
Secure Multi-Party Protocols for
Item-Based Collaborative Filtering

Erez Shmueli

Tel Aviv University

Tel Aviv, Israel

shmueli@tau.ac.il

Tamir Tassa

�e Open University

Ra’anana, Israel

tamirta@openu.ac.il

ABSTRACT
Recommender systems have become extremely common in recent

years, and are utilized in a variety of domains such as movies, mu-

sic, news, products, restaurants, etc. While a typical recommender

system bases its recommendations solely on users’ preference data

collected by the system itself, the quality of recommendations can

signi�cantly be improved if several recommender systems (or ven-

dors) share their data. However, such data sharing poses signi�cant

privacy and security challenges, both to the vendors and the users.

In this paper we propose secure protocols for distributed item-based

Collaborative Filtering. Our protocols allow to compute both the

predicted ratings of items and their predicted rankings, without

compromising privacy nor predictions’ accuracy. Unlike previous

solutions in which the secure protocols are executed solely by the

vendors, our protocols assume the existence of a mediator that

performs intermediate computations on encrypted data supplied

by the vendors. Such a mediated se�ing is advantageous over the

non-mediated one since it enables each vendor to communicate

solely with the mediator. �is yields reduced communication costs

and it allows each vendor to issue recommendations to its clients

without being dependent on the availability and willingness of the

other vendors to collaborate.
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•Human-centered computing→Collaborative �ltering; •Security
and privacy→ Privacy-preserving protocols;
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1 INTRODUCTION
�e explosion of information that is available to users over the

World Wide Web was the main driving force in the emergence

of recommendation systems that aim at helping users �nd their
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needles in the haystack [23]. One of the main techniques on which

recommendation systems are based is collaborative �ltering (CF) [8].

CF predicts the preferences of users based on the preferences of the

community (rather than on the users’ characteristics). Speci�cally,

CF methods use large databases that store information regarding

rating or purchasing history of users in the community. �ese data

are modeled as a matrix over the set of users (rows) and items

(columns), where the entry for a given user u and a given item b is

either binary (indicating whether user u purchased item b or not),

or a rating that u gave to b.

CF is broadly classi�ed into memory-based and model-based

approaches. �e memory-based approach is either user-based, in

the sense that recommendations for a given user u are derived from

the preferences of users that are similar to u, or item-based, i.e., u is

o�ered items which are similar to those that he purchased or liked

in the past. �e similarity between users or items is de�ned by some

metric between the corresponding rows or columns, respectively,

in the user-item matrix. �e item-based approach is more suitable

for deployment in e-commerce sites, due to its be�er scalability,

and, indeed, it is one of the most widely deployed CF techniques

[6].

Since memory-based approaches utilize the entire matrix of past

ratings or purchases, some of them do not scale well. In such cases,

model-based approaches may be more applicable. In model-based

approaches, the original user-item matrix is used to train a compact

model, which is then used for prediction. �e model is developed

by arti�cial intelligence techniques (e.g., Bayesian classi�cation)

or by linear algebraic techniques (e.g., SVD). While item-based

methods have comparable performance to that of model-based

methods when predicted ratings are the required output, the former

methods tend to show be�er performance when the required output

is the top h items for a given user [6]. Furthermore, item-based

recommendations are more easily interpretable to the user.

Instead of basing their recommendations to their clients solely on

their own databases, vendors may signi�cantly improve the quality

of their recommendations by sharing their user-item preferential

data [3]. However, such sharing poses signi�cant privacy and

security challenges. Indeed, commercial organizations may be

reluctant to share their proprietary data about past users’ purchases

or ratings as it may serve competing entities. In addition, the users’

privacy might be hindered if personal information about their past

activities which they provided to one commercial entity would be

handed over by that entity to other entities.

Privacy-preserving collaborative �ltering (PPCF) enables the

practice of CF without leaking private information. One class of

PPCF algorithms is based on techniques such as data perturbation

or generalization. �e outputs issued by such algorithms may di�er
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from the outputs of their non-privacy preserving counterparts,

due to the noise that they introduce to the training data. Another

class of PPCF algorithms is based on cryptographic techniques,

such as homomorphic encryption or secret sharing. Employing

cryptographic techniques, rather than data perturbation, o�ers

be�er privacy-preservation and it enables issuing the same output

as in the the underlying non-privacy preserving algorithm.

In this paper we propose protocols of Secure Multiparty Com-

putation (SMC) for PPCF. We focus on the vertical distribution

case, where each of the collaborating vendors (denoted V1, . . . ,VK )

o�ers a di�erent subset of items to the same underlying population

of users. �e discussion of the horizontal distribution se�ing, in

whichV1, . . . ,VK o�er the same set of items but each vendor serves

a distinct subset of users, is deferred to the full version of this paper

due to lack of space. We design privacy-preserving protocols for

computing predicted ratings and rankings.

