
Approximation Schemes for the
Min-Max Starting Time Problem ?

Leah Epstein1 and Tamir Tassa2

1 School of Computer Science, The Interdisciplinary Center, P.O.B 167, 46150
Herzliya, Israel. lea@idc.ac.il.

2 Department of Applied Mathematics, Tel-Aviv University, Ramat Aviv, Tel Aviv,
Israel. tassa@post.tau.ac.il.

Abstract. We consider the off-line scheduling problem of minimizing
the maximal starting time. The input to this problem is a sequence of
n jobs and m identical machines. The goal is to assign the jobs to the
machines so that the first time in which all jobs have already started their
processing is minimized, under the restriction that the processing of the
jobs on any given machine must respect their original order. Our main
result is a polynomial time approximation scheme for this problem in
the case where m is considered as part of the input. As the input to this
problem is a sequence of jobs, rather than a set of jobs where the order is
insignificant, we present techniques that are designed to handle ordering
constraints. Those techniques are combined with common techniques of
assignment problems in order to yield a polynomial time approximation
scheme.

1 Introduction

Consider the following scenario: a computer operator needs to run an ordered
sequence of n jobs having known processing times. The operator may assign
the jobs to one of m identical and parallel machines, where each job must be
executed continuously and completely on one machine. After the jobs have been
assigned to the m machines, they must run on each machine according to their
original order. The operator needs to verify that each job has started running
before he may go home. The goal of the operator is to minimize the time when
he could go home. Hence, he aims at finding an assignment that minimizes the
maximal starting time, namely, the maximum over all machines of the time in
which the last job assigned to that machine starts running.

The above scenario may be generalized to any setting where n clients are
registered in a service center having m servers; e.g., patients in a clinic where
there are m doctors or drivers that bring their car to a garage where there are m
service stations. Each client has a priority that could be determined, for example,
by the time the client has called in to make an appointment. The clients need
to be assigned to servers according to their estimated service time so that the
time in which the last client starts being served is minimized. That could be the
? Research supported in part by the Israel Science Foundation (grant no. 250/01).

relevant cost function if the waiting clients need to be attended (for example,
if the receptionist in the clinic needs to stay and watch the patients that are
still waiting, he would aim at assigning the clients to doctors so that he could
leave as early as possible). An assignment constraint is that a client with a lower
priority cannot be served before a client of a higher priority by the same server.

We note that a similar off-line problem with ordering constraint was pre-
sented in [10]. There, the n jobs were to be assigned to m = 2 machines and be
processed on each machine according to their original order so that the sum of
all completion times is minimized.

Many scheduling problems have been studied both in off-line [3, 4, 6, 12, 7]
and on-line environments. In on-line environments, the jobs usually arrive in a
sequence. In off-line environments, however, the input is usually a set of jobs,
where the order of jobs is insignificant. The min-max starting time problem was
first introduced as an on-line problem in [2]. Here, we study the off-line version
of the problem where the input is still viewed as a sequence of jobs and order
does matter. Note that if we disregard order in this problem, namely, if we view
the sequence of jobs as merely a set of jobs, then it becomes equivalent to the
standard makespan problem. Indeed, the non-ordered min-max starting time
problem may be reduced to the makespan problem if we remove the m largest
jobs and then solve a makespan minimization problem for the remaining n−m
jobs. On the other hand, the makespan problem may be reduced to the non-
ordered min-max starting time problem by adding m additional jobs of very
large size to the given set of jobs. In view of the above, the non-ordered version
of our problem is strongly NP-hard, and, consequently, so is the ordered version
which we study herein.

