
Journal of Artificial Intelligence Research 59 (2017) 311-349 Submitted 3/17; published 7/17

Privacy Preserving Implementation of the Max-Sum
Algorithm and its Variants

Tamir Tassa tamirta@openu.ac.il
The Open University,
Ra’anana, Israel

Tal Grinshpoun talgr@ariel.ac.il
Ariel University,
Ariel, Israel

Roie Zivan zivanr@bgu.ac.il

Ben-Gurion University of the Negev,

Beer Sheva, Israel

Abstract

One of the basic motivations for solving DCOPs is maintaining agents’ privacy. Thus,
researchers have evaluated the privacy loss of DCOP algorithms and defined corresponding
notions of privacy preservation for secured DCOP algorithms. However, no secured protocol
was proposed for Max-Sum, which is among the most studied DCOP algorithms. As
part of the ongoing effort of designing secure DCOP algorithms, we propose P-Max-
Sum, the first private algorithm that is based on Max-Sum. The proposed algorithm has
multiple agents preforming the role of each node in the factor graph, on which the Max-
Sum algorithm operates. P-Max-Sum preserves three types of privacy: topology privacy,
constraint privacy, and assignment/decision privacy. By allowing a single call to a trusted
coordinator, P-Max-Sum also preserves agent privacy. The two main cryptographic means
that enable this privacy preservation are secret sharing and homomorphic encryption. In
addition, we design privacy-preserving implementations of four variants of Max-Sum. We
conclude by analyzing the price of privacy in terns of runtime overhead, both theoretically
and by extensive experimentation.

1. Introduction

The Distributed Constraint Optimization Problem (DCOP) is a general model for dis-
tributed problem solving that has a wide range of applications in multi-agent systems.
Many algorithms for solving DCOPs have been proposed. Complete algorithms (Modi,
Shen, Tambe, & Yokoo, 2005; Petcu & Faltings, 2005b; Gershman, Meisels, & Zivan, 2009)
are guaranteed to find the optimal solution, but because DCOPs are NP-hard, these al-
gorithms require exponential time in the worst case. Thus, there is growing interest in
incomplete algorithms, which may find suboptimal solutions but run quickly enough to be
applied to large problems or real-time applications (Maheswaran, Pearce, & Tambe, 2004a;
Zhang, Wang, Xing, & Wittenburg, 2005; Zivan, Okamoto, & Peled, 2014; Teacy, Farinelli,
Grabham, Padhy, Rogers, & Jennings, 2008).

Whether complete or incomplete, DCOP algorithms generally follow one of two broad
approaches: distributed search (Modi et al., 2005; Gershman et al., 2009; Maheswaran
et al., 2004a; Zhang et al., 2005) or inference (Petcu & Faltings, 2005b, 2005a; Farinelli,

c©2017 AI Access Foundation. All rights reserved.

Tassa, Grinshpoun & Zivan

Rogers, Petcu, & Jennings, 2008; Stranders, Farinelli, Rogers, & Jennings, 2009). In search
algorithms, agents directly traverse the solution space by choosing value assignments and
communicating these assignments to each other. By contrast, agents in inference algorithms
traverse the solution space indirectly; each agent maintains beliefs about the best costs (or
utilities) that can be achieved for each value assignment to its own variables, and selects
value assignments that are optimal according to its beliefs. Agents calculate and communi-
cate costs/utilities for each possible value assignment to neighboring agents’ variables, and
update their beliefs based on messages received from their neighbors. These update meth-
ods are specific realizations of the Generalized Distributive Law (GDL) algorithm (Aji &
McEliece, 2000), and hence inference-based algorithms are often referred to as GDL-based
algorithms.

The Max-Sum algorithm (Farinelli et al., 2008) is an incomplete, GDL-based, algorithm
that has drawn considerable attention in recent years, including being proposed for multi-
agent applications such as sensor systems (Teacy et al., 2008; Stranders et al., 2009) and task
allocation for rescue teams in disaster areas (Ramchurn, Farinelli, Macarthur, & Jennings,
2010). Agents in Max-Sum propagate cost/utility information to all neighbors. This
contrasts with other inference algorithms such as ADPOP (Petcu & Faltings, 2005a), in
which agents only propagate costs up a pseudo-tree structure. As is typical of inference
algorithms, Max-Sum is purely exploitative both in the computation of its beliefs and in
its selection of values based on those beliefs.

One of the main motivations for solving constraint problems in a distributed manner is
that of privacy. The term privacy is quite broad, a fact that gave rise to several catego-
rizations of the different types of privacy (Greenstadt, Grosz, & Smith, 2007; Grinshpoun,
2012; Léauté & Faltings, 2013). In this paper we relate to the categorization of Léauté
and Faltings (2013) that distinguished between agent privacy, topology privacy, constraint
privacy, and assignment/decision privacy.

Most studies that evaluated distributed constraint algorithms in terms of privacy con-
sidered either search algorithms or complete inference algorithms. Some examples are Mah-
eswaran, Pearce, Bowring, Varakantham, and Tambe (2006) who proposed the VPS frame-
work that was initially used to measure the constraint privacy loss in SyncBB and Op-
tAPO. Later, VPS was also applied to DPOP and ADOPT (Greenstadt, Pearce, & Tambe,
2006). Doshi, Matsui, Silaghi, Yokoo, and Zanker (2008) proposed to inject privacy-loss as a
criterion to the problem solving process. Some previous work was also directed towards re-
ducing constraint privacy loss. Most effort in the development of privacy-preserving search
algorithms focused on DisCSP, which is the satisfaction variant of DCOP. Examples in-
clude (Nissim & Zivan, 2005; Silaghi & Mitra, 2004; Yokoo, Suzuki, & Hirayama, 2005).
The work of Silaghi and Mitra (2004) addressed both satisfaction and optimization prob-
lems. However, the proposed solution is strictly limited to small scale problems since it
depends on an exhaustive search over all possible assignments. Several privacy-preserving
versions of DPOP were proposed in the past (Greenstadt et al., 2007; Silaghi, Faltings, &
Petcu, 2006) including a recent study by Léauté and Faltings (2013) that proposed several
versions of DPOP that provide strong privacy guarantees. While these versions are aimed
for DCSPs, some of them may be also applicable to DCOPs. Considering a different aspect
of constraint privacy, researchers have addressed problems in which the nature of a con-
straint is distributed among the constrained agents. Solutions to such problems include the

312

Privacy Preserving Implementation of the Max-Sum Algorithm

PEAV formulation (Maheswaran, Tambe, Bowring, Pearce, & Varakantham, 2004b) and
asymmetric DCOPs (Grinshpoun, Grubshtein, Zivan, Netzer, & Meisels, 2013). Here, we
restrict ourselves to the traditional symmetric DCOPs. Another recent paper (Grinshpoun
& Tassa, 2014) devised a variation of SyncBB (Hirayama & Yokoo, 1997) that preserves
constraint and topology privacy. The subsequent study (Grinshpoun & Tassa, 2016) offered
a privacy-preserving algorithm that implements SyncBB while preserving also decision pri-
vacy, in addition to constraint and topology privacy.

In this paper we propose the first private algorithm that is based on Max-Sum. The
proposed algorithm, P-Max-Sum, has multiple agents preforming the role of each node
in the factor graph, on which the Max-Sum algorithm operates. Using secret sharing
and homomorphic encryption, the agents may execute the nodes’ role without revealing
the content of the messages they receive or the details of the computation they perform
and the messages that they generate. Thus, the proposed algorithm prevents any given
agent from discovering topological constructs in the constraint graph, such as the number
of other nodes, or existence of edges not adjacent to its own node (topology privacy), the
costs that other agents assign to value assignments (constraint privacy), or the assignment
selection of other agents (assignment/decision privacy). By allowing a single call to a trusted
coordinator, P-Max-Sum can also preserve agent privacy.

The paper is organized as follows. In Section 2 we provide the necessary background
and definitions regarding distributed constraint optimization problems and the Max-Sum
algorithm. Section 3 describes the main contribution of this study, the P-Max-Sum algo-
rithm, which is a privacy-preserving implementation of Max-Sum. In Section 4 we prove
the correctness of P-Max-Sum and its privacy properties. Then, in Section 5 we discuss
privacy-preserving implementations of several variants of Max-Sum; some of them can be
handled with the same cryptographic tools that were implemented in the design of P-Max-
Sum, while others require different cryptographic weaponry. We evaluate the performance
of our privacy-preserving algorithms, both analytically and experimentally, in Section 6,
and conclude in Section 7.

This article has evolved from a paper that was published at IJCAI 2015 conference
(Tassa, Zivan, & Grinshpoun, 2015). The extended version includes privacy-preserving
implementations of various Max-Sum variants, including the needed adjustments for the
anytime mechanism. This version also includes complete proofs, comprehensive analysis of
privacy and efficiency, and a considerably more thorough experimental evaluation.

2. Preliminaries

This section contains the relevant background and formal definitions and notations that we
use in this paper.

2.1 Distributed Constraint Optimization Problems

A Distributed Constraint Optimization Problem (DCOP) (Hirayama & Yokoo, 1997) is
a tuple 〈A,X ,D,R〉 where A is a set of agents A1, A2, . . . , An, X is a set of variables
X1, X2, . . . , Xm, D is a set of finite domains D1, D2, . . . , Dm, and R is a set of relations
(constraints). Each variable Xi takes values in the domain Di, and it is held by a single
agent. Each constraint C ∈ R defines a non-negative cost for every possible value combi-

313

Tassa, Grinshpoun & Zivan

nation of a set of variables, and is of the form C : Di1 × · · · ×Dik → R+ := [0,∞), for some
1 ≤ i1 < · · · < ik ≤ m.1

A value assignment is a pair including a variable and a value from that variable’s domain.
We denote by ai the value assigned to the variable Xi. A partial assignment (PA) is a set of
assignments in which each variable appears at most once. A constraint C ∈ R is applicable
to a PA if all variables that are constrained by C are included in the PA. The cost of a
PA is the sum of all applicable constraints to the PA. A complete assignment is a partial
assignment that includes all of the variables. The objective is to find a complete assignment
of minimal cost.

For simplicity, we make the common assumption that each agent holds exactly one
variable, i.e., n = m. We let n denote hereinafter the number of agents and the number
of variables. For the same reasons we also concentrate on binary DCOPs, in which all
constraints are binary, i.e., they refer to exactly two variables. Such constraints take the
form Ci,j : Di ×Dj → R+. These assumptions are customary in DCOP literature, e.g., the
works of Modi et al. (2005) and Petcu and Faltings (2005b).

Each DCOP induces a constraint graph G = (V,E) where V = X , and an edge connects
the nodes Xi, Xj ∈ V if there is a constraint C ∈ R that is defined on Di × Dj . The
corresponding factor graph is a bipartite graph G′ = (V ′, E′), which is defined as follows.

• V ′ has two types of nodes: (a) variable nodes – X1, . . . , Xn, and (b) function nodes –
for each e = (Xi, Xj) ∈ E there is a node Xe in V ′.

• E′ contains an edge that connects Xi with Xe if and only if e is an edge in G which
is adjacent to Xi.

An example of a DCOP constraint graph and its corresponding factor graph is given in
Figure 1.

2.2 Assumptions

We make herein the following assumptions:

2.2.1 Knowledge Assumptions

The following are commonly used assumptions, see, e.g., the work of Léauté and Faltings
(2013): A variable’s domain is known only to the agent that owns it and agents owning
neighboring variables. In addition, a constraint is fully known to all agents owning variables
in its scope, while no other agent knows anything about that constraint (not even its
existence).

As for agent knowledge, we make the following assumptions. For each 1 ≤ i ≤ n, denote
by N (Ai) the set of all agents that own a variable that is a neighbor of Xi in the constraint
graph. Then, in our main privacy-preserving protocol, we assume that (1) Ai knows all
agents in N (Ai), and (2) all agents in N (Ai) know each other. We also describe a variant

1. The non-negative assumption could be easily elevated in applications where the costs can be negative.
If LB is any lower bound on the costs, then the agents may consider the shifted constraint function
C′ = C + |LB| which is non-negative. The lower bound LB need not be tight; it can be any value that
the semantics of the constraints implies that all constraint values are no smaller than LB.

314

Privacy Preserving Implementation of the Max-Sum Algorithm

Figure 1: A constraint graph G of a DCOP with 4 variable nodes (left) and the correspond-
ing factor graph G′ that has 4 variable nodes and 3 function nodes (right).

of our protocol that maintains agent privacy, in addition to the privacy guarantees of the
main protocol. For this variant we rely only on assumption (1) above. Apart from its direct
neighbors, Ai does not need to know any of the other agents, not even their existence.

2.2.2 Communication Assumptions

Here too we make the standard communication assumptions, see, e.g. the work of Modi et al.
(2005). Each agent can send messages to any of its neighboring agents. The communication
system is resilient in the sense that messages do not get lost and they are received by their
intended recipient in the same order that they were sent out.

2.3 The Max-Sum Algorithm

Our description of Max-Sum follows its description in recent published papers, e.g., the
works of Zivan and Peled (2012) and Zivan, Parash, and Naveh (2015). The Max-Sum
algorithm operates on the factor graph G′. Each agent Ai, 1 ≤ i ≤ n, controls its corre-
sponding variable node Xi. As for the function nodes, they are controlled by either of the
two agents corresponding to the adjacent variable nodes; the decision which agent controls
each function node is made a-priori. The Max-Sum algorithm performs synchronous steps
(iterations) that in each of them a couple of messages are sent along each edge of G′ in both
directions. Let us consider the edge that connects Xi with Xe, where e = (Xi, Xj). The
messages, in both directions, will be vectors of dimension |Di| and they will be denoted by
either Qki→e or Rke→i, depending on the direction, where k is the index of the iteration. If x
is one of the elements in Di then its corresponding entry in the message will be denoted by
Qki→e(x) or Rke→i(x).