Most previous PPCF solutions are protocols that are executed

solely by the vendors. Our protocols, on the other hand, involve a

mediator, T . Having such a mediator reduces the need of the ven-

dors to communicate with each other only to the o�ine (and infre-

quent) phase in which a model of similarity between items is built;

in the online phase, where vendors need to issue predicted ratings

and rankings to their clients, each vendor communicates directly

vis-à-vis T and does not need to communicate with other vendors.

Such a mediated se�ing is advantageous over the non-mediated

se�ing since it entails reduced communication costs. More im-

portantly, each vendor can issue recommendations to its clients

without “bothering” all other vendors each time or be dependent

on their availability and willingness to collaborate.

�e paper is organized as follows. We begin with a review of

related work (Section 2). We then provide the necessary back-

ground on item-based CF and cryptographic methods (Section 3).

Our PPCF protocols are described in Section 4. We present our

experimental evaluation in Section 5, and conclude in Section 6.

2 RELATEDWORK
Privacy-preserving collaborative �ltering (PPCF) enables the prac-

tice of CF without leaking private information. We proceed to

overview several recent PPCF works. Interested readers may refer

to [4, 7] for a more comprehensive survey.

Polat and Du [19] discuss how to provide predictions for single

items in case of a vertical distribution scenario with two vendors. In

another study of theirs [20], they show how to o�er top recommen-

dations in both the horizontal and vertical distribution scenarios

without deeply violating the vendors’ privacy. �ey concentrate

on the case of two vendors, and the case of binary user-item data.

Jeckmans et al. [11] considered a case of horizontal distribution

between two vendors, V1 and V2. �ey considered an asymmetric

se�ing in which V2 collaborates with V1 so that V1 can o�er to its

clients be�er recommendations, while V2 does not bene�t at all

from such a collaboration. All of the above works are based on

user-based CF, i.e., the recommendations to u are derived from the

items that users similar to u liked. �e studies that we describe

next follow (like us) the item-based approach.

Basu et al. [2] propose algorithms for a privacy-preserving ex-

ecution of an item-based CF scheme that is based on the Slope

One predictor [15]. �e work which is closest to ours is that of

Yakut and Polat [33]. To the best of our knowledge, it is the only

other work that deals with item-based CF which is based on the

cosine-similarity score. �ey concentrated on the case of two ven-

dors and considered the arbitrary distribution scenario. A main

vehicle by which they obtain privacy is by introducing fake ratings

into the distributed matrix. Hence, as opposed to our algorithms

that issue exactly the same outputs as their non-privacy preserving

counterparts, the outputs of the algorithms in [33] are inaccurate,

and in order to enhance the privacy, greater levels of noise must be

introduced, what implies a further reduction of accuracy.

All of the above studies are non-mediated. Hence, whenever a

vendor wishes to compute predicted ratings or rankings, all other

vendors need to be available and cooperating. Also, except [2], they

concentrate on the case of K = 2 vendors; a natural extension of

those schemes to a general K (to enable be�er recommendations)

entails high communication costs. Such challenges do not exist in

the mediated se�ing, where any single vendor communicates (in

the online phase) only with the mediator.

3 PRELIMINARIES
3.1 Item-based collaborative �ltering
Here we provide a brief introduction to item-based CF [22]. A more

comprehensive discussion is given in [6].

Let U = {u1, . . . ,uN } be a set of users and B = {b1, . . . ,bM }
be a set of items (say, books). �e user-item rating matrix, R, is

an N ×M matrix where R(n,m) is the rating that un gave to bm , a

value which is usually taken from a small range of positive integers,

say {1, 2, 3, 4, 5}, and R(n,m) = 0 if un did not rate bm . Item-based

CF consists of two phases: an o�ine phase, in which the matrix R
is used to learn a model of similarity between items; and an online

phase in which that model is used to predict user ratings or to

rank items according to their potential appeal to a given user. (�e

o�ine phase should be repeated periodically in order to update the

similarity scores according to the changes in U , B, and R.)

�e similarity model is an M × M symmetric matrix S where

S(`,m) is the similarity score between items b` and bm , `,m ∈
[M] := {1, 2, . . . ,M}. Let cm = (R(n,m) : n ∈ [N ]) denote here-

ina�er themth column in the user-item rating matrix R,m ∈ [M].
�en the similarity scores are de�ned in De�nition 3.1.