Due to the strong NP-hardness of the problem, Polynomial Time Approx-
imation Schemes (PTAS) are sought. Such schemes aim at finding a solution
whose target function value is larger than the optimal value by a factor of no
more than (1 + ε), where ε > 0 is an arbitrarily small parameter. The run-time
of such schemes depends polynomially on n and m, but it depends exponen-
tially on 1/ε. In case m is viewed as a constant, one usually aims at finding a
Fully Polynomial Time Approximation Scheme (FPTAS), the run time of which
depends polynomially on n and 1/ε, but is exponential in the constant m. For
example, PTAS for the classical makespan problem were designed by Hochbaum
and Shmoys [6, 5], while an FPTAS to that problem was presented by Graham
in [4] and later by Sahni in [12].

Regarding the on-line version of our problem, an algorithm of competitive
approximation ratio 12 is presented in [2]. It is also shown there that a greedy
algorithm that performs list scheduling on the sequence [3] has a competitive
ratio of Θ(log m).

In this paper we design two approximation schemes: a PTAS for the case
where m is part of the input and an FPTAS for the case where m is constant
(the FPTAS is omitted due to space limitations). In doing so, we employ several
techniques that appeared in previous studies: rounding the job sizes [6], distin-
guishing between small and large jobs and preprocessing the small jobs [5, 1],

and enumeration. However, the handling of sequences of jobs, rather than sets
thereof, is significantly more delicate: the small jobs require a different handling
when order matters and one must keep track of the index of the final job that
is scheduled to run on each machine in order to guarantee the legality of the
assignment. The techniques presented here address those issues.

Note that there exists some work on off-line scheduling of sequences. One
such example is the precedence constraints problem. The jobs in that problem
are given as the vertices of a directed acyclic graph. An edge (a, b) means that
job a must be completed before job b is started. The goal is to minimize the
makespan. It was proved in [9] that it is hard to achieve for this problem an
approximation factor smaller than 4/3, unless P = NP . Schuurman and Woeg-
inger [13] mention this problem as the first among ten main open problems in
approximation of scheduling problems. Specifically they ask whether the prob-
lem can be approximated up to a factor smaller than 2−1/m, an approximation
factor that is achieved by the on-line List Scheduling algorithm [3].

We proceed by presenting a formal definition of the problem. In the Min-
max Starting Time Problem one is given a sequence of n jobs with processing
times pi, 1 ≤ i ≤ n, and m < n identical machines, Mk, 1 ≤ k ≤ m. An
assignment of the jobs to the machines is a function A : {1, . . . , n} → {1, . . . ,m}.
The subset of jobs that are scheduled to run on machine Mk is {pi : i ∈ A−1(k)}
where A−1(k) = {i : A(i) = k}. The jobs are processed on each machine in the
order that corresponds to their index. Hence, the index of the last job to run
on machine Mk is given by fk = max{A−1(k)}. Such jobs are referred to as the
final jobs for assignment A. The time in which the final job on machine Mk will
start running is given by Fk =

∑
i∈A−1(k)\{fk}

pi. The goal is to find an assignment

A such that the time in which the last final job starts running is minimized.
Namely, we look for an assignment for which T (A) := max

1≤k≤m
Fk is minimized.

The discussion of this problem becomes easier if we assume that the given
problem instance is collision-free in the sense that all processing times are dif-
ferent, i.e., pi 6= pj for i 6= j. Such an assumption also allows us to identify
a job with its processing time. In order to rely upon that assumption, we
show how to translate a problem instance having collisions into another one
that is collision-free and has a close target function value. To that end, define
∆ = min1≤i,j≤n{pi, |pi−pj |}. If C = {pi`

}1≤`≤c is a cluster of colliding jobs, pi1 =
. . . = pic , we replace that cluster of jobs with Č = {p̌i`

}1≤`≤c where p̌i`
=

pi`
+(`−1) · ε∆

n2 , where 0 < ε ≤ 1. By the definition of ∆, it is clear that after ap-
plying this procedure to all clusters among {p1, . . . , pn}, we get a new sequence of
perturbed jobs {p̌1, . . . , p̌n} that is collision-free. Moreover, as 0 ≤ p̌i− pi < ε∆

n ,
we conclude that the value of the target function may increase in wake of such
a perturbation by no more than ε∆. Since it is clear that all assignments satisfy
T (A) ≥ ∆ (recall that n > m), we may state the following:

Proposition 1. Let A be an assignment of {p1, . . . , pn}, the original sequence
of jobs, and let Ǎ be the corresponding assignment of the perturbed sequence of
jobs, {p̌1, . . . , p̌n}. Then T (A) ≤ T (Ǎ) ≤ (1 + ε) · T (A) , 0 < ε ≤ 1.

