume that B ∈ Γ1. Then B is a proper
superset of U ∖C for some C ∈ Γ0. But then U ∖B is a proper subset of C.
Since C is a minimal set in Γ then U ∖B /∈ Γ. Therefore, B ∈ Γ∗.

Next, we prove that Γ1 = Γ∗ if and only if Γ is circuit-free. To that end,
we shall show that if Γ1 ⊊ Γ∗ then Γ is not circuit-free. (The proof in the
other direction is essentially the same and hence we omit it.) Assume that B
is a set in Γ∗ which is not in Γ1. So, as B ∈ Γ∗, we infer that U ∖B /∈ Γ. On
the other hand, as B /∈ Γ1, then B is not a proper superset of any set in Γc

0.
In other words, U ∖ B is not a proper subset of any set in Γ0. Hence, U ∖ B
is an unauthorized set which is not a subset of any set in the basis of Γ. That
means that Γ is not circuit-free.

Finally, we prove the third and last assertion of the theorem. On one
hand, if B ∈ Γc

0 then U ∖ B ∈ Γ0 ⊆ Γ. On the other hand, if B ∈ Γ∗ then
U ∖B /∈ Γ. Hence, the intersection of Γc

0 and Γ∗ is empty. □

Examples 1 and 2 exemplify Theorem 4.4. The access structure in Ex-
ample 1 is circuit-free and there Γc = Γ∗ ∪ Γc

0, while the one in Example 2
is not, and there Γc = Γ1 ∪ Γc

0 where Γ1 ⊊ Γ∗.

To summarize, we have shown that the relation between the two access
structures that are realized by the two protocols, ours (Section 2), and the one
that was proposed in [18] (Section 3), is that one is the complemented access
structure of the other (Lemma 4.1 and Proposition 4.2). However, while the
information rate of Γ∗ always equals that of Γ (see [7]), it is not true for
Γc and Γ, as we show in Example 6 below. Hence, it is possible that one
of the two GOT protocols is relying on an access structure that has a better
information rate than the other protocol and then it might be better suited for
implementing the required GOT functionality.
Example 6. Let U = {1, 2, 3, 4} and Γ be the access structure with the
basis Γ0 = {123, 14, 24, 34}. That access structure may be viewed as a
weighted threshold access structure; indeed, if we associate with each of
the first three players the weight 1, with the fourth player the weight 2, and
take the threshold to be 3, then the above basis lists all minimal authorized
subsets. As shown in [2, Example 4.9], that access structure is not ideal.

The complemented basis is Γc
0 = {4, 23, 13, 12}. The corresponding ac-

cess structure Γc is the monotone closure of that basis. That access structure
may be viewed as either a weighted threshold access structure with the same
weights as before, but with a threshold of 2 (rather than 3). The characteriza-
tion in [2] shows that it is ideal. (It may also be viewed as a multilevel access
structure or a hierarchical access structure with two levels, in which case its
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ideality follows from [6, 19].) Hence, Γ and Γc in this example do not have
the same information rate.

5 Applications
Here we describe two applications of GOT. In one of those applications there
are scenarios in which the secret sharing access structure in our protocol is
ideal, while the one in the second protocol is not; and vice-a-versa, there are
other scenarios in which the access structure in the second protocol is ideal
while the one in our protocol is not. In the second application, the secret
sharing access structure in our GOT protocol is always ideal, and realizable
by a simple linear secret sharing scheme, while the one in the second protocol
does not seem to have a practical (even non-ideal) secret sharing scheme that
realizes it.

5.1 Priced OT
Aiello, Ishai and Reingold [1] presented a special case of GOT, which they
called Priced OT. Assume that every message Mi in U has an associated cost
ci. If Bob has prepaid Alice an amount of T then he is entitled to retrieve
any subset of messages whose total cost does not exceed T . Namely, in this
case, the collection A is as follows:

A = {B ⊆ U : c(B) :=
∑

Mi∈B

ci ≤ T} .

Let us consider the two access structures that should be realized by a secret
sharing scheme in the two protocols. In the first protocol, the access structure
Γ is the one that is induced by the basis A0 of maximal sets in A. In the
second protocol, on the other hand, it is the access structure

Ac = {B ⊆ U : c(U ∖B) ≤ T} = {B ⊆ U : c(B) ≥ c(U)− T} .