1

De�nition 3.1. Assume that `,m ∈ [M] and set c` |m := c` ·ξ (cm );
namely, c` |m := (c` |m (1), . . . , c` |m (N ))t is the projection of the

`th column of the user-item rating matrix R on the subset of users

that rated both items b` and bm . �en the cosine similarity score is

S(`,m) = 〈c` , cm〉
‖c` |m ‖ · ‖cm |` ‖

. (1)

�e similarity scores are used to predict un ’s rating of bm as fol-

lows. Let (a) Nq (m) be the set of indices of the q items with highest

S(·,m) (for some preset, typically small, q < M); (b) N+q (m) := {` ∈
Nq (m) : S(`,m) > 0}; (c) sm be the vector for which sm (`) = S(`,m)
if ` ∈ N+q (m) and sm (`) = 0 for ` ∈ [M] \ N+q (m) ; (d) R(bm )
1
Notation agreements: (a) If r is a nonnegative integer then ξ (r ) = 0 if r = 0 and

ξ (r ) = 1 otherwise. (b) If x is a vector and f is a function then f (x) is the vector in

which f (x)(·) = f (x(·)). (c) If x and y are vectors then 〈x, y〉 is their inner product,

while x · y is the vector in which (x · y)(·) = x(·) · y(·).
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be bm ’s average rating; (e) rn be the nth row of the matrix R;

and (f) rn be the vector of un ’s adjusted ratings, i.e. rn (m) =
(R(n,m)−R(bm )) · ξ (R(n,m)),m ∈ [M]. �en

P(un ,bm ) := R(bm ) +
〈sm , rn〉
〈sm , ξ (rn )〉

. (2)

If the denominator in Eq. (2) equals zero, P(un ,bm ) is set to R(bm ).
(�ere exist several variants of the similarity score and prediction

formula. We focus here on the variant suggested in [6], which

performs best. �e adjustment of our protocols to other variants is

straightforward.)

Sometimes, instead of showing to un his predicted rating on

some item, the goal is to present to him the h items which are most

likely to appeal to him, without predicted ratings. To that end,

one produces a ranking of all items that un had not rated so far

in order to extract from it the top h items, for some h ≥ 1. One

approach is to base the ranking on the items’ predicted ratings (Eq.

(2)). However, a simpler ranking procedure produces be�er results

(see [6, Section 2.3]). Let I (n) be the subset of indices of items that

un already rated. De�ne for eachm ∈ [M] \ I (n) the score

ŝ(m) =
∑

`∈I (n)∩Nq (m)
S(`,m) . (3)

�en, the top h items to be recommended to un are those with the

highest value of ŝ(m).

3.2 Cryptographic building blocks
An encryption function F is called (additively) homomorphic if for

every two plaintexts, m1 and m2, F(m1 +m2) = F(m1) · F(m2).
When the encryption function is randomized (in the sense that

F(m) depends on m as well as on a random string) then F is called

probabilistic. �e semantically secure Paillier cipher [18] is both

homomorphic and probabilistic. In our protocols,V1, . . . ,VK jointly

generate the key pair in a homomorphic and probabilistic encryp-

tion function F; they notify T of the encryption key, but keep the

decryption key private. (In order to jointly generate a random

key pair, the vendors only need to generate a random bit string of

the same length as the key; this can be done, say, if every vendor

chooses its own random string and then they all engage in a secure

summation protocol.)

Another building block of secure multi-party computation that

we shall need is that of secure division. Tassa and Bonchi [26]

considered a se�ing that involves three parties, P1, P2 and H . Pi ,
i = 1, 2, holds a private integer ai , and the goal is to let H recover

the real quotient a1/a2 but not the values of a1 and a2. Towards that

end, P1 and P2 jointly generate a random real number X ∼ Z where

Z is the distribution on [1,∞) with probability density function

fZ (x) = x−2
; then they jointly generate a random д ∼ U (0,X ), and

they send to H the values дai , i = 1, 2, which H proceeds to divide

in order to recover q = a1/a2. �e masking multiplier д prevents

H from learning ai , but it can still recover q. �e selection of the

probability distribution from which д is drawn is made in order to

minimize the information that H can extract from дai on ai . Here

we use this idea as follows: T holds two encrypted values F(a1)
and F(a2) and it wishes to allow a vendor Vk to get the quotient

q = a1/a2 so that no one reveals a1 nor a2. To that end it sends toVk
the values bi := F(ai )д , i = 1, 2, for a random д that was generated

as described above. Since F is homomorphic then bi := F(дai ). Vk
decrypts the two received values and gets F−1(bi ) = дai , i = 1, 2,

which it then proceeds to divide in order to get q.

4 PPCF PROTOCOLS
Here we deal with the vertical distribution scenario, where each

vendor owns a di�erent subset of R’s columns. In Sections 4.1 and

4.2 we describe the computations and protocols that are performed

in the o�ine phase and involve all of the vendors V1, . . . ,VK , as

well as the mediatorT . �en, we describe the online phase in which

a given vendor Vk submits queries to T towards computing the

predicted rating of some user un for an item bm , P(un ,bm ), Eq. (2)

(Section 4.3), or ge�ing the top h items for a given user un (Section

4.4). �e online phase is carried out solely by Vk and T . Namely,

the participation of all vendors is required only in the o�ine and

less frequent phase.