In view of the above, we assume henceforth that all processing times are
different and we maintain the original notation (i.e., pi and not p̌i).

In the subsequent section we describe a PTAS for the case where m is part of
the input. The FPTAS the case where m is constant appears in the full version
of this paper.

2 A Polynomial Time Approximation Scheme

To facilitate the presentation of our PTAS, we introduce the following notations:

1. Given an assignment A, FA denotes the subset of indices of final jobs, FA =
{fk : 1 ≤ k ≤ m}.

2. F c
A denotes the complement subset of indices of non-final jobs.

3. plnf denotes the size of the largest non-final job, plnf = max{pi : i ∈ F c
A}.

4. Jm+1 = {pj1 , . . . , pjm+1} denotes the subset of the m + 1 largest jobs.

The above definitions imply that one of the jobs in Jm+1 has processing time
plnf.

The main loop in the algorithm goes over all jobs p ∈ Jm+1 and considers
assignments in which plnf = p. Obviously, by doing so, we cover all possible
assignments. For a given value of plnf, we may conclude that all corresponding
assignments A satisfy T (A) ≥ plnf. In view of that, we decompose the set of jobs
{p1, . . . , pn} to small and large jobs as follows:

S =
{

pi : pi ≤ εplnf
}

, L =
{

pi : pi > εplnf
}

. (1)

Discretizing the large jobs
Given a lower bound plnf, we discretize the processing times of all large jobs that
are smaller than plnf. Namely, we treat all jobs pi for which εplnf < pi < plnf.
To this end, we define a geometric mesh on the interval [ε, 1],

ξ0 = ε ; ξi = (1 + ε)ξi−1 , 1 ≤ i ≤ q ; q :=

⌈
− lg ε

lg(1 + ε)

⌉
, (2)

and then, for all p ∈ L,

p′ =

{
plnf · H

(
p/plnf

)
if p < plnf

p otherwise
, (3)

where H replaces its argument by the left end point of the interval [ξi−1, ξi)
where it lies. Note that if p < plnf then p′ belongs to a finite set of size q, Ω = {ξ0 ·
plnf, . . . , ξq−1 · plnf}. With this definition, we state the following straightforward
proposition.

Proposition 2. For a given 0 < ε ≤ 1 and plnf ∈ Jm+1, let S and L be as in
(1), and

L′ = {p′ : p ∈ L} . (4)

Let A be an assignment of the original jobs, S∪L, and let A′ be the corresponding
assignment of the modified jobs S ∪ L′. Then T (A′) ≤ T (A) ≤ (1 + ε) · T (A′).

Preprocessing the small jobs
Denote the subsequence of indices of small jobs by i1 < i2 < . . . < ib, where
b = |S|. We describe below how to modify the small jobs into another set of jobs,
the size of which is either εplnf or 0. To that end, let σr denote the sum of the
first r small jobs,

σr =
r∑

k=1

pik
0 ≤ r ≤ b . (5)

The modified small jobs are defined as follows:

Ŝ = {p̂i1 , . . . , p̂ib
} where p̂ir

=

εplnf if
⌈
σr/εplnf

⌉
>

⌈
σr−1/εplnf

⌉

0 otherwise
.