In the first iteration all messages are zero. After completing the kth iteration, the
messages in the next iteration will be as follows. Fixing a variable node Xi and letting Ni

be the set of function nodes adjacent to Xi in G′, then for each Xe ∈ Ni, Xi will send to

315

Tassa, Grinshpoun & Zivan

Xe the vector
Qk+1
i→e :=

∑
Xf∈Ni\{Xe}

Rkf→i . (1)

Fixing a function node Xe, where e = (Xi, Xj), then for each x ∈ Di,

Rk+1
e→i(x) := min

y∈Dj

[
Ci,j(x, y) +Qkj→e(y)

]
, (2)

while for each y ∈ Dj ,

Rk+1
e→j(y) := min

x∈Di

[
Ci,j(x, y) +Qki→e(x)

]
. (3)

Finally, after completing a preset number K of iterations, each variable node Xi computes
Mi :=

∑
Xe∈Ni

RKe→i and then selects x ∈ Di for which Mi(x) is minimal.

During the run of Max-Sum, the entries in the messages Qk and Rk grow exponentially.
In order to prevent the entries in the messages from growing uncontrollably, it is customary
to reduce from each entry in each message Qk+1

i→e, where e = (Xi, Xj), the value αk+1
i,j :=∑

x∈Di
Qk+1

i→e(x)

|Di| or αk+1
i,j := minx∈Di Q

k+1
i→e(x) (Farinelli et al., 2008). (Choosing the minimum

instead of the average ensures that all message entries always remain nonnegative.)
However, since in our private version of Max-Sum that we present in the next section

we utilize very large arithmetics (as common in public key cryptography), we are not in-
timidated by such an exponential growth. To that end, we state the following theorem (the
proof of which is given in Appendix A.1).

Theorem 2.1 Define the maximum value of a single constraint,

MC := max
1≤i<j≤n

max
x∈Di,y∈Dj

Ci,j(x, y) ,

and assume that the maximal degree in the constraint graph G is D + 1. Denote

qk := max
Xi

max
Xe∈Ni

max
x∈Di

Qki→e(x) (4)

where the first maximum in Eq. (4) is taken over all variable nodes Xi and the second
maximum is over all neighboring function nodes Xe. In addition, we denote

rk := max
e=(Xi,Xj)

max
`∈{i,j}

max
x∈D`

Rke→`(x) (5)

where the first maximum in Eq. (5) is taken over all function nodes Xe and the second
maximum is over the two neighboring variable nodes. Then

qk ≤MCD ·
Dbk/2c − 1

D − 1
, (6)

and

rk ≤MC ·
Ddk/2e − 1

D − 1
. (7)

316

Privacy Preserving Implementation of the Max-Sum Algorithm

A simple consequence of Theorem 2.1 is that a unified bound for both types of messages
is given by

qk, rk ≤ Bk := MCD ·
Dbk/2c − 1

D − 1
. (8)

Hence, all entries in all messages in the first K iterations of Max-Sum are integers in the
interval [0, BK].

In order to avoid ties in the calculated beliefs, random unary constraints (preferences),
with costs that are orders of magnitude lower than the binary costs, can be added by each of
the agents; by adding such small random noise constraints, the probability of ties becomes
negligible (Farinelli et al., 2008).

We would like to note that on tree-structured (acyclic) factor graphs, Max-Sum is
guaranteed to converge to the optimal solution (Rogers, Farinelli, Stranders, & Jennings,
2011). This happens because for every variable node in the graph, the algorithm simulates
a DPOP running on a pseudo-tree with no back-edges, where this node is the root. Thus,
after a linear number of steps at most, for each value, the variable node holds the cost of
the best solution in which that value is involved, and therefore (when there are no ties) it
can select the value assignment that is included in the optimal solution.

3. The P-Max-Sum Algorithm

It can be shown that a näıve execution of Max-Sum may reveal private information. For
example, assume that agent Ai is the only neighbor of agent Aj . The function e between
them is represented by the node Xe and the messages Rke→i include costs that are derived
only from the constraint between them. Thus, Ai can learn that Aj has no other neighbors.
In case Aj has additional neighbors, the messages Rke→i include costs of constraints that Aj
has with its other neighbors. Thus, Ai may learn information that should not be revealed to
it. To avoid such leakage of information, it is imperative to hide from each node Xi (which
is controlled by agent Ai) the content of the messages it receives from its neighbors in Ni.
To achieve that, any message Qki→e or Rke→i (where e = (Xi, Xj)) will be split into two
random additive shares that will be held by Ai and Aj . Each of these shares, on its own,
does not reveal any information on the underlying message. Our secure protocols will take
as input those shares, but they will make sure that none of the interacting agents reveal the
value of the complementing share so that it remains oblivious of the value of the underlying
message. Moreover, the classic Max-Sum dilemma of “which agent controls the function
node Xe?” becomes irrelevant since the operation of Xe will be jointly performed by Ai
and Aj .

Let µ be a large integer such that

µ > 2BK , (9)

where BK is a uniform bound on the size of all message entries in the first K iterations (see
Theorem 2.1 and Eq. (8)). Then each of the entries in any of the messages Qki→e or Rke→i
will be treated by our secure protocols as an element in Zµ, the additive group modulo µ.

Let Xi and Xj be two variable nodes that are connected through a constraint edge
e = (Xi, Xj), and let w denote one of the entries in one of the messages that are sent
between the corresponding two agents in iteration k (namely, one of the four messages

317

Tassa, Grinshpoun & Zivan

Qki→e, R
k
e→i, Q

k
j→e, or Rke→j). Then the two agents Ai and Aj will engage in a secure

protocol that will provide each of them a random element in Zµ, denoted si and sj , such
that si+sj = w (where all arithmetics hereinafter is modulo µ, unless stated otherwise). The
sharing procedure will be carried out for all entries in all messages independently (namely,
the selection of random shares for one entry will be independent of the selection of shares
in other entries, or the selection of shares in the same entry in another iteration).

For any 0 ≤ k ≤ K let us denote by Mk the set of all messages that are transmitted
along the edges of G′ in the kth iteration. Eqs. (1)–(3) describe how each of the messages
in Mk+1 is computed from the messages in Mk. Let Xi, Xj be two nodes in V that are
connected through an edge e = (Xi, Xj). Then each message Qki→e will be split to two
random additive shares as follows:

Qki→e = Sk,ii→e + Sk,ji→e ; (10)

the first share will be known only to Ai and the second one only to Aj . Similar sharing will
be applied to messages that emerge from function nodes; i.e.,

Rke→i = Sk,ie→i + Sk,je→i . (11)

(Recall that the messages and the shares in Eqs. (10) and (11) are vectors in Z|Di|
µ .)

Now, let Sk denote the set of all shares of Mk. Then we should devise a secure computa-
tion protocol that will take us from Sk to Sk+1. In doing so we shall assume that all agents
are curious-but-honest. Namely, their honesty implies that they will follow the protocol and
will not collude, but they will try to use their legal view in the secure protocols in order to
extract private information on constraints of other agents.

We proceed to describe our secure protocols, starting with the initial creation of shares
in iteration k = 0 (Section 3.1). Then, in the main body of our work (Section 3.2), we
describe the computation of shares in the progression between successive iterations, i.e., the
computation of Sk+1 from Sk. Finally, we discuss the secure computation of assignments
from the shares that were obtained in the last iteration (Section 3.3).

3.1 Initialization

For k = 0 all messages are zero. To create random shares of all those vectors, every pair
of neighboring agents, say Ai and Aj , generate the initial splitting to random shares. To

create a splitting as in Eq. (10), Ai and Aj create jointly a random vector S0,i
i→e ∈ Z|Di|

µ , that

will be Ai’s share, and then they set S0,j
i→e = −S0,i

i→e as Aj ’s share. Similar initial splitting
will be used for the zero message R0

e→i in Eq. (11).

In order to implement this iteration in a manner that saves communication messages,
every pair of connected agents will decide upfront on a pseudo-random number generator
(PRNG) (Goldreich, 2001) and an initial seed for that PRNG. Then, whenever required to
generate a new pseudo-random number in Zµ, each one of them will use that PRNG in order
to get the same pseudo-random number, without the need in any further communications
between them.

318

Privacy Preserving Implementation of the Max-Sum Algorithm

3.2 Progression

Here we describe the protocols that allow the agents to compute Sk+1 from Sk. We begin
with a preliminary discussion about homomorphic encryption and its usage in our protocols
(Section 3.2.1). Then we split our discussion to the two types of messages – Q-messages,
that are sent from variable nodes to function nodes (Section 3.2.2), and R-messages that
are sent from function nodes to variable nodes (Section 3.2.3).

3.2.1 Using Homomorphic Encryption

An additive homomorphic encryption is a public-key encryption function E : ΩP → ΩC

where ΩP and ΩC are the domains of plaintexts and ciphertexts, respectively, ΩP is an
additive group, ΩC is a multiplicative group, and E(x + y) = E(x) · E(y) for all x, y ∈ ΩP .
Examples for such ciphers are Benaloh (1994) and Paillier (1999) ciphers.

In our secure protocols we assume that every set of agents of the form A−i := {Aj : 1 ≤
j ≤ n, j 6= i} has an additive homomorphic cryptosystem, in which the encryption function
is denoted Ei. The pair of public (encryption) and private (decryption) keys in Ei is known
to all agents in A−i (namely, to all agents except for Ai); Ai itself, on the other hand, will
be notified only of the public encryption key in Ei. That encryption will be used by the
neighbors of Ai in G in order to convey messages between them. Since the topology of the
graph is private, the neighbors of Ai do not know each other and hence they will send those
messages through Ai; the encryption will guarantee that Ai cannot recover those messages.

Letting m(Ei) denote the modulus of Ei, 1 ≤ i ≤ n; i.e., m(Ei) is the size of the domain
of plaintexts of Ei. Then a good selection of µ (the size of the domain Zµ in which all shares
take value) would be

µ = min{m(Ei) : 1 ≤ i ≤ n} . (12)

Such a setting of µ is also consistent with the assumption (9). Indeed, typical sizes of
the modulus in public-key cryptosystems in general, and in homomorphic encryption in
particular, are 512 or 1024 bits. As for BK , it is defined in Eq. (8) and it equals roughly
MCD

K/2. In most settings in which Max-Sum is executed, the latter value is much smaller
than 512 bits. However, even if K has to be set for larger values, we can either use 1024-bit
moduli (thus increasing the security of the secure protocol at the expense of increasing also
the computation and communication costs), or apply one of the two corrective mechanisms
(for preventing explosion in the message entries) as described in Section 2.3. To keep our
discussion simple and focused we stick hereinafter to our assumption (9).

3.2.2 Computing Shares in Messages that emerge from a Variable Node

Fix a variable node Xi. As discussed earlier, for each Xe ∈ Ni (namely, a function node
adjacent to the variable node Xi in G′), Xi needs to send to Xe the vector Qk+1

i→e :=∑
Xf∈Ni\{Xe}R

k
f→i (see Eq. (1)). Let us denote t := |Ni| and let 1 ≤ j1 < j2 < · · · < jt ≤ n

be the indices of all variables that are constrained with Xi so that Ni = {Xe` : 1 ≤ ` ≤ t},
where e` = (Xi, Xj`). Let us concentrate on one of the function nodes adjacent to Xi, say
Xe1 . Then

Qk+1
i→e1 =

t∑
`=2

Rke`→i . (13)

319

Tassa, Grinshpoun & Zivan

We start by dealing with the case t ≥ 2. In that case, the sum on the right-hand side of
Eq. (13) is non-empty. Each of the vectors in the sum on the right-hand side of Eq. (13) is

shared between Ai and Aj` , 2 ≤ ` ≤ t. Therefore, the two shares in Qk+1
i→e1 := Sk+1,i

i→e1 +Sk+1,j1
i→e1

(see Eq. (10)) can be computed as follows:

• The share that Ai will get, denoted Sk+1,i
i→e1 , is the sum of the t− 1 shares that Ai has

for the t− 1 messages Rke`→i, 2 ≤ ` ≤ t. Ai can compute it on its own.

• The share that Aj1 will get, Sk+1,j1
i→e1 , is the sum of the t − 1 shares that Aj2 , . . . , Ajt

have in iteration k for the t − 1 messages Rke`→i, 2 ≤ ` ≤ t. This is done in a secure
manner as described in Protocol 1 below.

Protocol 1 describes the process of share generation in messages that emerge from a fixed
variable node, Xi. Let Sk,ie`→i and Sk,j`e`→i be the shares that Ai and Aj` hold, respectively, in

Rke`→i, 1 ≤ ` ≤ t. Those shares will be the inputs that Ai and its neighbors Aj` , 1 ≤ ` ≤ t,
bring to Protocol 1. The output to Ai will be the shares Sk+1,i

i→e` for each 1 ≤ ` ≤ t. The

output to the neighboring agent Aj` , 1 ≤ ` ≤ t, will be Sk+1,j`
i→e` , which is the complement

share in Qk+1
i→e` .

In Steps 1–2 of Protocol 1, all neighbors send to Ai their shares, encrypted with Ei, to
prevent Ai from recovering them. (The encryption Ei(·) is applied independently on each

of the |Di| components of the share Sk,j`e`→i.) The subsequent loop in Steps 3–6 describes
the interaction of Ai vis-a-vis each of the neighboring agents Aj` , 1 ≤ ` ≤ t. In Step 4, Ai
computes its share in Qk+1

i→e` . In Step 5, Ai sends to Aj` a message W` where, owing to the

additive homomorphic property of Ei, W` = Ei(
∑

1≤`′ 6=`≤t S
k,j`′
e`′→i

). Hence, Aj` recovers in

Step 6 its share Sk+1,j`
i→e` =

∑
1≤`′ 6=`≤t S

k,j`′
e`′→i

as required.