User ordering. �e vendors jointly decide on a random ordering

of U , which is kept secret from T . Hereina�er, un denotes the nth

user in that ordering.

Item ordering. �e vendors jointly decide on a random order-

ing of the uni�ed item set B. Let Ik ⊂ [M] denote the subset of

indices of Vk ’s items in that ordering, k ∈ [K]. T is noti�ed of Ik ,

k ∈ [K], but apart from that the ordering is kept secret from T .

If Mk := |Ik | is the number of items o�ered by Vk , k ∈ [K], then

for everym ∈ Ik , the vector cm (themth column in the user-item

rating matrix R) is known only to Vk .

We note that in order to select those random orderings, all that is

needed is to select a common random seed; such a common random

seed can be generated as described in Section 3.2.

Privacy. �e goal of each vendorVk is to protect its own propri-

etary data, being the sub-matrix Rk := {R(n,m) : n ∈ [N ],m ∈ Ik },
from Vj , j , k , and T . Ideally, no such party should gain any infor-

mation on Rk from its view during the execution of our protocols,

beyond what can be inferred from its own input and the output of

the protocol. However, while such perfect security is achievable

for any problem of SMC (by invoking generic solutions such as

Yao’s garbled circuit construction [34]), when looking for practical
solutions, some relaxations of the notion of perfect privacy are

usually inevitable, provided that the leaked information is deemed

benign. Examples for such studies are numerous and span various

domains of distributed computing, e.g. association rule mining

[13, 25, 31], anonymization [27, 28, 35], computation on distributed

graphs [1] or constraint optimization [9, 10, 14, 29, 30]. In fact, also

all PPCF studies that were reviewed in Section 2 o�er protection

to the private data, but that protection is not perfect. �e proto-

cols that we present here are also privacy-preserving in that sense.

For each of our protocols we discuss its privacy-preservation and

identify the excess information that they may leak, and explain

why such leakage of information is benign. Our protocols rely

solely on standard cryptographic building blocks, as described in

Section 3.2; this o�ers a signi�cant advantage as they can be readily

implemented on top of standard libraries.

We make here an assumption which is common in PPCF litera-

ture: all parties are semi-honest and do not collude. Semi-honesty

means that the parties follows the protocols’ speci�cations but try

to extract from their view information on the inputs of their peers.
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(See, for instance, [12, 24, 35] for a discussion and justi�cation of

that assumption.)

4.1 O�line model construction
�e split [M] = ⋃K

k=1
Ik induces a split of the similarity matrix S

into K2
blocks, Sj,k , j,k ∈ [K], where the dimensions of the block

Sj,k are Mj × Mk . �e K diagonal blocks, Sk,k , k ∈ [K], consist

of similarity scores between pairs of items that are o�ered by the

same vendor. Each Vk can compute by itself the block Sk,k and

send it to T . �e computation of Sj,k , where j , k , depends on

inputs from Vj and Vk . Protocol 1 enables that computation.

Assume that b` is one of the items o�ered byVj and bm is one of

Vk ’s items. Protocol 1 is executed by Vj , Vk and T towards the goal

of T learning S(`,m). �e protocol relies on a sub-protocol SSP for

Secure Scalar Product. If x is a vector held by Vj and y is a vector

held by Vk , then an execution of SSP with those two inputs ends

with T learning 〈x,y〉, and nothing further, while both Vj and Vk
remain oblivious of the input vector of the other vendor.

First, Vj (where j < k) selects a random multiplier д`,m (Step 1).

�en they execute SSP towardsT receiving z1 = д`,m ·〈c` , cm〉 (Step

2). In Steps 3 and 4 T gets z2 = д`,m · 〈c2

`
, ξ (cm )〉 and z3 = д`,m ·

〈ξ (c`), c2

m〉. Since z2 = д`,m · ‖c` |m ‖2 and z3 = д`,m · ‖cm |` ‖2, we

infer by Eq. (1) that in Step 5T recovers S(`,m). (If the denominator

in that quotient is zero, a case that occurs when no two users rated

both items, the similarity score is set to zero.)

Protocol 1 Computing the similarity score for a single pair of

items.

Require: Vj holds the vector c` for item b` ;

Vk holds the vector cm for item bm .

1: Vj selects a random integer multiplier д`,m .

2: T ← z1 := SSP(д`,m · c` , cm ).
3: T ← z2 := SSP(д`,m · c2

`
, ξ (cm )).

4: T ← z3 := SSP(д`,m · ξ (c`), c2

m ).
5: T sets S(`,m) := z1/

√
z2z3 if z2z3 , 0, and S(`,m) = 0 other-

wise.

Ensure: T gets S(`,m).