(6)

Proposition 3. Let A be an assignment of the original jobs, S ∪L, with target
value T (A). Then for every 0 < ε ≤ 1 there exists a legal assignment, Â, of the
modified jobs, Ŝ ∪ L, such that

T (Â) ≤ T (A) + 2εplnf . (7)

Notation agreement. Each assignment A : {1, . . . , n} → {1, . . . ,m} induces
a unique function from the set of processing times {p1, . . . , pn} to the set of
machines {M1, . . . , Mm}. In view of our assumption of distinct processing times,
the converse holds as well. In order to avoid cumbersome notations, we identify
between those two equivalent functions and use the same letter to denote them
both. For example, notations such as A(i) or A−1(k) correspond to the index-
index interpretation, while A : S ∪ L → {M1, . . . , Mm} corresponds to the job-
machine interpretation.

Proof. The order of the machines. Consider the subset of indices of final jobs,
FA. Without loss of generality, we assume that they are monotonically increasing,
i.e., f1 < f2 < . . . < fm.
Description of Â. Define the prefix subsets and sums of A,

Ak = {pi : pi ∈ S and A(i) ≤ k} , τk =
∑

pi∈Ak

pi 0 ≤ k ≤ m . (8)

Namely, Ak denotes the prefix subset of small jobs that are assigned by A to one
of the first k machines, while τk denotes the corresponding prefix sum. Next, we
define

r(k) = min
{

r :
⌈

τk

εplnf

⌉
=

⌈
σr

εplnf

⌉}
0 ≤ k < m and r(m) = b , (9)

where σr is given in (5) and b is the number of small jobs. Obviously,

0 = r(0) ≤ r(1) ≤ . . . ≤ r(m) = b . (10)

Next, we define the assignment Â : Ŝ ∪ L → {M1, . . . , Mm} as follows:

Â(p) = A(p) ∀p ∈ L , (11)

namely, it coincides with A for the large jobs, while for the modified small jobs

Â(p̂ir
) = k for all 1 ≤ r ≤ b such that r(k − 1) + 1 ≤ r ≤ r(k). (12)

Note that (10) implies that (12) defines Â for all jobs in Ŝ. Finally, for each of
the machines, we rearrange the jobs that were assigned to it in (11) and (12) in
an increasing order according to their index.
The prefix sets and sums of Â. Similarly to (8), we define the prefix subsets and
sums for the modified small jobs Ŝ and assignment Â:

Âk = {p̂i : p̂i ∈ Ŝ and Â(i) ≤ k} , τ̂k =
∑

p̂i∈Âk

p̂i 0 ≤ k ≤ m . (13)

Denote the largest index of a job in Ak by it(k) and the largest index of a job
in Âk by it̂(k). As (12) implies that t̂(k) = r(k) while, by (9), r(k) ≤ t(k), we
conclude that t̂(k) ≤ t(k).
The Min-Max start time of Â. Given an assignment A : S ∪L → {M1, . . . , Mm}
we defined an assignment Â : Ŝ ∪ L → {M1, . . . , Mm}. Let Mk be an arbitrary
machine, 1 ≤ k ≤ m. The final job in that machine, corresponding to the first
assignment, is pfk

, and its start time is θk = `k + τk − τk−1 − pfk
, where `k

is the sum of large jobs assigned to Mk. Similarly, letting p̂f̂k
denote the final

job in that machine as dictated by the second assignment, its start time is
θ̂k = `k + τ̂k − τ̂k−1 − p̂f̂k

. In order to prove (7) we show that

θ̂k ≤ θk + 2εplnf . (14)

First, we observe that in view of the definition of the modified small jobs, (6),
and r(k), (9), τ̂k = εplnf ·

⌈
τk/εplnf

⌉
. Consequently,

τ̂k − εplnf < τk ≤ τ̂k . (15)

Therefore, it remains to show only that

pfk
− p̂f̂k

≤ εplnf (16)

in order to establish (14). If pfk
∈ S then (16) is immediate since then

pfk
− p̂f̂k

≤ pfk
≤ εplnf .