Protocol 1 Computing shares in messages that emerge from a variable node
1: for ` = 1, . . . , t do
2: Aj` sends to Ai the encryption of its share Ei(Sk,j`e`→i).
3: for ` = 1, . . . , t do
4: Ai computes Sk+1,i

i→e` ←
∑

1≤`′ 6=`≤t S
k,i
e`′→i.

5: Ai computes W` :=
∏

1≤`′ 6=`≤t Ei(S
k,j`′
e`′→i) and sends it to Aj` .

6: Aj` sets Sk+1,j`
i→e` ← E

−1
i (W`).

Note that if the graph topology was not private, then each of the neighbors Aj` of Ai
could have obtained its share Sk+1,j`

i→e` if all other neighboring agents of Ai would have sent
their shares directly to Aj` , in the clear, without involving Ai. However, such a course of
action would reveal to each neighbor of Ai the entire neighborhood of Ai. The solution
that we suggest here hides the topology by using Ai as a proxy for those messages. Using
encryption hides the content of the sent shares from Ai. Using homomorphic encryption
allows Ai to perform the computation in Step 5 and then send to Aj` just a single message.
Without the homomorphic property Ai would have needed to send all t − 1 messages to
Aj` , thus revealing to Aj` the number of Ai’s neighbors.

We now attend to the case where t = 1. This case calls for a special attention since the
sum in Step 4 and the product in Step 5 are empty. We note that in this case the message

320

Privacy Preserving Implementation of the Max-Sum Algorithm

to be sent, Qk+1
i→e1 , is zero (since the sum in the equation that defines it, Eq. (1), is empty).

However, Ai does not wish to reveal the fact that this message is zero to Aj1 since then Aj1
will learn that it is the only neighbor of Ai. Therefore, we still carry out Steps 1–2, even
though they are redundant, in order to hide from Aj1 the fact that it is the single neighbor
of Ai. Then, instead of Step 4 in Protocol 1, Ai will generate a new random share for itself,
denoted Sk+1,i

i→e1 , and in Step 5, Ai will set W1 := Ei(−Sk+1,i
i→e1). Hence, Aj1 will recover in

Step 6 the share Sk+1,j1
i→e1 = −Sk+1,i

i→e1 ; the sum of those two shares is zero, as required, and
we achieve it without revealing to Aj1 the fact that it is the only neighbor of Ai.

In view of the discussion in Section 3.2.1, if needed then Protocol 1 may be augmented
by a post-processing procedure in which every pair of neighbors Ai and Aj compute αk+1

i,j

and then Aj decreases αk+1
i,j from its share Sk+1,j

i→e . We omit further details.

3.2.3 Computing Shares in Messages that emerge from a Function Node

Fix a function node Xe, where e = (Xi, Xj). Eqs. (2)–(3) describe the messages emerging
from Xe. Those messages consist of |Di|+|Dj | scalars, that Ai and Aj have to share between
themselves. Let us concentrate on one of those scalars, say Rk+1

e→i(x) for some x ∈ Di. The
secure multiparty problem that Ai and Aj are facing is as follows: if sk,i(y) and sk,j(y) are
the two scalar additive shares that Ai and Aj hold in Qkj→e(y), for some y ∈ Dj , then they

need to get two random additive shares sk+1,i(x) and sk+1,j(x) so that

sk+1,i(x) + sk+1,j(x) = Rk+1
e→i(x) = min

y∈Dj

[
Ci,j(x, y) + sk,i(y) + sk,j(y)

]
(14)

where all additions are modulo µ, but when computing the minimum in Eq. (14), the
numbers in the brackets are viewed as nonnegative integers.

The above computational problem may be viewed as a problem of secure two-party
computation. Assume that two mutually non-trusting players, Alice and Bob, hold private
inputs x and y respectively, and they wish to compute z := f(x, y) without revealing the
value of their private inputs to each other. Yao’s garbled circuit protocol (Yao, 1982)
performs such computations with perfect privacy, in the sense that at its completion, either
Alice or Bob or both of them learn the output z; however, Alice does not learn anything
on Bob’s input y beyond what is implied by z and her input x, and similarly for Bob.
The protocol assumes that f can be computed by a Boolean circuit and it accomplishes the
privacy goal by “garbling” the inputs and outputs of each gate in the circuit. Yao’s protocol
can be used in order to compute the shares in the left hand side of Eq. (14) with perfect
privacy. Indeed, in order to compute the shares sk+1,i(x) and sk+1,j(x) for a given x ∈ Di,
the input that Ai will provide to the arithmetic circuit will be {sk,i(y) : y ∈ Dj} as well as
an already selected random share sk+1,i(x) ∈ Zµ. Aj ’s input will be {Ci,j(x, y) + sk,j(y) :
y ∈ Dj}. The output, which will go only to Aj , will be the value sk+1,j(x) for which
sk+1,i(x) + sk+1,j(x) = Rk+1

e→i(x).

However, implementing Yao’s protocol for each entry in each transmitted message emerg-
ing from a function node in each of the algorithm’s iterations is impractical due to the hefty
computational toll of that protocol. Therefore, we proceed to describe a much simpler
and more efficient protocol that Ai and Aj can execute for carrying out the same secure
computation. Protocol 2, which we describe below, is not perfectly secure as it leaks some

321

Tassa, Grinshpoun & Zivan

excessive information. But, as we argue later on, that excessive information is benign and
of no practical use; on the other hand, the gain in efficiency (in comparison to a solution
that relies on Yao’s garbled circuit protocol) is enormous since choosing Protocol 2 makes
the difference between a theoretical solution and a practical one. (We remind the reader
that the privacy discussion is given in Section 4, while the computational cost analysis is
given in Section 6.)

Protocol 2 Computing shares in messages that emerge from a function node

1: Aj sends to Ai the value Ei(sk,j(y)) for all y ∈ Dj .
2: Ai selects uniformly at random r ∈ Zµ.
3: Ai computes W (y) := Ei(sk,j(y)) · Ei(Ci,j(x, y) + sk,i(y) + r) for all y ∈ Dj .
4: Ai sends a permutation of {W (y) : y ∈ Dj} to Aj .
5: Aj computes w(y) := E−1i (W (y)) = Ci,j(x, y) + sk,i(y) + sk,j(y) + r for all y ∈ Dj .
6: Aj computes

w := min∗{w(y)|y ∈ Dj} :=

=

{
min{w(y) | y ∈ Dj} max{w(y)|y ∈ Dj} −min{w(y)|y ∈ Dj} ≤ (µ− 1)/2
min{w(y) | w(y) > (µ− 1)/2} otherwise

7: Aj generates a random share for itself sk+1,j(x) ∈ Zµ.
8: Aj sends to Ai the value w′ = w − sk+1,j(x).
9: Ai computes sk+1,i(x) = w′ − r.

All arithmetic operations in Protocol 2, that we proceed to describe and discuss, are
operations in Zµ (namely, operations modulo µ), unless otherwise stated.

In Step 1 of Protocol 2, Aj sends to Ai an encryption by Ei of its share sk,j(y) for all
y ∈ Dj . Since Ai does not have the decryption key of Ei, it cannot decrypt Ei(sk,j(y)) in
order to recover Aj ’s private shares. However, as Ei is homomorphic, Ai can perform the
needed arithmetics on the received shares.

In Step 2, Ai selects at random a masking scalar r ∈ Zµ that will be used to protect
private information from Aj , as we shall see shortly. Then, the computation in Step 3
results, for each y ∈ Dj , in a value W (y) that equals Ei(w(y)) where

w(y) := Ci,j(x, y) + sk,i(y) + sk,j(y) + r , (15)

owing to the additive homomorphism of Ei. Since sk,i(y) + sk,j(y) = Qkj→e(y), the value
of w(y) in Eq. (15) equals the corresponding argument in the minimum on the right-hand
side of Eq. (2),

m(y) := Ci,j(x, y) +Qkj→e(y) , (16)

shifted by the random mask r. Specifically,

w(y) = m(y) + r mod µ . (17)

In Step 4, Ai sends all W (y), y ∈ Dj , to Aj but it randomly permutes them so that
Aj will not be able to associate any value of W (y) to any assignment y ∈ Dj . After Aj
decrypts the received values it recovers in Step 5 all values w(y), y ∈ Dj .

Before moving on to discussing Step 6 of Protocol 2, we state the following general
lemma.

322

Privacy Preserving Implementation of the Max-Sum Algorithm

Lemma 3.1 Let M and µ be two integers such that M ≤ (µ − 1)/2. Assume that m1 ≤
m2 ≤ · · · ≤ mk are integers from the range [0,M] and let r ∈ Zµ. Set ni = mi + r mod µ,
1 ≤ i ≤ k. Let minni and maxni be the minimum and maximum of the set of integers
{n1, . . . , nk}, and define

min∗ ni =

{
minni maxni −minni ≤ (µ− 1)/2
min{ni | ni > (µ− 1)/2} otherwise

(18)

Then

minmi = m1 =

{
min∗ ni − r min∗ ni − r ≥ 0
min∗ ni − r + µ otherwise

(19)

The proof of the lemma is given in Appendix A.2. What Lemma 3.1 says is very simple:
If we take a sequence of integers m1 ≤ · · · ≤ mk and apply on it a simple form of encryption,
by shifting each of the integers by a fixed shift r modulo some modulus µ, we will be able
to identify in the resulting set of integers (denoted {n1, . . . , nk}) the term that corresponds
to the minimal term in the original sequence m1 if the known bound M on that sequence
is smaller than (µ − 1)/2. Eq. (18) tells us what is the term in the shifted set that is the
image of m1, while Eq. (19) tells us how to recover m1 from its shifted value, if we know
the shift r.

Example. Assume that M = 10 and that the original sequence is m1 = 1, m2 = 5, and
m3 = 8. Assume that we try to “encrypt” this sequence in Zµ for a too small µ, say µ = 12
(such a µ is too small in this context since it does not satisfy µ ≥ 2M + 1). Suppose that
the chosen value of r was r = 9. Then the resulting set of shifted values would be {2, 5, 10}.
It is impossible to infer from this set which of its terms is the image of the original minimal
term m1, since that set could have been originated from:

1. The sequence (0, 3, 8) with r = 2 or (1, 4, 9) with r = 1 or (2, 5, 10) with r = 0; in all
of those cases, it is the shifted value 2 that is the image of the minimal term m1 in
the original sequence.

2. The sequence (0, 5, 9) with r = 5 or (1, 6, 10) with r = 4; in all of those cases, 5 is the
image of m1.

3. The sequence (0, 4, 7) with r = 10 or (1, 5, 8) with r = 9 or (2, 6, 9) with r = 8 or
(3, 7, 10) with r = 7; in all of those cases, 10 is the image of m1.

Now let us assume that we use µ = 30 ≥ 2M + 1, and we picked r = 27. In that case the
sequence (1, 5, 8) will be mapped to the set {2, 5, 28}. If we know that M = 10 then it is
clear that 2 cannot be the image of m1 since then 28 would have to be the image of m3

and then m3 −m1 = 26; that is impossible since we know that m1,m2,m3 ∈ [0,M = 10].
Similarly, 5 cannot be the image of m1. Then here, owing to the fact that µ ≥ 2M + 1, we
can identify the image of m1 as 28. The possible original sequences are (0, 4, 7), (1, 5, 8),
(2, 6, 9) or (3, 7, 10) with r = 28, r = 27, r = 26 or r = 25, respectively. Note that since r
was chosen uniformly at random, all of those sequences are equally probable and there is
no way to distinguish between them. 2

323

Tassa, Grinshpoun & Zivan

We now return to discuss Step 6 of Protocol 2. This is the only step in the protocol in
which the arithmetics is the standard one of integers, and not modular arithmetics; namely,
here we view all values w(y), y ∈ Dj , which are given in Eq. (17), as integers. In view
of our discussion at the end of Section 2.3, all values m(y), Eq. (16), are bounded to the
interval [0, BK], where BK is defined in Eq. (8) and K is the overall number of iterations.
Recall also our assumption in Eq. (9), which implies that BK ≤ (µ − 1)/2. In Step 6, Aj
computes w := min∗{w(y)|y ∈ Dj}, where the operator min∗ is as the one that we defined
in Eq. (18). In view of Lemma 3.1, we infer that min{m(y)|y ∈ Dj} equals either w − r or
w − r + µ. In either case, min{m(y)|y ∈ Dj} = w − r in Zµ. Therefore, the computations
that Aj and Ai carry out in Steps 7–9 end up with them holding random shares, sk+1,i(x)
and sk+1,j(x) respectively, whose sum modulo µ equals min{m(y)|y ∈ Dj}, as required.

3.3 Termination

After completing K iterations, the sum of the last incoming messages from all function
nodes that are adjacent to Xi is Mi :=

∑t
`=1R

K
e`→i (recall that Ni = {Xe` : 1 ≤ ` ≤ t},

where e` = (Xi, Xj`)). Then, Ai needs to assign Xi the value x for which the corresponding

entry in Mi is minimal. RKe`→i = SK,ie`→i +SK,j`e`→i where SK,ie`→i is held by Ai and SK,j`e`→i is held
by Aj` . We proceed to describe Protocol 3 that performs that computation securely.