Secure computation of scalar products of private vectors is a

fundamental problem in SMC, as it serves a basic building block

for many other secure protocols (see e.g. [32] and the references

therein). Protocol 1 can be executed with any SSP sub-protocol. We

�nd the protocol of Du and Zhan [5] most ��ing in our context,

since their protocol is designed for the mediated se�ing which we

consider; namely, two parties hold each of the input vectors and

the scalar product goes to a mediator. In addition, because it relies

on a mediator, it solves the problem with perfect security without

resorting to expensive cryptographic means, thus implying low

computational and communication costs.

Protocol 1 ends with T having the similarity score S(`,m) be-

tween a single pair of items o�ered by Vj and Vk . Vj and Vk have

to perform Protocol 1 in parallel for all ` ∈ Ij and m ∈ Ik . �at

parallelized version of Protocol 1 has to be run by all

(K
2

)
pairs of

vendors.

Privacy. By using a secure SSP sub-protocol (such as the one in

[5]), none of the vendors may infer any information on inputs of

other vendors. As for T , the usage of random multipliers prevents

it from learning the terms in the numerator and denominator of

Eq. (1). T does learn the similarity scores between items, but, owing

to the random item ordering, it cannot link those scores to the

relevant pair of items.

(Due to page limitation, we omit the computational and commu-

nication cost analysis of all our protocols.)

A concluding remark. �e similarity scores S(`,m) are real-

valued and in the next phase they need to be used in computing

predicted ratings and rankings in a privacy-preserving manner.

In doing so, it is necessary to subject them to encryption. Since

encryption functions are applied on discrete integer domains, T
translates all real values s in the matrix S into integer values by

mappings of the form s 7→ ŝ := bLs+0.5c, where L is a large integer.

4.2 In preparation to the online phase
�e computation of predicted ratings depends on rn and ξ (rn ), see

Eq. (2). �e vectors rn are real-valued. We translate them into

integer-valued vectors r̂n , where r̂n (m) := bLrn (m) + 0.5c, and L is

a large integer as described in the concluding remark of Section 4.1.

�en, in the online phase, the predicted ratings will be computed

as follows:

P(un ,bm ) := R(bm ) +
1

L
· 〈sm , r̂n〉〈sm , ξ (rn )〉

. (4)

Up to negligible rounding errors, Eq. (4) issues the same predictions

as Eq. (2) while relying only on integer values.

Protocol 2 is designed so that at its completion T holds an F-

encryption of the vectors r̂n and ξ (rn ), for all n ∈ [N ], where F is

the homomorphic encryption function that can be decrypted by

the vendors only. Owing to the security of the F-encryption, this

protocol keeps the information owned by the vendors protected

from T .

Protocol 2 Conveying to T encryptions of user-rating vectors.

Require: Each Vk , k ∈ [K], holds R(n,m) for all n ∈ [N ] and

m ∈ Ik .

1: Each Vk computes for each m ∈ Ik the average rating of bm ,

R(bm ) =
∑
n∈[N ] R(n,m)∑

n∈[N ] ξ (R(n,m))
.

2: EachVk computes the adjusted user-item matrix over its items,

R(n,m) :=
(
R(n,m) − R(bm )

)
· ξ (R(n,m)), n ∈ [N ],m ∈ Ik .

3: Each Vk computes R̂(n,m) = bLR(n,m) + 0.5c, n ∈ [N ],m ∈ Ik .

4: Each Vk sends to T the matrices (F(R̂(n,m)) : n ∈ [N ],m ∈ Ik )
and (F(ξ (R(n,m))) : n ∈ [N ],m ∈ Ik ).

5: T concatenates the K received matrices.

Ensure: T gets F(r̂n ) and F(ξ (rn )), ∀n ∈ [N ].

Privacy. In Protocol 2 only the mediator T gets information.

�at information is encrypted by F, and therefore it is protected

fromT and can only be used, by applying homomorphic arithmetic

later on, to produce other F-encrypted values that will be sent

back to the vendors. No party (be it a vendor, the mediator, or an

eavesdropper) receives any part of the user-item matrix R which it

does not own.
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Note that practical deployments of our protocols should be en-

hanced with standard security mechanisms. In particular, each

party should create its own pair of private and public keys, and get

from a Certi�cate Authority a corresponding certi�cate. �en, each

message must be signed by the sender and encrypted under the

receiver’s public key. Such standard security layers are essential

when implementing any SMC protocol, and they come on top of the

SMC protocol. �ey are essential in order to prevent eavesdropping,

masquerading, and other well-known a�acks on communication

systems.

4.3 Computing predicted ratings
In this phase, any vendor Vk , k ∈ [K], can submit a query to T for

the predicted rating of a single user u ∈ U of an item b o�ered by

Vk . Such queries are answered, in a privacy preserving manner, by

Protocol 3. In the protocol we rely upon the following lemma.

Lemma 4.1. Let F be a homomorphic encryption function and let
x and y be two N -dimensional integer vectors. Denote (F(x))y :=∏N

n=1
F(x(n))y(n). �en (F(x))y = F(〈x,y〉).