Hence, we concentrate on the more interesting case where pfk
∈ L. In this case

the job pfk
is assigned to Mk also by Â. We claim that it is in fact also the final

job in that latter assignment, namely, p̂f̂k
= pfk

. This may be seen as follows:

◦ The indices of the modified small jobs in Mk are bounded by it̂(k).
◦ As shown earlier, it̂(k) ≤ it(k).
◦ it(k) < fk since the machines are ordered in an increasing order of fk and,

therefore, the largest index of a small job that is assigned to one of the first
k machines, it(k), is smaller than the index of the final (large) job on the kth
machine, fk.

◦ The above arguments imply that the indices of the modified small jobs in
Mk cannot exceed fk.

◦ Hence, the rearrangement of large and modified small jobs that were as-
signed to Mk by Â keeps job number fk as the final job on that machine.

This proves p̂f̂k
= pfk

and, consequently, (16). ut
Proposition 4. Let Â be an assignment of the modified jobs, Ŝ ∪L, with target
value T (Â). Then there exists a legal assignment, A, of the original jobs, S ∪L,
such that

T (A) ≤ T (Â) + 2εplnf . (17)

Remark. Proposition 4 complements Proposition 3 as it deals with the inverse
reduction, from a solution in terms of the modified jobs to a solution in terms of
the original jobs. Hence the similarity in the proofs of the two complementary
propositions. Note, however, that the direction treated in Proposition 4 is the
algorithmically important one (as opposed to the direction treated in Proposition
3 that is needed only for the error estimate).

Proof. Due to the similarity of this proof to the previous one, we focus on the
constructive part of the proof. We first assume that the indices of the final jobs,
as dictated by Â, are monotonically increasing, namely, f̂1 < f̂2 < . . . < f̂m.
Then, we consider the prefix subsets and sums of Â,

Âk = {p̂i : p̂i ∈ Ŝ and Â(i) ≤ k} , τ̂k =
∑

p̂i∈Âk

p̂i 0 ≤ k ≤ m , (18)

and define

r(k) = min
{

r :
τ̂k

εplnf
=

⌈
σr

εplnf

⌉}
0 ≤ k < m and r(m) = b , (19)

where σr and b are as before. Note that τ̂k is always an integral multiple of
εplnf and 0 = r(0) ≤ r(1) ≤ . . . ≤ r(m) = b. Finally, we define the assignment
A : S ∪ L → {M1, . . . , Mm}: A coincides with Â on L; as for the small jobs S,
A is defined by

A(pir) = k for all 1 ≤ r ≤ b such that r(k − 1) + 1 ≤ r ≤ r(k) . (20)

The jobs in each machine – large and small – are then sorted according to their
index.

The proof of estimate (17) is analogous to the proof of (7) in Proposition 3.
In fact, if we take the proof of (7) and swap there between every hat-notated
symbol with its non-hat counterpart (i.e., A ↔ Â, pi ↔ p̂i, it(k) ↔ it̂(k) etc.),
we get the corresponding proof of (17). ut

The algorithm
In the previous subsections we described two modifications of the given jobs that
have a small effect on the value of the target function, Propositions 2–4. The
first modification translated the values of the large jobs that are smaller than
plnf into values from a finite set Ω. The second modification replaced the set of
small jobs with modified small jobs of size either 0 or ξ0 · plnf = ε · plnf. Hence,
after applying those two modifications, we are left with job sizes p where either
p ≥ plnf or p ∈ Ω ∪ {0}. After those preliminaries, we are ready to describe our
algorithm.

The Main Loop

1. Identify the subsequence of m + 1 largest jobs, Jm+1 = {pj1 , . . . , pjm+1},
pj1 > pj2 > . . . > pjm+1 .

2. For r = 1, . . . , m + 1 do:
(a) Set plnf = pjr

.
(b) Identify the subsets of small and large jobs, (1).
(c) Discretize the large jobs, L 7→ L′, according to (3)+(4).
(d) Preprocess the small jobs, S 7→ Ŝ.
(e) Solve the problem in an optimal manner for the modified sequence of

jobs Ŝ ∪ L′, using the core algorithm that is described below.
(f) Record the optimal assignment, Ar, and its value, T (Ar).