In Steps 1–2, all agents that are connected to Ai send to it an Ei-encryption of their
share in the last message sent from their respective function node to Xi. (Recall that the
encryption is applied on each entry of the vector independently.) Then, in Step 3, Ai selects

a random masking scalar r ∈ Zµ, defines Sr = (r, . . . , r) ∈ Z|Di|
µ , and computes

M̂ := Ei(Sr) ·
t∏

`=1

Ei(SK,j`e`→i) · Ei(
t∑

`=1

SK,ie`→i) ,

where the multiplication of vectors is done component-wise. Owing to the homomorphic
property of Ei, the vector M̂ equals Ei(Sr+

∑t
`=1 S

K,j`
e`→i+

∑t
`=1 S

K,i
e`→i) = Ei(Sr+Mi), where

Mi is as defined above. In Step 4, Ai sends a secret and random permutation of the entries
of M̂ to one of its neighbors, say Aj1 . Then, Aj1 decrypts it (Step 5) and finds the index h
of the entry in the decrypted vector in which the min∗ of the vector entries is obtained; the
min∗ of a set of values in Zµ is as defined in Eq. (18). Aj1 notifies Ai of the found index h
(Step 6). Finally (Step 7), Ai assigns to Xi the value x ∈ Di which was mapped by π to h;
in view of Eq. (9) and Lemma 3.1 this is the x for which Mi(x) is minimal.

We conclude this section with two notes:

3.3.1 Controlling Function Nodes

Assume that agents Ai and Aj are connected through a function node Xe in the factor graph
G′. When implementing Max-Sum, there is a need to decide which of those two agents
controls Xe. In P-Max-Sum the question of who controls the function node becomes
irrelevant since, by the privacy-preserving design of the algorithm, the operation of Xe is
performed jointly by Ai and Aj .

324

Privacy Preserving Implementation of the Max-Sum Algorithm

Protocol 3 Computing the best assignment for Xi

1: for ` = 1, . . . , t do
2: Aj` sends to Ai the encryption of its share Ei(SK,j`e`→i).

3: Ai selects uniformly at random r ∈ Zµ and computes M̂ = Ei(Sr) ·
∏t
`=1 Ei(S

K,j`
e`→i) ·

Ei(
∑t
`=1 S

K,i
e`→i), where Sr = (r, . . . , r) ∈ Z|Di|

µ .

4: Ai selects a secret random permutation π on Di and sends π(M̂) to Aj1 .
5: Aj1 decrypts the entries of the received vector.
6: Aj1 computes the index h of the entry in which the min∗ of the decrypted vector is obtained

and notifies Ai of h.
7: Ai assigns to Xi the value that was mapped by π to h.

3.3.2 Handling Unary Costs

If, in addition to the binary constraints there are also unary costs, then they too may be
easily handled by our solution. Assume that agent Ai has a unary cost of Ci(x) whenever
its variable Xi is assigned the value x ∈ Di, 1 ≤ i ≤ n. Then in Eq. (14), agent Ai replaces
its share sk,i(y) with sk,i(y) + Ci(x) while Aj replaces sk,j(y) with sk,j(y) + Cj(y). That
modification will replace the cost Ci,j(x, y), for the possible assignment of x to Xi and y to
Xj , with Ci,j(x, y) +Ci(x) +Cj(y). As such modification does not entail any new exchange
of data between the agents, it offers the same privacy guarantees as in the case of binary
costs only.

4. Correctness and Privacy

Here we prove that algorithm P-Max-Sum perfectly and privately simulates Max-Sum.

Theorem 4.1 Algorithm P-Max-Sum perfectly simulates Max-Sum in the following sense.
Let Xi and Xe be neighboring nodes in the factor graph G′, where e = (Xi, Xj). Let Sk,ii→e
and Sk,ie→i be the corresponding two shares that Xi holds after the completion of the kth

iteration in P-Max-Sum, and let Sk,ji→e and Sk,je→i be the two shares held by Xj. Denote
also by Qki→e and Rke→i the messages sent between Xi and Xe in the kth iteration of Max-
Sum. Then they satisfy Eqs. (10) and (11). Moreover, after completing K iterations, both
algorithms will make the same assignment choices for all variables.

Proof. The correctness claims of the theorem follow directly from the description and
analysis of Protocols 1–3. 2

Theorem 4.2 Assuming that the ciphers Ei, 1 ≤ i ≤ n, are secure then Algorithm P-
Max-Sum maintains topology, constraint, and decision privacy. If in addition we assume
a one-time intervention of a trusted coordinator then P-Max-Sum also maintains agent
privacy.

Proof. First, we observe that P-Max-Sum does not preserve agent privacy due to the
need for generating the private keys in the encryption functions Ei. This problem can be
resolved by the use of a trusted coordinator that intervenes only in the initialization stage.
Each agent Ai will tell the coordinator who are its neighbors. The coordinator can then

325

Tassa, Grinshpoun & Zivan

create, for each 1 ≤ i ≤ n, key pairs for Ei and send them to all of Ai’s neighbors, while Ai
itself will get only the public key.2

We proceed to show that each of the protocols of which P-Max-Sum consists preserves
topology, constraint, and decision privacy, as well as agent privacy under the above as-
sumption of a trusted coordinator. In addition, we shall prove that all shares are uniformly
random in Zµ, namely, that each entry in every share can be any element of Zµ in equal
probabilities.

The first protocol is the initiation protocol that was described in Section 3.1. Here there
is no leakage of information since every agent communicates only with its neighbors, and the
only values that are being communicated between them are random numbers. In addition,
it is clear that all shares at this point are uniformly random.

As for Protocol 1, it too does not make any agent any wiser than it was before. Indeed,
the only information that is communicated between agents in that protocol is in Steps 1–2
and then in Step 5. The communication in Steps 1–2 is encrypted by Ei, which Ai cannot
decipher. As for the communication in Step 5, it ends with Aj` learning the sum of random
shares. Hence, none of those communications reveal any information about constraints or
about the corresponding R or Q messages, and the resulting shares are still uniformly and
randomly distributed.

In addition, both communications are between neighbors (hence, there is no topology
or agent information leakage). Note that we devised a special treatment for the case t = 1
in order to prevent any agent from learning that it is the only neighbor of another agent.
Since Ai performs the multiplication in Step 5 and it sends to Aj` only a single message
W`, no neighbor of Ai learns how many neighbors Ai has.

Next, we discuss Protocol 2. Since it only involves two neighboring agents, there is no
topology or agent information leakage. The only information that Ai receives in the course
of the protocol is the encryption of Aj ’s shares by Ei. Hence, under our assumption on
the security of Ei, Ai can extract no information from the data that it receives. As for
Aj , it gets all values w(y) = m(y) + r, y ∈ Dj (see Eq. (17)). However, as Ai used a
random permutation in Step 4, Aj cannot associate any of the values {w(y)|y ∈ Dj} with
any y ∈ Dj . In addition, the usage of the random shift r prevents Aj from learning the
actual values of m(y), y ∈ Dj (see Eq. (16)). However, Aj may learn some information on
m(y), which renders Protocol 2 not perfectly secure. Later on we characterize this leakage
information.

Finally, we discuss the termination protocol, Protocol 3. Here too, there is no topology or
agent information leakage since all communication is between neighbors. As in the previous
protocols, Ai cannot use the information that it receives to extract sensitive information
on its neighbors since it is encrypted by Ei. As for the information that is passed to Aj1 it
is protected by the same mechanisms as before – random shifts and random permutations.
Finally, no agent apart from Ai may learn any information on Ai’s assignment decision for
Xi since the only agent that receives data that relates to that selection is Aj1 , but it too
remains oblivious of the choice made thanks to the random and secret permutation π. 2

2. A setting of secure multi-party computation in which there is a coordinator to whom some computations
are exported is referred to as “the mediated model”; see e.g., the works of Alwen, Shelat, and Visconti
(2008) and Alwen, Katz, Lindell, Persiano, Shelat, and Visconti (2009).

326

Privacy Preserving Implementation of the Max-Sum Algorithm

We now turn to characterize the information that Aj may extract on the values m(y),
y ∈ Dj , that were defined in Eq. (16). We recall that m(y) are integers in the range [0, Bk],
where Bk is defined in Eq. (8). Denote k := |Dj | and assume that m1 ≤ m2 ≤ · · · ≤ mk is
an ordering of the set {m(y)|y ∈ Dj}. Then, as Aj gets a random and secret permutation
of {w(y) = m(y) + r|y ∈ Dj}, and it knows that all of m(y) are bounded to [0, Bk] where
Bk ≤ (µ − 1)/2, it can find the min∗ of the latter set of values (see Step 6 of Protocol 2)
and recover from it all differences m`+1 −m`, 1 ≤ ` < k. In addition, it can deduce that
m1 can be any of the values in the set {0, 1, . . . , Bk − (mk −m1)}, with equal probabilities.
Going back to the example after Lemma 3.1, the usage of the random shift r modulo µ = 30
enabled us there to deduce that the set of shifted values {2, 5, 28} originated from one of the
original sequences (0, 4, 7), (1, 5, 8), (2, 6, 9) or (3, 7, 10), but they were all equally probable
(in that example Bk = 10 and mk −m1 = 7).

Such information leakage does not enable Aj to infer any information on constraints
of Ai or any other agent, because the usage of the random permutation prevents Aj from
associating any of the values m` with any y ∈ Dj . However, by comparing messages that
are sent from Ai to Aj in Step 4 of Protocol 2, in subsequent iterations, Aj may infer that
two such messages are identical. Hence, if the algorithm converges, Aj may detect that. A
detection of early convergence may imply that the factor graph has a small number of cycles
or that it is even a tree. Such inferences, even though they do not allow Aj to draw any
conclusions on existence of specific edges, are inconsistent with perfect topology privacy. If
such inferences are to be avoided, then finding the minimum in Protocol 2 should be carried
out differently. For example, instead of sending the whole set of values {W (y) : y ∈ Dj},
Ai may retain those values and perform on them oblivious sorting by sending to Aj in each
time a pair of encrypted values to compare, where in each such query it uses a new random
shift r. Such a procedure completely prevents the topology information leakage described
above, but it requires more communication rounds.

Concluding remarks. There exist several complete privacy-preserving DCOP algorithms.
While there is no point to compare their efficiency to that of P-Max-Sum (for obvious scal-
ing problems of complete algorithms), it is interesting to observe their privacy features. The
algorithm P-SyncBB (Grinshpoun & Tassa, 2014) preserves constraint and topology privacy,
but not agent or decision privacy. The enhanced P-SyncBB (Grinshpoun & Tassa, 2016)
preserves constraint, topology and decision privacy, but not agent privacy. As for the study
of Léauté and Faltings (2013), they presented a sequence of three privacy-preserving ver-
sions of DPOP: P-DPOP(+), P3/2-DPOP(+), and P2-DPOP(+). All three versions preserve
agent privacy and partial topology privacy. The least private and most efficient version,
P-DPOP(+), preserves constraint and decision privacy only partially, as it may leak related
information. P3/2-DPOP(+) preserves decision privacy fully but it still respects constraint
privacy only partially. The last version, P2-DPOP(+) (most private, least efficient), pre-
serves constraint and decision privacy fully.

5. Private Versions of Variants of Max-Sum

In this section we discuss privacy-preserving versions of variants of Max-Sum.

327

Tassa, Grinshpoun & Zivan

5.1 Finding Anytime Solutions for Max-Sum

The basic Max-Sum algorithm performs a preset number K of iterations and then infers
the solution, which it outputs from the results of the last iteration only. However, like other
non-monotonic incomplete DCOP algorithms, it may be possible that a better solution could
have been found by Max-Sum in an earlier iteration of its run. The best solution visited
throughout the run of the algorithm is the anytime solution. It is commonly preserved
using an anytime mechanism as the one proposed by Zivan et al. (2014). In general, in
order to report the best solution visited, the Max-Sum algorithm needs to perform the
termination step after each iteration, compute the overall cost, which results from the
selected assignments at that point, and if that overall cost is the minimal so far, record that
cost and the corresponding assignments.

A privacy-preserving version of the Max-Sum algorithm that reports the anytime solu-
tion can be achieved by introducing modifications to P-Max-Sum as we describe below. In
what follows we assume that all agents know each other and that X1, . . . , Xn is a publicly
known ordering of all variables. We shall refer hereinafter to this privacy-preserving version
of the Max-Sum algorithm that reports the anytime solution as P-Max-Sum AT.

1. The agents perform the termination stage, as described in Section 3.3, after each
iteration. In particular, Protocol 3 is executed for each agent after each iteration.

2. As a consequence, each of the agents discovers the currently best assignment for its
variable. We denote the assignment that was found for Xi by ai, 1 ≤ i ≤ n.

3. Assume that Xi and Xj are two neighboring nodes in the constraint graph and that
i < j. Then agent Ai sends to Aj its currently selected assignment ai.

4. Each agent Aj , j ≥ 2, computes bj :=
∑

iCi,j(ai, aj) where the sum is over all i < j
such that Xi and Xj are neighbors in the constraint graph.

5. Hence, b :=
∑n

j=2 bj is the overall cost that the current assignment (X1 = a1, . . . , Xn =
an) causes. The agents engage in a secure summation protocol that ends with A1

recovering b, but no agent learns anything about the value bj of other agents (see
(Grinshpoun & Tassa, 2014, Protocol 2)).

6. Agent A1 checks whether the current overall cost b is the minimal so far. If it is, A1

informs all its peers to store their current assignments as the currently best solution.

7. After K iterations the algorithm stops. At this stage, each agent Ai has an assignment
ai, 1 ≤ i ≤ n, such that (a1, . . . , an) is the best solution that was visited throughout
the execution of the algorithm.

5.1.1 Privacy

P-Max-Sum AT respects constraint and topology privacy in similarity to P-Max-Sum,
since the additional protocol steps do not reveal any information that relates either to
topological properties of the constraint graph nor to constraint values. We proceed to
discuss the remaining two notions of privacy.