Protocol 3 begins with Vk submi�ing a query to T (Step 1); the

query includes an index n ∈ [N ] of a user un ∈ U and an index

m ∈ Ik of an item bm that Vk o�ers. �en, T computes the set

N+q (m) (see Section 3.1); those are the indices {`1, . . . , `t } of the

t ≤ q items in B \ {bm } (not necessarily from among those o�ered

by Vk ) that have the highest and positive similarity scores against

bm (Step 2). T then sets sm to be themth column of the similarity

matrix, where all entries not corresponding to the above N+q (m)-
items are zeroed (Step 3). �ose steps can be carried out just once

for each item, so that the results can be used in future queries for

the same item.

In Step 4T selects a random multiplier д (as explained in Section

3.2) that will obfuscate from Vk the values of the numerator and

the denominator in the quotient in Eq. (4), but will enable Vk to

compute that quotient. Recall that, owing to Protocol 2, T has the

vectors F(r̂n ) and F(ξ (rn )) for un . �en, relying on Lemma 4.1,

T computes in Step 5 the F-encryption x of the scalar product

x ′ := д · ∑t
i=1

S(`i ,m)r̂n (`i ), as well as the F-encryption y of the

scalar product y′ := д ·∑t
i=1

S(`i ,m)ξ (rn (`i )). It sends those values

to Vk who proceeds to decrypt them (Step 6) and then use them in

Eq. (4) to get the predicted rating (Step 7). (Recall that the average

rating for each item bm , m ∈ Ik , can be computed by Vk alone and

was already computed in Protocol 2.)

Privacy. �e only party who receives information in Protocol 3

is Vk . It receives the numerator and denominator in the quotient

in Eq. (4) that determines the desired predicted rating. Since both

values are obfuscated by a random multiplier that T generates, Vk
only receives their quotient but it does not learn the value of neither

of them beyond what is implied by that quotient.

4.4 Computing the most recommended items
Here we discuss the case where in the online phase, instead of

showing to the user un predicted ratings for items that he had not

rated so far, Vk presents to him a list of the h items, yet unrated by

un , which are most likely to appeal to him. In view of our discussion

in Section 3.1, such a computation would be carried out by Vk and

Protocol 3 Computing a predicted rating of u ∈ U for an item

o�ered by Vk .

1: Vk sends to T a query (n,m) ∈ [N ] × Ik .

2: T computes the set N+q (m) := {`1, . . . , `t }.
3: T sets an M-dimensional vector sm where sm (`) = S(`,m) if

` ∈ N+q (m) and sm (`) = 0 otherwise.

4: T selects a random integer multiplier д.

5: T sends to Vk the two scalar values x = F(r̂n )(д ·sm ) and y =

F(ξ (rn ))(д ·sm ).
6: Vk computes x ′ := F−1(x) and y′ := F−1(y).
7: Vk sets P(un ,bm ) = R(bm ) + x ′/Ly′ if y′ , 0, and P(un ,bm ) =

R(bm ) otherwise.

Ensure: VK gets P(un ,bm ).

T as follows: if I (n) is the subset of indices of items that un already

rated, then Vk will select the h indices m ∈ Ik \ I (n) for which

ŝ(m) = ∑
`∈I (n)∩Nq (m) S(`,m), Eq. (3), are largest, where S(`,m)

are the scaled integral similarity scores that T got as a result of

Protocol 1.

Protocol 4 performs that computation in a privacy-preserving

manner. It starts byVk submi�ing a query toT (Step 1). In Steps 2-4,

T generates an F-encryption of ŝ(m) for allm ∈ Ik , multiplied by a

random integer multiplier д, as described in Section 3.2. Indeed, by

Eq. (3) and Lemma 4.1, and the fact that ξ (rn ) is a binary vector with

ξ (rn )(`) = 1 if and only if ` ∈ I (n), it follows that x(m) = F (дŝ(m))
for allm ∈ Ik .

Next (Step 5), T computes an Mk -dimensional vector y such

that y(m) = F(1) ifm ∈ Ik ∩ I (n) (namely, if un already rated that

item) and y(m) = F(0) if m ∈ Ik \ I (n). T generates the vector y
by taking the restriction of the vector F(ξ (rn )) (that T received

in Protocol 2) to Ik and multiplying each of its entries by a fresh

random encryption of 0. Because F is homomorphic, such an

operation changes only the ciphertext value but not the underlying

plaintext. �e reason for this seemingly redundant operation will

be clari�ed below.

Next, T sends a random permutation of the vectors x and y
to Vk , who decrypts them into x′ and y′, respectively (Steps 6-7).