3. Select the assignment Ar for which T (Ar) is minimal.
4. Translate Ar to an assignment A in terms of the original jobs, using Propo-

sitions 2 and 4.
5. Output assignment A.

The Core Algorithm
The core algorithm receives:

(1) a value of r, 1 ≤ r ≤ m + 1;
(2) a guess for the largest non-final job, plnf = pjr ;
(3) a sequence Φ of r − 1 jobs pj1 , . . . , pjr−1 that are final jobs;
(4) a sequence Γ of n− r jobs, the size of which belongs to Ω ∪ {0}.
It should be noted that the given choice of plnf splits the remaining n − 1

jobs from Ŝ ∪ L′ into two subsequences of jobs: those that are larger than plnf

(i.e., the r − 1 jobs in Φ that are non-modified jobs) and those that are smaller
than plnf (i.e., the n− r jobs in Γ that are modified jobs, either large or small).
Step 1: Filling in the remaining final jobs.

The input to this algorithm dictates the identity of r − 1 final jobs, Φ. We
need to select the additional m− r + 1 final jobs out of the n− r jobs in Γ . We
omit the proof of the next lemma.

Lemma 1. The essential number of selections of the remaining m− r + 1 final
jobs out of the n− r jobs in Γ is polynomial in m.

Step 2: A makespan problem with constraints.
Assume that we selected in Step 1 the remaining m − r + 1 final jobs and

let FA = {fk : 1 ≤ k ≤ m} be the resulting selection of final jobs, fk being the

index of the selected final job in Mk. Without loss of generality, we assume that
f1 < f2 < . . . < fm. Given this selection, an optimal solution may be found by
solving the makespan problem on the remaining n−m jobs with the constraint
that a job pi may be assigned only to machines Mk where i < fk.

Next, define Γ ∗η to be the subset of non-final jobs from Γη, −1 ≤ η ≤ q − 1,
and let Γ ∗q = {plnf}. For each 0 ≤ k ≤ m and −1 ≤ η ≤ q, we let zk

η be
the number of jobs from Γ ∗η whose index is less than fk. Finally, we define for
each 0 ≤ k ≤ m the vector zk = (zk

−1, . . . , z
k
q) that describes the subset of

non-final jobs that could be assigned to at least one of the first k machines. In
particular, we see that 0 = z0 ≤ z1 ≤ . . . ≤ zm where the inequality sign is
to be understood component-wise and zm describes the entire set of non-final
jobs, F c

A. In addition, we let P(zk) = {z ∈ N q+2 : 0 ≤ z ≤ zk} be the set of all
sub-vectors of zk.
Step 3: Shortest path in a graph.

Next, we describe all possible assignments of those jobs to the m machines
using a layered graph G = (V, E). The set of vertices is composed of m+1 layers,
V = ∪m

k=0Vk, where Vk = P(zk) 0 ≤ k < m and Vm = {zm}. We see that
the first and last layers are composed of one vertex only, {z0 = 0} and {zm}
respectively, while the intermediate layers are monotonically non-decreasing in
size corresponding to the non-decreasing prefix subsets P(zk).

The set of edges is composed of m layers, E = ∪m
k=1Ek where Ek is defined

by Ek = { (u,v) ∈ Vk−1 × Vk : u ≤ v }. It is now apparent that all possible
assignments of jobs from F c

A to the m machines are represented by all paths in
G from V0 to Vm. Assigning weights to the edges of the graph in the natural

manner, w[(u,v)] =
q∑

η=0
(vη − uη) · plnf · ξη, where {ξη}q−1

η=0 are given in (2) and

ξq = 1, we may define the cost of a path (u0, . . . ,um) ∈ V0 × . . . × Vm as
T [(u0, . . . ,um)] = max{w[(uk−1,uk)] : 1 ≤ k ≤ m}. In view of the above, we
need to find the shortest path in the graph, from the source V0 to the sink Vm,
and then translate it to an assignment in the original jobs.
Step 4: Translating the shortest path to an assignment of jobs.