328

Privacy Preserving Implementation of the Max-Sum Algorithm

P-Max-Sum AT does not respect agent privacy (in similarity to P-Max-Sum in the
absence of a trusted coordinator), because of the need to create an ordering of all agents.
By using a trusted coordinator, that intervenes in each iteration in order to perform the
summation and recovery of the current overall cost, we may respect agent privacy as well.

In contrast to P-Max-Sum that respected assignment/decision privacy, P-Max-Sum AT
does not respect that type of privacy. It fails to do so, at least partially, since every agent Aj
gets to know the assignments of its neighbors that precede it in the order. (Note, however,
that no agent learns assignment values of variables with which it is not constrained.)

The above implementation of P-Max-Sum AT may be enhanced so that it respects
also assignment/decision privacy. However, such an enhancement imposes a dear toll in
communication costs. We therefore proceed to describe it only briefly.

Let Ci,j be the constraint matrix between two agents Ai and Aj . It is a matrix of
dimensions |Di| × |Dj | where the (k, `)th entry in it equals the constraint value if Xi is
assigned the kth value in Di and Xj is assigned the `th value in Dj . If Xi and Xj are not
constrained then Ci,j is the zero matrix. Agents Ai and Aj can then compute two matrices
of the same dimensions, C1

i,j and Cni,j with entries in Zµ, such that all entries in C1
i,j are

selected uniformly at random from Zµ and then Cni,j := Ci,j − C1
i,j mod µ.

After each iteration, every pair of agents (even pairs of agents that are not constrained)
will reconstruct their constraint matrix Ci,j by selecting a new random ordering of their
domains Di and Dj and then will compute a new random splitting of Ci,j as described above
into C1

i,j and Cni,j . They will send to A1 the share matrix C1
i,j and to An the other share

matrix Cni,j . In addition, Ai will inform both A1 and An of the index ui,j of its assignment
selection at that stage, ai, in the new random ordering, and Aj will inform both A1 and An
of the index vi,j of its assignment selection at that stage, aj .

After A1 and An receive the above inputs from all
(
n
2

)
pairs of agents, A1 may compute

the following sum

b1 :=
∑

1≤i<j≤n
C1
i,j(ui,j , vi,j) ,

while An can compute

bn :=
∑

1≤i<j≤n
Cni,j(ui,j , vi,j) ,

where all additions are modulo µ. Finally, An sends to A1 the value bn and A1 computes
b = b1 + bn mod µ. It is easy to see that b equals the overall cost that results from the
current assignment selection (X1 = a1, . . . , Xn = an). It is also clear that by using a new
random secret sharing for the constraint matrix in each iteration as well as new random
orderings of the domain values, neither A1 nor An can extract any constraint information
or assignment information. Our demand of performing the above procedure for all

(
n
2

)
pairs

of agents also prevents A1 and An from learning topology information.

5.2 Bounded Max-Sum

Bounded Max-Sum (Rogers et al., 2011) is a version of Max-Sum that starts with a
preliminary phase in which the factor graph is reduced to a tree subgraph, and then the
Max-Sum algorithm is executed on that tree subgraph until it converges to the optimal
solution for this tree structured subgraph. The rationale behind this approach is that by

329

Tassa, Grinshpoun & Zivan

implementing such a preprocessing phase, the protocol is guaranteed to converge in a linear
number of iterations to the optimal solution of the problem represented by the subgraph.
By accounting for the worse case (highest cost) for every edge removed from the original
graph, we can calculate a bound on the distance of the cost of the solution found from the
cost of the optimal solution for the original problem.

In more detail, every pair of neighboring agents selects a weight for the edge between
them, which is a function of the cost values for the binary constraint between them, and then
all of the agents find a Maximum Spanning Tree (MST) for the factor graph with those
weights. Different studies considered different selections for those edge weights (Rogers
et al., 2011; Rollon & Larrosa, 2012). However, the manner in which the edge weights are
selected is immaterial for our present discussion.

When privacy becomes a concern, the agents need to solve the following secure multi-
party computation problem. Each of the agents controls its own variable node in the
constraint graph, and it knows the weights only of the edges that are adjacent to its node;
they then need to find an MST for that distributed graph in a way that preserves their
private information (being their local topology and edge weight information). A solution
to that problem should provide to each agent the list of edges adjacent to its node that it
should remove from the constraint graph. From that point on, the agents may proceed with
the protocol P-Max-Sum, applied to the new reduced tree graph.

Problems of secure multi-party computations on distributed graphs are of much interest
and importance. Nonetheless, due to their apparent difficulty, very few studies were pub-
lished so far on such problems. The first such study was by Brickell and Shmatikov (2005)
who presented new algorithms for privacy-preserving computation of the all-pairs-shortest-
distance and single-source-shortest-distance problems. A more recent study is that of Aly,
Cuvelier, Mawet, Pereira, and Vyve (2013) who designed secure multi-party computation
techniques for the shortest path and the maximum flow problems. Another example is the
work of Keller and Scholl (2014) who presented oblivious implementations of several data
structures for secure multi-party computation and then offered a secure computation of
Dijkstra’s shortest path algorithm on general graphs, where the graph structure is secret.

However, the problem of privacy-preserving computation of the MST was never ad-
dressed until the recent study by Laud (2015). In that study, Laud shows how the MST-
finding algorithm by Awerbuch and Shiloach (1987) can be executed without revealing any
details about the underlying graph, beside its size.3 The size in our case equals the number
of agents. As our basic version of the P-Max-Sum protocol assumes that that number is
known to all, such leakage of information does not pose any problem.

Concluding remarks. Since Bounded Max-Sum differs from Max-Sum only in a pre-
liminary preprocessing stage, it is possible to solve the MST computation problem by a
one-time intervention of a trusted coordinator. However, while previously the coordinator
was trusted only with information on the graph topology, here it must be trusted also with
the weight information. Therefore, in cases where the coordinator may be trusted also with
that additional information, the MST computation problem can be solved without resorting
to a secure multi-party protocol (such as Laud’s). However, if it cannot be trusted with

3. Note that we are interested in finding the Maximum Spanning Tree, while Laud considered the problem
of computing the Minimum Spanning Tree. However, each of those problems can be easily reduced to
the other by negating the edge weights.

330

Privacy Preserving Implementation of the Max-Sum Algorithm

that additional information, or in the absence of such a trusted coordinator, then Laud’s
protocol (or any other algorithm for that purpose that might be developed in the future) is
the way to go.

5.3 Max-Sum AD

The Max-Sum AD algorithm (Zivan & Peled, 2012) is an implementation of Max-Sum
with alternating direction of messages. It operates as follows:

• Each agent has a unique index, so that the set of indices induces a total order on the
set of agents.

• The protocol’s run is separated into phases, where each phase consists of k0 consecutive
iterations, k0 being a publicly known fixed integer. A customary setting of k0 is k0 = n
(number of agents).

• The odd phases are upstream phases, while the even ones are downstream. In an
upstream phase, messages are computed as described in Section 2.3 only in the up-
stream direction, while in the opposite direction the messages are “frozen”, as we
explain below. In downstream phases, the opposite occurs.

• Assume that Xi and Xj are neighboring agents, which are connected through the
function node Xe. Assume further that i < j (i and j are the order-inducing indices).
Then in an upstream phase, messages will be computed and sent from Xi to Xe and
from Xe to Xj , as described in Eqs. (1)–(3) in Section 2.3. However, during such a
phase, the messages from Xj to Xe and from Xe to Xi will be either zero (in the first
phase) or a replication of the last messages along those edges that were sent during
the preceding downstream phase.

Max-Sum AD guarantees convergence in each phase of the algorithm, though not nec-
essarily to the optimal solution. Unlike Bounded Max-Sum, it does so without eliminating
edges of the factor graph.

In view of the above, modifying P-Max-Sum so that it implements Max-Sum AD only
requires creating an ordering of the agents. In the basic version of P-Max-Sum that does
not respect agent privacy, such an ordering can be jointly computed by the agents in a
public manner. In the version of P-Max-Sum that assumes a one-time intervention of a
trusted coordinator in order to achieve also agent privacy, the coordinator can generate
such an order and then inform each agent of its index in the order.

5.4 Max-Sum ADVP

The Max-Sum ADVP algorithm (Zivan & Peled, 2012) is a variant of Max-Sum AD that
adds value propagation. While Max-Sum AD guarantees convergence in each phase of the
algorithm, Max-Sum ADVP guarantees cross-phase convergence and evidently produces
better results than all other versions of Max-Sum (Zivan & Peled, 2012; Zivan, Okamoto,
Parash, Cohen, & Peled, 2017).

The modifications introduced in Max-Sum ADVP, with respect to Max-Sum AD, are
as follows: At the beginning of each iteration, each variable node Xi selects a currently opti-
mal assignment from Di, exactly as done in Max-Sum at the termination stage. Specifically,

331

Tassa, Grinshpoun & Zivan

at the beginning of iteration k + 1, the variable node Xi computes Mk+1
i :=

∑
Xe∈Ni

Rke→i
and then sets xk+1 = arg-minx∈Di

Mk+1
i (x). Assume next that Xj is a neighbor of Xi and

that Xe is the function node between them. Then, when Xi sends to Xe the message Qk+1
i→e,

it propagates alongside with it also the value xk+1. In the subsequent iteration when Xe

computes the message Rk+2
e→j , then instead of Eq. (3), by which

Rk+2
e→j(y) = min

x∈Di

[
Ci,j(x, y) +Qk+1

i→e(x)
]
∀y ∈ Dj ,

it computes and sends the following message,

Rk+2
e→j(y) = Ci,j(x

k+1, y) +Qk+1
i→e(x

k+1) ∀y ∈ Dj . (20)

Best performance is obtained if that practice is executed only starting from the third
phase (Zivan & Peled, 2012).

We now turn to describe a privacy-preserving implementation of this version of Max-
Sum. Let Xi and Xj be variable nodes that are connected through the function node Xe.
At the beginning of the (k + 1)th iteration, Xi computes xk+1 = arg-minx∈Di

Mk+1
i (x)

by invoking Protocol 3. However, as opposed to the non-private implementation of Max-
Sum ADVP, it does not send that value to the function node, for the sake of privacy
preservation vis-a-vis Xj . Instead, Xi uses xk+1 as an input when Xi and Xj compute
shares in the message Rk+2

e→j , Eq. (20), that Xe sends to Xi in the subsequent iteration.
They do this by executing Protocol 4 below (instead of Protocol 2 which is based on Eqs.
(2) and (3)).

In that protocol, we denote by sk+1,i(x) and sk+1,j(x) the shares in Qk+1
i→e(x) which

Ai and Aj hold respectively, for all x ∈ Di. Those shares were already computed in the
(k + 1)th iteration using Protocol 1. Recall that such a sharing means that each of those
shares is a random number in Zµ, that by its own carries no information, and that

Qk+1
i→e(x) = sk+1,i(x) + sk+1,j(x) (21)

(where all additions hereinafter are modulo µ). Let us denote the sought-after shares in
Rk+2
e→j(y), for all y ∈ Dj , by sk+2,i(y) and sk+2,j(y). Namely, the former share is to be held

by Xi, the latter is to be held by Xj , both should be uniformly and randomly distributed
over Zµ, and

Rk+2
e→j(y) = sk+2,i(y) + sk+2,j(y) . (22)

The protocol starts with Xj selecting for itself a random share sk+2,j(y) (Step 1). The rest
of the protocol is designed so that Xi gets the corresponding complement share

sk+2,i(y) = Rk+2
e→j(y)− sk+2,j(y) .

In view of Eqs. (20) and (21),

sk+2,i(y) = Ci,j(x
k+1, y) + sk+1,i(xk+1) + σ(xk+1) , (23)

where, for each x ∈ Di,
σ(x) := sk+1,j(x)− sk+2,j(y) . (24)

332

Privacy Preserving Implementation of the Max-Sum Algorithm

Since Xi knows the value selection xk+1 then it knows the first two addends on the right-
hand side of Eq. (23). In order to compute the last addend, σ(xk+1), it needs to cooperate
with Xj , since Xj knows σ(x) for all x ∈ Di, but only Xi knows xk+1. This is an instance
of the most basic problem of secure multi-party computation – Oblivious Transfer (Rabin,
1981), and it can be solved by one of the many protocols that were suggested for it, e.g.,
the works of Aiello, Ishai, and Reingold (2001), Naor and Pinkas (2005) and Laur and
Lipmaa (2007). Specifically, after Aj computes σ(x) for all x ∈ Di (Step 2), Ai and Aj
engage in a 1-out-of-|Di| oblivious transfer protocol, where Ai’s input is xk and Aj ’s input
is {σ(x) : x ∈ Di}. At the end, Ai learns the value σ(xk+1) only, without learning the
value of σ(x) for other values of x, while Aj remains oblivious of xk+1 that was used by Ai
for selecting the value σ(xk+1) to be obliviously transferred to it (Step 3). Finally, Ai can
proceed to compute sk+2,i(y) (Step 4).

Protocol 4 Computing shares in messages that emerge from a function node in Max-
Sum ADVP
1: Aj selects a random share sk+2,j(y) ∈ Zµ in Rk+2

e→j(y) for all y ∈ Dj .
2: Aj computes σ(x) for all x ∈ Di, using Eq. (24).
3: Ai and Aj engage in a 1-out-of-|Di| oblivious transfer protocol, where Ai’s input is xk and Aj ’s

input is {σ(x) : x ∈ Di}.
4: Ai computes sk+2,i(y), using Eq. (23).