Hence, Ac is a weighted threshold access structure.
We proceed to show that there are cases in which Γ is ideal while Ac is

not, and vice-a-versa.
Example 7. Let U = {1, 2, 3, 4} and assume that the costs are 1, 1, 1, 2
while the threshold is T = 3. The maximal permissable sets are A0 =
{123, 14, 24, 34}. Since A0 includes sets of different sizes (two and three),
we add to U an additional message and look at the set U ′ = {1, 2, 3, 4, 5}.
The collection of maximal permissable sets now is A′ = {123, 145, 245, 345}
and then the access structure Γ′ is the monotone closure of A′. As implied
by [10, Theorem 16], that access structure has an information rate of 2/3,
whence it is not ideal.

10



On the other hand, Ac in that case is the weighted threshold access struc-
ture on U with the same weights but with a threshold c(U)−T = 5−3 = 2.
As explained in Example 6 above, Ac is ideal.

Hence, in this example, the second GOT protocol relies on an ideal access
structure while the first one does not.
Example 8. Let U = {1, 2, 3, 4} and assume that the costs are 1, 1, 1, 2
while the threshold is T = 2. The maximal permissable sets are A0 =
{12, 13, 23, 4}. Since A0 includes sets of different sizes (one and two), we
add to U an additional message and look at the set U ′ = {1, 2, 3, 4, 5}. The
collection of maximal permissable sets now is A′ = {12, 13, 23, 45} and
then the access structure Γ′ is the monotone closure of A′. As can be seen
easily, Γ′ is ideal as it is the union of a 2-out-of-3 threshold access structure
on {1, 2, 3} and a 2-out-of-2 threshold access structure on {4, 5}.

On the other hand, Ac in that case is the weighted threshold access struc-
ture on U with the same weights but with a threshold c(U)−T = 5−2 = 3.
As explained in Example 6, Ac is not ideal.

Hence, in this example, the first GOT protocol relies on an ideal access
structure while the second one does not.

5.2 Oblivious multivariate polynomial evaluation
Ben-Ya’akov [3] dealt with oblivious evaluation of multivariate polynomials.
In such protocols, Alice holds an r-variate polynomial P (⋅) over a finite field
F, while Bob holds a point y ∈ Fr. The goal is to allow Bob to evaluate
P (y) without revealing to him any further information about the polynomial
P , while Alice has to remain oblivious regarding the value of y. (Oblivious
polynomial evaluation was introduced, in the univariate case, by Naor and
Pinkas in [15].)

A basic tool in evaluating polynomials is interpolation. An interpolation
of a polynomial is the process of recovering all of the polynomial coeffi-
cients from a sufficient number of point values. A univariate polynomial of
degree d has d + 1 undetermined coefficients; any selection of d + 1 point
values enables to recover the polynomial coefficients through the solution of
a system of linear equations. When dealing with an r-variate polynomial of
degree d, the number of coefficients is

(
d+r
r

)
. Hence, in order to recover the

polynomial it is necessary to know its values at
(
d+r
r

)
points in Fr. How-

ever, not all
(
d+r
r

)
point values give rise to a uniquely solvable system of

linear equations. Selections of
(
d+r
r

)
points in Fr that give rise to an invert-

ible interpolation matrix are called “proper interpolation points” while other
selections are called “improper”.

In the protocols presented in [3], Alice and Bob define together another
r-variate polynomial, R(⋅), with the property that R(0) = R(0, . . . , 0) =
P (y). (The polynomial R is a composition of a polynomial that only Alice
knows, which depends on her secret polynomial P , and polynomials that
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only Bob knows, which depend on his secret point y). Bob’s goal is then to
recover the polynomial R by means of interpolation. Letting dR denote the
degree of R, Bob needs to learn k =

(
dR+r

r

)
point values of R. He selects

such k points and hides them among n−k other dummy points, where n > k
is some security parameter. He then sends all of the n points to Alice, who
proceeds to evaluate R at those points. Finally, Bob engages in a k-out-of-n
OT vis-a-vis Alice, in which he chooses to learn the value of R at the required
k points. Alice must not know which are the points at which Bob selected to
learn the value of R since that selection will reveal to her the value of Bob’s
y. Bob, on the other hand, must not learn more than k values of R since then
he might deduce more information on P than what Alice allows him to.