Hence, x′ holds a permutation of the values дŝ(m), for all items

m ∈ Ik , while y′ holds a corresponding permutation of 0 and 1

values that identify those items which un had already rated. Since

T had scrambled the la�er ciphertexts (by multiplying each one of

them with a fresh random encryption of 0),Vk can only distinguish

between rated and unrated items, but it cannot distinguish between

items within either one of those two subsets. (IfT had not multiplied

each F(ξ (rn )(m)) with a fresh encryption of zero, then Vk would

have been able to reverse engineer the random permutation π by

comparing the entries of y with the encrypted entries of ξ (rn ) that

it had sent to T earlier in Step 4 in Protocol 2.) Vk proceeds to �nd

the indices of the h yet unrated items with largest дŝ(m) (and hence

also largest ŝ(m)) and sends them toT (Step 8). T responds by le�ing

Vk know the original indices of those items (Step 9). �ose are the

items to be presented to the user un as the top-h recommended

items.

Privacy. �e values of the scores ŝ(m) are hidden from Vk by

the random multiplier д. However, using that mechanism alone
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Protocol 4 Computing for un the top h yet unrated items o�ered

by Vk .

1: Vk sends to T a query n ∈ [N ].
2: For eachm ∈ Ik , T de�nes an M-dimensional vector sm where

sm (`) = S(`,m) if ` ∈ Nq (m) and sm (`) = 0 otherwise.

3: T selects a random integer multiplier д.

4: T computes an Mk -dimensional vector x where x(m) =
F(ξ (rn ))(д ·sm ), ∀m ∈ Ik .

5: T computes an Mk -dimensional vector y, where y(m) =
F(ξ (rn )(m)) · F(0), ∀m ∈ Ik .

6: T generates a secret and random permutation π over Ik and

sends to Vk the vectors π (x) and π (y).
7: Vk computes x′ := F−1(π (x)) and y′ := F−1(π (y)).
8: Vk sends toT the set of indices {m1, . . . ,mh } in which y′(·) = 0

and x′(·) are largest.

9: T sends back to Vk the set of original indices

{π−1(m1), . . . ,π−1(mh )} in a new random order.

Ensure: VK gets the indices in Ik \ I (n) of the top h items to be

recommended to un .

would have leaked to Vk the ratios between the scores ŝ(m). In

order to reduce such information leakage (even though the ratio

between ŝ(m1) and ŝ(m2) is arguably non-sensitive), we introduced

two additional mechanisms. One is the random permutation π
which prevents Vk from associating a given masked score дŝ(m) to

an item bm . �e other mechanism is the ciphertext scrambling that

T did in Step 5, as we explained above. �e combination of those

two mechanisms allows Vk and T to �nd the h items which are yet

unrated by un and have the largest ŝ(m) scores, without disclosing

to Vk information on the scores ŝ(m) of the items that it o�ers.

5 EXPERIMENTS
Experimental setting. All experiments were run on a 13-inch

MacBook Pro with a 3.0GHz dual-core Intel Core i7 CPU and 16GB

of RAM. �e algorithms were implemented in Java as an extension

to the open source LibRec library
2
.

Datasets. We used four publicly available datasets: MovieLens
100K, MovieLens 1M, MovieLens 20M, and FilmTrust. Table 1

reports their main characteristics: number of users N , number of

items M , number of ratings numR, density (%) D := numR
NM × 100,

and the rating scale.

Table 1: Dataset characteristics

dataset N M numR density scale

MovieLens 100K 943 1682 10
5

6.30% [1,5]

MovieLens 1M 6040 3706 10
6

4.47% [1,5]

MovieLens 20M 138000 27000 2 · 10
7

0.54% [1,5]

FilmTrust 1508 2071 35497 1.14% [.5,4]

Methodology. In each experiment we randomly split the numR
input ratings into training (70%) and testing (30%) sets. We then

simulated a vertical distribution between K vendors by randomly

2
h�p://www.librec.net

spli�ing the complete user-item matrix R into K (almost) equal-

sized sub-matrices, vertically. Namely, if R is of dimensions N ×M ,

we split it into K matrices of (almost equal) dimensions N ×Mk ,

where Mk ∈ {bM/Kc, dM/Ke}, k ∈ [K]. We then ran the PPCF

protocols on this distributed data and computed the performance

of the resulting recommender system when trying to predict the

ratings or rankings of the testing data from the training data. We

repeated this process ten times, each time with new and indepen-

dent random choices. Finally, we report the average performance

over those ten runs.

In the �rst two experiments, we compare the performance of

our protocols for predicting ratings and rankings to the protocol

of Yakut and Polat (YP) [33], which is the only other item-based

PPCF protocol that is directly comparable to ours. Since the la�er

protocol is designed for the case K = 2, our next experiments are

carried out on vertical splits of the user-item matrices into two

random vertical sub-matrices.

One of the tools which YP utilizes in order to o�er privacy is by

adding fake ratings. Assume thatVk has a sub-matrix of dimensions

N ×Mk that includes numRk actual ratings. �en Vk replaces p%

of the remaining NMk − numRk entries with fake ratings, k = 1, 2.