6. Efficiency Analysis

In this section we analyze the price of privacy, by comparing the computational and com-
munication overhead of P-Max-Sum with respect to the basic Max-Sum, as well as that
of the private implementations of the variants of Max-Sum, that were presented in Sec-
tion 5, with respect to their non-private counterpart. In Sections 6.1–6.4 we analyze the
computational and communication overhead that Protocols 1–4 inflict on any given node.
Specifically, we compare the computations that each node has to do and the total number
and size of messages that each node has to send out in each of those protocols, on one hand,
and in the equivalent stage of the non-private algorithm on the other hand. In doing so
we always fix a variable node Xi and let t be its number of neighbors; we also denote by
d := max1≤j≤n |Dj | the size of the largest variable domain. In Section 6.5 we summarize the
overall costs for both P-Max-Sum and P-Max-Sum AT. Then, in Section 6.6, we present
experimental results regarding the computational overhead in various problem settings. Fi-
nally, we present in Section 6.7 simulator experiments that compare the overall runtime of
P-Max-Sum to that of the basic Max-Sum. In all of our experiments, the modulus of the
encryption functions and the size of additive group Zµ in which all shares take values are
of size 512 bits.

6.1 Analysis of Protocol 1

Protocol 1 is used for computing shares in messages that emerge from variable nodes. The
communication and computational costs that a single invocation of Protocol 1 (for some
agent Ai) incurs are (at most) as follows:

333

Tassa, Grinshpoun & Zivan

1. td encryptions (Steps 1–2).

2. t messages of overall size tddlogµe, since each entry in the shares is an element in Zµ
(Steps 1–2).

3. (2t− 1)d additions/subtractions of dlogµe-bit integers (Step 4).

4. (2t− 1)d multiplications/divisions of dlogµe-bit integers (Step 5).

5. t messages of overall size tddlogµe (Step 5).

6. td decryptions (Step 6).

Note that the costs due to Steps 1–2 and 6 (items 1 and 6 in the list above) are inflicted on
Ai’s neighbors; the other costs are inflected on Ai.

In the non-private Max-Sum algorithm, the messages from a variable node, see Eq.
(1), are sent in the clear, without any protective mechanism. The communication and
computational costs that they entail are as follows:

1. The nodes adjacent to Xi send to it the messages Rkf→i. Cost: those are t messages
where each one is a vector of integers of at most d entries.

2. Xi adds all incoming messages from the previous step. Cost: t − 1 additions of d-
dimensional integer vectors.

3. For each of its neighbors, Xi subtracts from the sum in the previous step the message
that it got from that neighbor. Cost: t additions of d-dimensional integer vectors.

4. Xi sends the proper sum to each neighbor: Cost: t messages of overall size td integers.

In order to assess the price of privacy, we focus only on encryption and decryption
operations, since the other computations that Protocols 1–3 perform (modular additions/
subtractions/multiplications/divisions, random numbers’ generation, and computing min-
ima) have computational costs which are few orders of magnitude smaller than those of the
cryptographic operations. Therefore, in view of the above detailed analysis of Protocol 1,
its computational overhead in each iteration for each node is (at most)

Γ1 := td(Cenc + Cdec) , (25)

where Cenc and Cdec are the costs of encryption and decryption, respectively. As for the
communication overhead, the total number of messages is 2t in both Protocol 1 and its
non-private counterpart, but their total length is 2tddlogµe bits in Protocol 1, as opposed
to 2td integers in the non-private protocol.

6.2 Analysis of Protocol 2

As explained in Section 6.1, we focus on the cryptographic operations which are the most
costly. The communication and computational costs that Protocol 2 (for some agent Ai)
incurs are (at most) as follows:

334

Privacy Preserving Implementation of the Max-Sum Algorithm

1. td encryptions (Step 1). Indeed, let Xj be one of Xi’s neighbors. Then Step 1 in
Protocol 2 has to be carried out by Xi vis-a-vis Xj just once, and it includes |Dj | ≤ d
encryptions. It should be noted that while Protocol 2 has to be executed for each
x ∈ Di, Step 1 in it (as opposed to all subsequent steps) can be carried out by Xi

vis-a-vis Xj just once.

2. t messages of total length tddlogµe bits (Step 1).

3. td2 encryptions (Step 3). The factor d2 stems from the fact that if Xj is one of Xi’s
neighbors then Xi has to perform the encryption in this step for every selection of
x ∈ Di and y ∈ Dj .

4. t messages of total length of td2dlogµe bits (Step 4).

5. td2 decryptions (Step 5).

6. t messages of total size of tddlogµe bits (Step 8).

Therefore, Protocol 2’s computational overhead in each iteration for each node is (at
most)

Γ2 := td((d+ 1) · Cenc + d · Cdec) . (26)

It also requires each node to send out 3t messages of total length td(d+ 2)dlogµe bits.
In comparison, the non-private Max-Sum performs no cryptographic computations, and

the communication cost for Xi is only t outgoing messages of overall length of td integers.

6.3 Analysis of Protocol 3

The communication and computational costs that a single invocation of Protocol 3 (for
some agent Ai) incurs are (at most) as follows:

1. td encryptions (Steps 1–2).

2. t messages of total length tddlogµe bits (Steps 1–2).

3. 1 encryption (Step 3).

4. 1 message of length of ddlogµe bits (Step 4).

5. d decryptions (Step 5).

6. 1 message that consists of one integer only (Step 6).

Therefore, Protocol 3’s computational overhead in each iteration for each node is (at
most)

Γ3 := (td+ 1) · Cenc + d · Cdec . (27)

It also requires each node to send out t+ 2 messages of total length (t+ 1)ddlogµe+ 16 bits
(we assume that the message in Step 6 can be encoded as a short integer, since it represents
an index).

In comparison, the non-private Max-Sum performs no cryptographic computations, and
the communication cost for Xi is only t outgoing messages of overall length of td integers.

335

Tassa, Grinshpoun & Zivan

6.4 Analysis of Protocol 4

The communication and computational costs that Protocol 4 inflicts on Ai and Aj are due
to the oblivious transfer that takes place in Step 3. Ai and Aj need to perform a single
1-out-of-|Di| oblivious transfer protocol in order for Ai to learn the relevant σ(xk+1) for
each of the assignments y ∈ Dj (namely, at the end of the oblivious transfer Ai learns |Dj |
values). Utilizing the efficient oblivious transfer protocols of Naor and Pinkas (2001) the
corresponding overhead is |Dj | exponentiations that Aj has to do, one for each y ∈ Dj . We
note that Aj has also to perform |Di|−1 multiplications and |Di| hash function evaluations
but, as stated before, we ignore those due to their significantly lower cost; in addition, Aj has
to perform once in the outset of the protocol |Di| exponentiations. Since an exponentiation
is comparable to a single encryption, the bound on the total overhead for each node is
comparable to td encryptions.

The communication overhead consists of two rounds: in the first one Ai sends to Aj a
single message of length |Dj |dlogµe bits; in the second, Aj sends back a message of length
|Di||Dj |dlogµe bits.4

6.5 Overall Computational Overhead

Let K be the number of iterations that P-Max-Sum performs. Then the overall cost of
privacy, in terms of runtime, for each node is bounded by

(Γ1 + Γ2) ·K + Γ3 ,

where Γ1, Γ2, and Γ3 are the costs of Protocols 1, 2, 3, respectively, and are given in Eqs.
(25)–(27). As for P-Max-Sum AT, its privacy overhead is bounded by

(Γ1 + Γ2 + Γ3) ·K .

We note that the runtime of P-Max-Sum and P-Max-Sum AT is independent of n, the
number of agents. However, it does depend on the maximal degree of a node in the constraint
graph.

We now comment on the privacy overhead of the remaining variants. The operation of
the privacy-preserving version of Bounded Max-Sum is similar to that of P-Max-Sum
only that the value of t (that denoted the degree of a node) could be reduced in Bounded
Max-Sum since the algorithm starts by trimming the factor graph into a tree, and hence
the corresponding costs are reduced. However, the algorithm starts by implementing a
privacy-preserving MST algorithm. The cost of that operation depends on the selection of
algorithm. As noted earlier, the only algorithm that exists currently for that purpose is the
one which was recently proposed by Laud (2015); the reader is referred to Section 7 there
for a description of that algorithm and an analysis of its efficiency.

The operation of the privacy-preserving version of Max-Sum AD is similar to that
of P-Max-Sum, but it will have reduced computational and communication costs (for a
given number of iterations) since in each iteration only “half” of the messages need to
be computed and sent. The same comment applies also to Max-Sum ADVP with the
additional observation that in this variant, Protocol 4 is executed instead of Protocol 2;

4. For more details, the reader is referred to the work of Naor and Pinkas (2001).

336

Privacy Preserving Implementation of the Max-Sum Algorithm

comparing the computational overhead of the two we see that Protocol 4 is cheaper (since
its overhead bound is comparable to td encryptions while that of Protocol 2 is dominated
by td2 encryptions, see Sections 6.2 and 6.4).

6.6 Computational Overhead Experiments

According to Theorem 4.1, P-Max-Sum perfectly simulates Max-Sum, i.e., it reaches ex-
actly the same solutions as Max-Sum. A thorough experimental evaluation of the solution
costs of Max-Sum (with and without applying the anytime mechanism), including compar-
isons to other local search algorithms, was conducted by Zivan et al. (2017). What remains
to be investigated is the overhead of privacy preservation. The communication overhead
was analyzed in Sections 6.1–6.4 and was shown to be quite small. Contrary to that, the
analysis in Section 6.5 reveals that the computational overhead is much more substantial
due to the cryptographic operations. Therefore, our experimental evaluation focuses on the
computational overhead of P-Max-Sum (and P-Max-Sum AT).

To realize the actual time it will take P-Max-Sum to run we followed the simulated
time approach (Sultanik, Lass, & Regli, 2008) by measuring the time of atomic operations
performed in the algorithm and then counting the non-concurrent times these operations
are performed. This is a common practice in synchronous algorithms that perform the same
operations in each round. The significant advantage of this approach is that its reported
results are implementation-independent and (almost) environment-independent (except for
the runtimes of the atomic operations in the given environment). We measured the runtimes
of the encryption and decryption operations by averaging multiple runs of the common Java
implementation of the Paillier cryptosystem5 on a hardware comprised of an Intel i7-4600U
processor and 16GB memory. Our tests show that Cenc takes at most 2 milliseconds, while
Cdec takes at most 3 milliseconds. The runtimes of other operations on multiple precision
variables are considerably smaller (e.g., a generation of a random number takes about 350
nanoseconds, addition about 170 nanoseconds, modulo multiplication about 1 microsecond)
and are thus omitted.

There are three factors that directly affect the computational overhead of P-Max-Sum
(see Section 6.5): the maximal degree of a node in the constraints graph (t), the size of the
largest variable domain (d), and the number of performed iterations (K). The influence
of these factors is investigated by considering four sets of problems: unstructured random
problems, scale-free problems, structured graph coloring problems, and realistic meeting
scheduling problems. In all the presented results each data point represents the average
over 100 independently generated problems, and the computational overhead is measured
in minutes.

We start by evaluating the direct effect of t and d on the computational overhead in
unstructured random problems. Our basic setting consists of n = 100 agents, constraint
density of p = 0.1, and domain sizes of d = 5. We also need to select a value for K, being the
number of iterations. On unstructured problems Max-Sum is known to perform well in the
first few iterations and then it traverses low quality solutions (Zivan & Peled, 2012; Zivan
et al., 2014). However, occasionally the extreme exploration is beneficial since the algorithm
in some iteration explores a high quality assignment. Therefore, it is beneficial to apply the

5. http://www.csee.umbc.edu/~kunliu1/research/Paillier.html

337

Tassa, Grinshpoun & Zivan

anytime mechanism in this setting (Zivan et al., 2014). We run the algorithm for K = 50
iterations, in which Max-Sum with anytime usually displays most of the improvement in
terms of solution quality.

0

3

6

9

12

15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
om

pu
ta

ti
on

al
 o

ve
rh

ea
d

(m
in

)

Constraint density (p)
P-Max-Sum P-Max-Sum_AT

Figure 2: Computational overhead as a function of p.

In order to examine the effect of the parameter t on the computational overhead, it is
customary in DCOP literature to vary the constraint density p. Figure 2 depicts the effect
of the parameter t by varying the constraint density p = 0.1, . . . , 0.9. The computational
overhead displays linear growth with respect to the constraint density, which supports the
analysis in Section 6.5. As expected, the overhead of P-Max-Sum AT is slightly higher
than that of P-Max-Sum.

0

10

20

30

40

50

60

3 5 7 9 11 13 15 17 19 21 23 25

C
om

pu
ta

ti
on

al
 o

ve
rh

ea
d

(m
in

)

Domain size (d)
P-Max-Sum P-Max-Sum_AT

Figure 3: Computational overhead as a function of d.

Figure 3 depicts the effect of the parameter d by varying the domain sizes d = 3, . . . , 25.
Here, the computational overhead displays quadratic growth with respect to the constraint
density, which again supports the analysis in Section 6.5. The same trends of Figures 2 and 3
are repeated when varying the constraint density and domain sizes in the other problem
settings, so we do not present these experiments.

338

Privacy Preserving Implementation of the Max-Sum Algorithm

Next, we focus on scalability by evaluating the computational overhead when varying
the number of agents n. We note that the runtime of P-Max-Sum and P-Max-Sum AT
is independent of the number of agents. Yet, depending on the type of the underlying
constraint graph, the number of nodes (agents) in the graph may indirectly influence the
maximal degree of a node in that graph. For this purpose we consider two types of under-
lying graphs – random graphs and scale-free networks.