However, as shown in [3], the usage of a basic k-out-of-n OT in this case
is problematic. A malicious Bob could try to get the values of R at k points
which are not proper interpolation points; it turns out that such selections may
allow Bob to learn information of P which he is not supposed to. Hence,
Alice wishes to guarantee that Bob selects only k points which are proper
interpolation points. That gives rise to a GOT, rather than a simple k-out-of-
n OT (which suffices in the case of univariate polynomials since then all k
interpolation points are proper).

The messages in the GOT are the point values of R, namely Mi =
R(xi), where xi are the n points in Fr that Bob generated. Since R is
an r-variate polynomial of degree dR it has the form R(x) = X ⋅ a where
a = (a0, . . . , ak−1) is the vector of k =

(
dR+r

r

)
coefficients, and X is the

vector of length k that holds all monomials in x = (x1, . . . , xr) of degree less
than or equal to dR. For example, if r = 2 and dR = 2 then k =

(
2+2
2

)
= 6

and then x = (x1, x2) and X = (1, x1, x2, x
2
1, x1x2, x

2
2). Hereinafter, we

refer to X as the monomial vector of x.
A set of k points x1, . . . , xk ∈ Fr is proper if and only if the correspond-

ing set of k monomial vectors X1, . . . ,Xk are independent in Fk. Hence,
the GOT in this case should restrict Bob to retrieve subsets of U = {Mi =
R(xi)}1≤i≤n for which the corresponding monomial vectors are indepen-
dent.

The secret sharing access structure Γ that is used by our protocol con-
sists of all subsets of U for which the corresponding monomial vectors span
the space Fk. That access structure is obviously ideal and realizable by the
following linear secret sharing scheme. Alice selects a public target nonzero
vector t ∈ Fk, a random secret s ∈ F, and a random secret vector z ∈ Fk
for which t ⋅ z = s. Then the share of message Mi is Xi ⋅ z. Every set in Γ
can recover the secret s since the corresponding monomial vectors span the
space Fk, whence they span the target vector t. For sets which are not in Γ,
the corresponding monomial vectors span a subspace of dimension k − 1 at
the most. Hence, the shares of such a set do not reveal any information on
s, unless the target vector happens to be in that subspace. The idea is that
Alice selects the target vector only after Bob sent to her the points xi. Hence,
she may test the corresponding monomial vectors and choose a target vector

12



t that is not spanned by the monomial vectors of any unauthorized subset.
On the other hand, the access structure Ac that is used in this case by the

second protocol consists of all subsets of messages for which the complement
set has independent monomial vectors. Namely, the status of any subset
in such an access structure is determined by the monomial vectors which
that subset does not possess. We were not able to devise a practical general
construction of a secret sharing scheme for such access structures. Hence,
while in this case our protocol has an efficient implementation, based on a
simple and ideal linear secret sharing scheme, the second protocol does not
seem to have a practical implementation.

Acknowledgement. The author thanks Benny Pinkas and Amos Beimel for
fruitful discussions.
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[5] G. Brassard, C. Crépeau and M. Sántha, Oblivious transfers and inter-
secting codes, IEEE Transaction on Information Theory, special issue
on coding and complexity, Vol. 42, 1996, pp. 1769-1780.

[6] E. F. Brickell, Some ideal secret sharing schemes, J. of Combin. Math.
and Combin. Comput. 6, 1989, pp. 105–113.

[7] A. Gál, Combinatorial methods in Boolean function complexity, Ph.D.
thesis, University of Chicago, 1995.

[8] S. Even, O. Goldreich and A. Lempel, A randomized protocol for sign-
ing contracts, Communications of the ACM, Vol. 28, 1985, pp. 637–
647.

[9] R. Fagin, M. Naor and P. Winkler, Comparing information without
leaking it, Communications of the ACM 39, 1996, pp. 77–85.
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