For 1 ≤ k ≤ m and −1 ≤ η ≤ q, let uk
η be the number of jobs of type η that

were assigned by the shortest path to machine k. Then assign the uk
η jobs of

the lowest indices in Γ ∗η to machine Mk and remove those jobs from Γ ∗η . Finally,
assign the final jobs of indices fk, 1 ≤ k ≤ m.
Performance estimates
We omit the proofs of the following theorems.

Theorem 1. For a fixed 0 < ε ≤ 1, the running time of the above described
algorithm is polynomial in m and n.

Theorem 2. Let T o be the value of an optimal solution to the given Min-Max
Starting Time Problem. Let A be the solution that the above described PTAS
yields for that problem. Then for all 0 < ε ≤ 1, T (A) ≤ (1 + 35ε)T o.

3 Concluding Remarks

The min-max starting time problem is closely related to the makespan minimiza-
tion problem in the hierarchical model [11]. In that model, each of the given jobs
may be assigned to only a suffix subset of the machines, i.e., {Mk, . . . ,Mm} for
some 1 ≤ k ≤ m. An FPTAS for the makespan minimization problem in the
case where m is constant is given in [7, 8]. That FPTAS may serve as a building
block for an FPTAS for the min-max starting time problem. We also observe
that the same techniques that were presented above to construct a PTAS for
the min-max starting time problem may be used in order to construct a PTAS
for the makespan minimization problem in the hierarchical model (to the best
of our knowledge, such a PTAS was never presented before).

References

1. N. Alon, Y. Azar, G. Woeginger, and T. Yadid. Approximation schemes for schedul-
ing on parallel machines. Journal of Scheduling, 1:1:55–66, 1998.

2. L. Epstein and R. van Stee. Minimizing the maximum starting time on-line. In
Proc. of the 10th Annual European Symposium on Algorithms (ESA’2002), pages
449–460, 2002.

3. R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical
Journal, 45:1563–1581, 1966.

4. R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math,
17:416–429, 1969.

5. D. Hochbaum and D. Shmoys. A polynomial approximation scheme for scheduling
on uniform processors: using the dual approximation approach. SIAM Journal on
Computing, 17(3):539–551, 1988.

6. D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for
scheduling problems: theoretical and practical results. Journal of the Association
for Computing Machinery, 34(1):144–162, 1987.

7. E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling non-
identical processors. Journal of the Association for Computing Machinery, 23:317–
327, 1976.

8. K. Jansen and L. Porkolab. Improved approximation schemes for scheduling un-
related parallel machines. In Proceedings of the 31st annual ACM Symposium on
Theory of Computing (STOC’99), pages 408–417, 1999.

9. J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity os scheduling under prece-
dence constraints. Operations Research, 26:22–35, 1978.

10. S.R. Mehta, R. Chandrasekaran, and H. Emmons. Order-presrving allocation of
jobs to two machines. Naval Research Logistics Quarterly, 21:846–847, 1975.

11. J. Naor, A. Bar-Noy, and A. Freund. On-line load balancing in a hierarchical
server topology. In Proc. of the 7th European Symp. on Algorithms (ESA’99),
pages 77–88. Springer-Verlag, 1999.

12. S. Sahni. Algorithms for scheduling independent tasks. Journal of the Association
for Computing Machinery, 23:116–127, 1976.

13. P. Schuurman and G. Woeginger. Polynomial time approximation algorithms for
machine scheduling: Ten open problems. Journal of Scheduling, 2:203–213, 1999.

Acknowledgement. The authors would like to thank Yossi Azar from Tel-Aviv Uni-

versity for his helpful suggestions.