A random graph is obtained by starting with a set of n isolated nodes and adding
successive edges between them at random. In our experiments we relied on the model of
Erdős and Rényi (1959) in order to generate random graphs. Each node is connected to
m randomly chosen nodes, resulting in an average node degree of 2m. Contrary to that,
in a scale-free graph, the distribution of node degrees follows a power law. Many real-
world networks, such as the Internet and various social networks, are considered to have a
scale-free structure. We used the model of Barabási and Albert (1999) in order to generate
random scale-free networks. The network begins with an initial connected network of 6
nodes. New nodes are added to the network one at a time. Each new node is connected
to m existing nodes with a probability that is proportional to the number of links that the
existing nodes already have.

While the construction processes of these graph types are quite different from each other,
they both share two important parameters – the number of nodes in the network (n) and
the number of new links (neighbors) for each added node (m). Consequently, we can plot
our results for the two graph types together, by fixing m = 5 (which results in an average
node degree of 10), and varying the number of agents n = 100, . . . , 1000.

0

5

10

15

20

100 200 300 400 500 600 700 800 900 1000

C
om

pu
ta

ti
on

al
 o

ve
rh

ea
d

(m
in

)

Number of agents (n)
P-Max-Sum (random) P-Max-Sum_AT (random)
P-Max-Sum (scale-free) P-Max-Sum_AT (scale-free)

Figure 4: Computational overhead as a function of n on two graph types.

Figure 4 shows the scalability of P-Max-Sum and P-Max-Sum AT on random graphs
and scale-free networks. Increasing the number of nodes in random graphs has almost no
effect on the maximal degree of a node in the graph, hence the respective computational
overhead is marginal. However, scale-free networks are shown to have a higher computa-
tional overhead. This is not surprising since scale-free networks consist of several highly-

339

Tassa, Grinshpoun & Zivan

connected hubs, and that affects the parameter t. Nevertheless, as depicted in Figure 4,
this dependence is linear with a moderate growth factor.

Finally, we turn to structured and realistic problems, following the settings of Zivan
et al. (2014). The structured problems are 3-color graph coloring problems, in which for
all i, j, Ci,j(x, y) equals 1 if x = y and 0 if x 6= y. Such problems are commonly used in
DCOP formulations of resource allocation problems (Zhang et al., 2005; Farinelli et al.,
2008). In this setting, the “structure” is not in the constraint graph (the underlying graph
is random), but rather in the highly-structured constraint functions. The structure of the
constraint functions has no effect on the parameters t and d. However, it has an extreme
effect on the needed number of iterations K, since Max-Sum was shown to converge in this
setting in as few as K = 5 iterations (Zivan et al., 2014).

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700 800 900 1000

C
om

pu
ta

ti
on

al
 o

ve
rh

ea
d

(m
in

)

Number of agents (n)
P-Max-Sum P-Max-Sum_AT

Figure 5: Computational overhead on structured graph coloring problems.

Figure 5 displays the computational overhead of P-Max-Sum and P-Max-Sum AT on
3-color graph coloring with fixed constraint density p = 0.05 and varying number of agents
n = 100, . . . , 1000. Here, the computational overhead grows linearly with the number of
agents because the constraint density is fixed, which results in the proportional growth of
parameter t. This goes in contrast to the experiments in Figure 4, where the number of
connected nodes per agent (m) was fixed, rather than the constraint density (p). Regardless
of this growth, the computational overhead in 3-color graph coloring problems is clearly
smaller than that in unstructured problems (see Figure 4), due to the small size of domains
(d = 3) and the fast convergence (K = 5).

The realistic problems that we consider are meeting scheduling problems, in which 20
meetings are to be scheduled into 20 time slots. Each participant takes part in two randomly
chosen meetings. For each pair of meetings, a travel time was chosen uniformly at random
between 6 and 10, inclusive. When the difference between the time slots of two meetings
is less than the travel time between those meetings, all participants in those meetings
were marked as overbooked, and a cost equal to the number of overbooked participants is
incurred. For representing the meeting scheduling problems we use the EAV (Events As
Variables) formulation of Maheswaran et al. (2004b). In this formulation there is an agent
per meeting that is aware of all constraints of participants in that meeting. We assume that

340

Privacy Preserving Implementation of the Max-Sum Algorithm

each meeting is represented by a different agent. These realistic problems are identical to
those used by Zivan et al. (2014). Both the constraint graph and the constraint functions
in these problems are highly structured.

0

1

2

3

4

5

6

50 60 70 80 90 100 110 120 130 140 150

C
o
m

p
u
ta

ti
o
n
al

 o
v
er

h
ea

d
 (

m
in

)

Number of participants
P-Max-Sum P-Max-Sum_AT

Figure 6: Computational overhead on realistic meeting scheduling problems.

Figure 6 displays the computational overhead of P-Max-Sum and P-Max-Sum AT on
meeting scheduling problems with a varying number of participants between 50 and 150.
Here, the computational overhead is higher than that in the previous experiment due to
the large size of domains (d = 20), but this is balanced by the relatively fast convergence
of such problems (K = 10), as was previously shown by Zivan et al. (2014).

6.7 Overall Runtime Experiments on a Simulator

We implemented a full-scale version of the P-Max-Sum algorithm on the AgentZero simu-
lator (Lutati, Gontmakher, Lando, Netzer, Meisels, & Grubshtein, 2014). Running exper-
iments on a simulator brings with it several disadvantages. The first disadvantage is that
a simulator runs on a single computer, as opposed to a real distributed system composed
of several computers. Thus, the parallelism of different agents (threads in the simulator) is
restricted to the number of cores in the computer’s hardware. This is usually not a funda-
mental restriction for the evaluation of complete DCOP algorithms, since such algorithms
are usually inherently restricted to small problems. This is also not a major restriction
for the evaluation of incomplete DCOP algorithms, since usually the focus of evaluation in
such algorithms is on solution quality rather than on runtime efficiency. Nevertheless, as
already mentioned, even though P-Max-Sum is an incomplete algorithm, we are not inter-
ested in evaluating its solution quality, since it perfectly simulates the standard Max-Sum
algorithm.

The second disadvantage of experiments on a simulator is that the results depend highly
on overheads of the specific simulator (e.g., message passing, message handling, threading,
idle detection), as well as on implementation issues of the specific algorithm, and the hard-
ware on which the simulator is executed.

Having said that, experiments on a full-scale implementation can help one to confirm
the applicability of an approach and to corroborate trends that were shown theoretically.

341

Tassa, Grinshpoun & Zivan

Consequently, we ran experiments on the AgentZero simulator that compare the runtime of
P-Max-Sum to that of Max-Sum in varying constraint densities (p) and domain sizes (d).
Given the aforementioned disadvantages of simulated experimentation, we ran the simulator
on a dedicated Xeon 2.4GHz server with 24GB of memory and 24 cores, and focused on
problems with the same number of agents (n = 24), to achieve maximal parallelism. In
order to plot the results of both P-Max-Sum and Max-Sum on the same graphs, we display
the runtime performance in a logarithmic scale. Each data point represents the average over
50 independently generated problems, and the overall runtime is measured in milliseconds.

1

10

100

1,000

10,000

100,000

1,000,000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
ve

ra
ll

 r
un

ti
m

e
(m

se
c)

Constraint density (p)
P-Max-Sum Max-Sum

Figure 7: Overall runtime as a function of p.

In the first experiment we used a setting of unstructured random problems with n = 24
agents, domain size d = 5, and varying constraint densities, p = 0.1, . . . , 0.9. We ran both
algorithms for K = 50 iterations. Figure 7 shows that the runtime of the standard, non-
privacy-preserving, Max-Sum algorithm is significantly smaller than that of P-Max-Sum.
Indeed, as was shown in Section 6.6, the computational overhead of privacy preservation is
substantial.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

3 5 7 9 11 13 15 17 19 21 23 25

O
ve

ra
ll

 r
un

ti
m

e
(m

se
c)

Domain size (d)
P-Max-Sum Max-Sum

Figure 8: Overall runtime as a function of d.

342

Privacy Preserving Implementation of the Max-Sum Algorithm

In the second experiment we used a setting of unstructured random problems with
n = 24 agents, constraint density p = 0.2, and varying domain sizes d = 3, . . . , 25. We
ran both algorithms for K = 50 iterations. Figure 8 shows that the gap between the
performances of the two algorithms grows when the domain sizes become larger. This cor-
roborates the analysis of Protocol 2 (Section 6.2) that asserts a quadratic relation between
the computational overhead of P-Max-Sum and the parameter d. The use of a logarithmic
scale makes it hard to see that the relation in Figure 8 is indeed quadratic, so we relate
herein to a few exemplary values taken from Figure 8; the runtime of P-Max-Sum with
d = 3 is 100 seconds, with d = 5 it is 242 seconds, while with d = 7 it grows to 450 seconds
– such a growth is clearly quadratic.

The simulator experiments of Figures 7 and 8 corroborate the trends shown in the re-
spective Figures 2 and 3. As expected, the price of privacy preservation is quite high. Nev-
ertheless, as is the case with non-privacy-preserving DCOP algorithms, the transition from
complete methods to incomplete ones enables solving considerably larger problems. Indeed,
unstructured random problems with n = 24 agents were solved with the incomplete P-Max-
Sum algorithm, while state-of-the-art complete algorithms, such as P-DPOP(+) (Léauté &
Faltings, 2013) and P-SyncBB (Grinshpoun & Tassa, 2016), are restricted to much smaller
problems (Grinshpoun & Tassa, 2016, Figures 7 and 8).

7. Conclusion

One of the most important motivations for solving a problem distributively is preserving
the privacy of agents. Therefore, a number of recent studies proposed private versions
of existing DCOP-solving algorithms. Yet, no such study was based on the Max-Sum
algorithm, which has recently been in the focus of both algorithmic and applicative DCOP
research.

In this paper we proposed P-Max-Sum, a privacy-preserving version of Max-Sum.
The proposed algorithm preserves topology, constraint and assignment/decision privacy.
It may be enhanced to preserve also agent privacy by issuing a single call to a trusted
coordinator. In addition, we designed a privacy-preserving implementation of Max-Sum
with the anytime mechanism, as well as privacy-preserving implementations of three variants
of the Max-Sum algorithm – Bounded Max-Sum (Rogers et al., 2011), Max-Sum AD
and Max-Sum ADVP (Zivan & Peled, 2012). The computational and communication
overhead of P-Max-Sum and its variants were theoretically analyzed.

We conducted experiments on a range of problems, from unstructured problems to struc-
tured and realistic ones. Our experiments show that the overhead of privacy preservation
in terms of runtime is reasonable and highly scalable. For graph coloring problems with
hundreds of agents the computational overhead was less than a minute, while in the other
settings the overhead was between a couple of minutes and one hour, which is a reasonable
price to pay in offline applications that require a high level of privacy.

The present work suggests several future research directions in order to enhance P-Max-
Sum by removing some of the assumptions that underly our current protocols’ design. One
such assumption is that all constraints are binary. The extension to non-binary constraints
is expected to be computationally challenging since already the complexity of the basic
Max-Sum is exponential in the arity of the constraints. To mitigate that problem it would

343

Tassa, Grinshpoun & Zivan

be needed to rely on methods such as Tractable HOP (Tarlow, Givoni, & Zemel, 2010;
Pujol-Gonzalez, Cerquides, Meseguer, Rodŕıguez-Aguilar, & Tambe, 2013) or to represent
constraints with high arity by multiple constraints with smaller arity (Smith, Stergiou, &
Walsh, 2000). To the best of our knowledge, such scenarios have not been considered before
from the privacy-preserving point of view.

Another assumption that we made here was that each agent controls a single variable.
This simplifying assumption is widely accepted following two generic methods for dealing
with multiple variables per agent that were proposed by Yokoo and Hirayama (2000). In
the first method, all the local variables of an agent are compiled into a single complex
variable; the domain of this complex variable is the Cartesian product of the domains of
all local variables it was constructed from. Such an artificial coupling of distinct variables
may dramatically reduce efficiency. In the second method, which is more commonly used,
each variable is turned into a virtual agent that remains under the control of the original
agent holding it. However, this method requires revisiting the protocols’ design in order to
accommodate for a setting in which an agent is a neighbor of itself in the constraint graph.
A modification of our protocols for such settings is left as future work.

Lastly, we made herein the common assumption that agents do not collude. In order to
deal with situations in which coalitions, up to some assumed size, are allowed, our protocols
should be modified by further splitting of information. For example, we assumed that the
decryption key in Ei is known to all agents in A−i (namely, to all agents except for Ai);
hence, if Ai colludes with another agent, it will be able to decrypt Ei-encrypted messages.
To prevent that, our usage of the Paillier cipher should be replaced with a corresponding
threshold variant, such as the one proposed by Damg̊ard and Jurik (2001).

Acknowledgments

The authors would like to thank Vadim Levit for his help with the implementation on the
AgentZero simulator, and the anonymous referees for their thorough reviews that helped
improve the paper.

Appendix A. Proofs

A.1 Proof of Theorem 2.1

Eq. (1) implies that

qk+1 ≤ Drk , (28)

while Eqs. (2)+(3) imply that

rk+1 ≤MC + qk . (29)

We prove the claims of the theorem by induction on k. When k = 0 all messages are zero
so that q0 = r0 = 0. As can be easily seen, those bounds do satisfy the inequalities in Eqs.
(6)+(7).

We proceed by induction. Namely, we assume that qk and rk satisfy the inequalities in
Eqs. (6)+(7) and prove that so do qk+1 and rk+1. We distinguish between even and odd k.

344

Privacy Preserving Implementation of the Max-Sum Algorithm

If k = 2t then, by the induction hypothesis,

qk ≤MCD ·
Dt − 1

D − 1
, (30)

and

rk ≤MC ·
Dt − 1

D − 1
. (31)

Hence, by Eqs. (28)+(31),

qk+1 ≤MCD ·
Dt − 1

D − 1
= MCD ·

Db(k+1)/2c − 1

D − 1
, ,

in accord with Eq. (6). In addition, by Eqs. (29)+(30),

rk+1 ≤MC+MCD·
Dt − 1

D − 1
= MC ·

(
1 +D · D

t − 1

D − 1

)
= MC ·

Dt+1 − 1

D − 1
= MC ·

Dd(k+1)/2e − 1

D − 1
,

in accord with Eq. (7). The proof for odd values of k goes along the same lines. 2

A.2 Proof of Lemma 3.1

Since 0 ≤ mi ≤ M ≤ (µ− 1)/2 and r ∈ Zµ, it follows that each ni equals either mi + r or
mi + r − µ. In particular, there exists an index 0 ≤ k′ ≤ k such that

ni =

{
mi + r 1 ≤ i ≤ k′
mi + r − µ k′ < i ≤ k . (32)

Let us distinguish between three cases:

• Case 1: k′ = k. In that case ni = mi + r for all 1 ≤ i ≤ k.

• Case 2: k′ = 0. In that case ni = mi + r − µ for all 1 ≤ i ≤ k.

• Case 3: 0 < k′ < k. In that case ni = mi + r for 1 ≤ i ≤ k′ but ni = mi + r − µ for
all k′ < i ≤ k.

In Cases 1 and 2, as the difference ni −mi is the same for all i (where here we speak of
the difference in the usual sense of integers, not in the modular sense), then it is clear that
minni = n1 and maxni = nk. Hence,

maxni −minni = nk − n1 = mk −mr ≤M ≤ (µ− 1)/2

in both of those cases. Hence, the definition of min∗ ni in both of those cases yields, by
the first case in Eq. (18), the value min∗ ni = n1. Now, m1 = n1 − r in Case 1 and
m1 = n1 − r + µ in Case 2. Therefore, in Case 1 we have n1 − r = m1 ≥ 0 and then Eq.
(19) is met through its first case. In Case 2 we have n1 − r = m1 − µ < 0 and then q. (19)
is met through its second case.

We now turn our attention to Case 3. In that case, minni = nk′+1 and maxni = nk′ ,
due to the occurrence of a wrap around after the k′th term in the sequence. Hence,

maxni −minni = nk′ − nk′+1 = (mk′ + r)− (mk′+1 + r − µ) = µ− (mk′+1 −mk′) .

345

Tassa, Grinshpoun & Zivan

Since mk′+1 −mk′ ≤M we infer that in Case 3

maxni −minni ≥ µ−M ≥ µ− (µ− 1)/2 > (µ− 1)/2 .

Moreover, it is clear that in Case 3 ni > (µ− 1)/2 for all 1 ≤ i ≤ k′ while ni < (µ− 1)/2 for
all k′ < i ≤ k. To prove the first inequality it suffices to show that n1 > (µ− 1)/2 while for
the second inequality it suffices to show that nk < (µ−1)/2. Assume, towards contradiction,
that n1 = m1 + r ≤ (µ− 1)/2. Then mk + r = n1 + (mk −m1) ≤ (µ− 1)/2 +M ≤ µ− 1.
But then we should have had nk = mk + r and not nk = mk + r − µ. That contradiction
establishes our claim that ni > (µ − 1)/2 for all 1 ≤ i ≤ k′. The proof of the second
inequality is similar.

In view of the above, it follows that min∗ ni, as defined in the second case of Eq. (18),
equals n1 = m1 + r. Hence, m1 = n1 − r in this case. Therefore, Eq. (19) is met through
its first case. That concludes the proof. 2

References

Aiello, W., Ishai, Y., & Reingold, O. (2001). Priced oblivious transfer: How to sell digital
goods. In EUROCRYPT, pp. 119–135.

Aji, S. M., & McEliece, R. J. (2000). The generalized distributive law. IEEE Transactions
on Information Theory, 46 (2), 325–343.

Alwen, J., Katz, J., Lindell, Y., Persiano, G., Shelat, A., & Visconti, I. (2009). Collusion-free
multiparty computation in the mediated model. In CRYPTO, pp. 524–540.

Alwen, J., Shelat, A., & Visconti, I. (2008). Collusion-free protocols in the mediated model.
In CRYPTO, pp. 497–514.

Aly, A., Cuvelier, E., Mawet, S., Pereira, O., & Vyve, M. V. (2013). Securely solving simple
combinatorial graph problems. In Financial Cryptography, pp. 239–257.

Awerbuch, B., & Shiloach, Y. (1987). New connectivity and msf algorithms for shuffle-
exchange network and pram. IEEE Transactions on Computers, 36 (10), 1258–1263.

Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science,
286 (5439), 509–512.

Benaloh, J. C. (1994). Dense probabilistic encryption. In Workshop on Selected Areas of
Cryptography, pp. 120–128.

Brickell, J., & Shmatikov, V. (2005). Privacy-preserving graph algorithms in the semi-honest
model. In ASIACRYPT, pp. 236–252.

Damg̊ard, I., & Jurik, M. (2001). A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In Public Key Cryptography, pp. 119–136.

Doshi, P., Matsui, T., Silaghi, M. C., Yokoo, M., & Zanker, M. (2008). Distributed private
constraint optimization. In WI-IAT, pp. 277–281.

Erdős, P., & Rényi, A. (1959). On random graphs. Publicationes Mathematicae Debrecen,
6, 290–297.

346

Privacy Preserving Implementation of the Max-Sum Algorithm

Farinelli, A., Rogers, A., Petcu, A., & Jennings, N. R. (2008). Decentralised coordination of
low-power embedded devices using the Max-Sum algorithm. In AAMAS, pp. 639–646.

Gershman, A., Meisels, A., & Zivan, R. (2009). Asynchronous forward bounding. Journal
of Artificial Intelligence Research, 34, 25–46.

Goldreich, O. (2001). Foundations of Cryptography: Basic Tools. Cambridge University
Press.

Greenstadt, R., Grosz, B., & Smith, M. D. (2007). SSDPOP: improving the privacy of
DCOP with secret sharing. In AAMAS, pp. 1098–1100.

Greenstadt, R., Pearce, J., & Tambe, M. (2006). Analysis of privacy loss in distributed
constraint optimization. In AAAI, pp. 647–653.

Grinshpoun, T. (2012). When you say (DCOP) privacy, what do you mean?. In ICAART,
pp. 380–386.

Grinshpoun, T., & Tassa, T. (2014). A privacy-preserving algorithm for distributed con-
straint optimization. In AAMAS, pp. 909–916.

Grinshpoun, T., Grubshtein, A., Zivan, R., Netzer, A., & Meisels, A. (2013). Asymmet-
ric distributed constraint optimization problems. Journal of Artificial Intelligence
Research, 47, 613–647.

Grinshpoun, T., & Tassa, T. (2016). P-SyncBB: A privacy preserving branch and bound
DCOP algorithm. Journal of Artificial Intelligence Research, 57, 621–660.

Hirayama, K., & Yokoo, M. (1997). Distributed partial constraint satisfaction problem. In
CP, pp. 222–236.

Keller, M., & Scholl, P. (2014). Efficient, oblivious data structures for MPC. In ASI-
ACRYPT, pp. 506–525.

Laud, P. (2015). Parallel oblivious array access for secure multiparty computation and
privacy-preserving minimum spanning trees. Proceedings on Privacy Enhancing Tech-
nologies, 2015 (2), 188–205.

Laur, S., & Lipmaa, H. (2007). A new protocol for conditional disclosure of secrets and its
applications. In ACNS, pp. 207–225.

Léauté, T., & Faltings, B. (2013). Protecting privacy through distributed computation in
multi-agent decision making. Journal of Artificial Intelligence Research, 47, 649–695.

Lutati, B., Gontmakher, I., Lando, M., Netzer, A., Meisels, A., & Grubshtein, A. (2014).
Agentzero: A framework for simulating and evaluating multi-agent algorithms. In
Agent-Oriented Software Engineering - Reflections on Architectures, Methodologies,
Languages, and Frameworks, pp. 309–327.

Maheswaran, R. T., Pearce, J. P., Bowring, E., Varakantham, P., & Tambe, M. (2006).
Privacy loss in distributed constraint reasoning: A quantitative framework for analysis
and its applications. Autonomous Agents and Multi-Agent Systems, 13, 27–60.

Maheswaran, R. T., Pearce, J. P., & Tambe, M. (2004a). Distributed algorithms for DCOP:
A graphical-game-based approach. In ISCA PDCS, pp. 432–439.

347

Tassa, Grinshpoun & Zivan

Maheswaran, R. T., Tambe, M., Bowring, E., Pearce, J. P., & Varakantham, P. (2004b).
Taking DCOP to the real world: Efficient complete solutions for distributed multi-
event scheduling. In AAMAS, pp. 310–317.

Modi, P. J., Shen, W., Tambe, M., & Yokoo, M. (2005). Adopt: asynchronous distributed
constraint optimization with quality guarantees. Artificial Intelligence, 161 (1-2), 149–
180.

Naor, M., & Pinkas, B. (2001). Efficient oblivious transfer protocols. In SODA, pp. 448–457.

Naor, M., & Pinkas, B. (2005). Computationally secure oblivious transfer. Journal of
Cryptology, 18 (1), 1–35.

Nissim, K., & Zivan, R. (2005). Secure DisCSP protocols - from centralized towards dis-
tributed solutions. In IJCAI, DCR Workshops.

Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity classes.
In EUROCRYPT, pp. 223–238.

Petcu, A., & Faltings, B. (2005a). Approximations in distributed optimization. In CP, pp.
802–806.

Petcu, A., & Faltings, B. (2005b). A scalable method for multiagent constraint optimization.
In IJCAI, pp. 266–271.

Pujol-Gonzalez, M., Cerquides, J., Meseguer, P., Rodŕıguez-Aguilar, J. A., & Tambe, M.
(2013). Engineering the decentralized coordination of uavs with limited communica-
tion range. In Advances in Artificial Intelligence (CAEPIA), pp. 199–208.

Rabin, M. (1981). How to exchange secrets by oblivious transfer. Tech. rep. TR-81, Aiken
Computation Laboratory.

Ramchurn, S. D., Farinelli, A., Macarthur, K. S., & Jennings, N. R. (2010). Decentralized
coordination in robocup rescue. The Computer Journal, 53 (9), 1447–1461.

Rogers, A., Farinelli, A., Stranders, R., & Jennings, N. R. (2011). Bounded approximate
decentralised coordination via the Max-Sum algorithm. Artificial Intelligence, 175 (2),
730–759.

Rollon, E., & Larrosa, J. (2012). Improved bounded max-sum for distributed constraint
optimization. In CP, pp. 624–632.

Silaghi, M. C., Faltings, B., & Petcu, A. (2006). Secure combinatorial optimization simu-
lating DFS tree-based variable elimination. In ISAIM.

Silaghi, M. C., & Mitra, D. (2004). Distributed constraint satisfaction and optimization
with privacy enforcement. In IAT, pp. 531–535.

Smith, B. M., Stergiou, K., & Walsh, T. (2000). Using auxiliary variables and implied
constraints to model non-binary problems. In AAAI/IAAI, pp. 182–187.

Stranders, R., Farinelli, A., Rogers, A., & Jennings, N. R. (2009). Decentralised coordination
of continuously valued control parametersusing the Max-Sum algorithm. In AAMAS,
pp. 601–608.

348

Privacy Preserving Implementation of the Max-Sum Algorithm

Sultanik, E., Lass, R. N., & Regli, W. C. (2008). DCOPolis: a framework for simulating
and deploying distributed constraint reasoning algorithms. In AAMAS (demos), pp.
1667–1668.

Tarlow, D., Givoni, I. E., & Zemel, R. S. (2010). HOP-MAP: efficient message passing with
high order potentials. In AISTATS, pp. 812–819.

Tassa, T., Zivan, R., & Grinshpoun, T. (2015). Max-sum goes private. In IJCAI, pp.
425–431.

Teacy, W. T. L., Farinelli, A., Grabham, N. J., Padhy, P., Rogers, A., & Jennings, N. R.
(2008). Max-Sum decentralised coordination for sensor systems. In AAMAS, pp.
1697–1698.

Yao, A. C. (1982). Protocols for secure computation. In FOCS, pp. 160–164.

Yokoo, M., & Hirayama, K. (2000). Algorithms for distributed constraint satisfaction prob-
lems: A review. Autonomous Agents and Multi-Agent Systems, 3 (2), 185–207.

Yokoo, M., Suzuki, K., & Hirayama, K. (2005). Secure distributed constraint satisfac-
tion: reaching agreement without revealing private information. Artificial Intelligence,
161 (1-2), 229–245.

Zhang, W., Wang, G., Xing, Z., & Wittenburg, L. (2005). Distributed stochastic search and
distributed breakout: properties, comparison and applications to constraint optimiza-
tion problems in sensor networks. Artificial Intelligence, 161 (1-2), 55–87.

Zivan, R., Okamoto, S., Parash, T., Cohen, L., & Peled, H. (2017). Balancing exploration
and exploitation in incomplete min/max-sum inference for distributed constraint op-
timization. Autonomous Agents and Multi-Agent Systems, accepted for publication.

Zivan, R., Okamoto, S., & Peled, H. (2014). Explorative anytime local search for distributed
constraint optimization. Artificial Intelligence, 212, 1–26.

Zivan, R., & Peled, H. (2012). Max/min-sum distributed constraint optimization through
value propagation on an alternating DAG. In AAMAS, pp. 265–272.

Zivan, R., Parash, T., & Naveh, Y. (2015). Applying max-sum to asymmetric distributed
constraint optimization. In IJCAI, pp. 432–439.

349