�e value of the fake ratings can be set in several ways. One of the

suggestions made in [33], which we adopt herein, is that each Vk
uses the global mean rating over all rated entries in its sub-matrix.

Experiment 1. We compared the accuracy of our Protocol 3

for predicting ratings to that of YP. We applied Protocol 3 for each

of the testing entries and then computed the MAE over all testing

entries (in both sites of V1 and V2). We did a similar test with the

prediction protocol YP, with several values of p (the percentage

of fake ratings). Finally, we used a baseline algorithm that simply

predicts for each user u and item b that P(u,b) = R(b), where R(b)
is the average rating given to item b. Figure 1 shows the resulting

errors as obtained on each of our datasets. (Recall that the shown

values are averaged over ten random and independent runs.) As

can be seen, the accuracy of YP with p = 0 coincides with that of

our Protocol 3, but such a version of YP is non-private. Increasing p
to higher values that would provide be�er hiding of each vendor’s

data results in higher errors, that in the two MoviLens datasets

even became higher than that of the naı̈ve (and perfectly secure)

item-mean predictor. To summarize, our protocols, which base their

security on cryptographic means, rather than randomization, o�er

higher security than YP; in addition, the output of our protocols (as

opposed to YP) fully coincides with the non-secure algorithm.

Experiment 2. Next, we compared the quality of ranking as

o�ered by our Protocol 4, to the quality of rankings which are

derived from computing predicted ratings, by either our Protocol 3

or by YP [33]. �e comparison is made by the AUC (Area Under

the Receiver Operating Curve) measure; AUC values range from

0.5 (worst) to 1 (best).

Let Ik,n deote the set of items o�ered by Vk which un had rated,

and their corresponding entries in R were selected for training. We

follow the usual practice of generating rankings over all items in

the complement set, Ick,n := Ik \ Ik,n , and then comparing that

ranking to the baseline ranking, in which all items in Ick,n which

un had rated are considered positive and all other items in Ick,n are

considered negative. Speci�cally, for eachm ∈ Ick,n we computed
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Figure 1: Rating prediction: FilmTrust (le�), MovieLens 100K (center) and MovieLens 1M (right)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50

E

% of fake cells

YP

Ours-Ranking

Ours-Rating

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50

E

% of fake cells

YP

Ours-Ranking

Ours-Rating

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50

E

% of fake cells

YP

Ours-Ranking

Ours-Rating

Figure 2: Ranking prediction: FilmTrust (le�), MovieLens 100K (center) and MovieLens 1M (right)

three scores: its predicted rating by Protocol 3, its predicted rating

by YP, and the score ŝ(m), Eq. (3), by which Protocol 4 ranks. By thus

we get three sequences of scores which induce three rankings over

Ick,n . We compared each of those rankings to the above described

baseline ranking. Le�ing Ek,n denote the AUC value obtained for

one of those three rankings, we �nally compute the average value

E =
(∑

2

k=1

∑N
n=1

Ek,n

)
/2N . Figure 2 shows the average of E, for

each of the three scoring functions, over ten random runs. As can

be seen, Protocol 4, which is designed for issuing rankings, issues

signi�cantly be�er rankings than rankings based on the predicted

ratings of either Protocol 3 or YP.

Experiment 3. We conclude with runtime experimentation. We

measured the cryptographic overhead on both the mediator T and

a typical vendorVk in the o�ine and online phases. For encryption

we used the Paillier cryptosystem [18] implemented in Java3
. Table

2 shows the runtime overheads in each of the three datasets, when

they are distributed evenly and vertically among K = 5 vendors
4
,

in hours(h), minutes(m), seconds(s), and miliseconds(ms).

In the o�ine phase, we focus only on Protocol 2. We ignore

Protocol 1 for two reasons. First, the actual runtime depends on the

selection of the SSP sub-protocol. Second, if one chooses the SSP

protocol of [5], which is most ��ing in our se�ing, then it involves

no cryptographic operations, and hence the privacy-induced over-

head is negligible. Protocol 2 entails cryptographic overhead only

on the vendors, as they need to encrypt their matrix entries. �e

overhead is considerable. In the three datasets apart from the largest

3
www.csee.umbc.edu/∼kunliu1/research/Paillier.html

4
�e times in the Rating column are independent of K . �ose in the O�ine and

Ranking columns are inversely proportional to K , under the assumption of even

distribution.

one, MovieLens 20M, the o�ine computation time takes from 14.5

minutes up to 3.4 hours. However, as that phase is run only once

in a period (say, once a week), and since the required computations

can be easily parallelized, such overhead is reasonable.

In the largest dataset, MovieLens 20M, the situation is di�er-

ent. A direct application of Protocol 2 would take several days.

Hence, for datasets of such dimensions we perform the following

economization. �e values that Vk has to encrypt in Protocol 2 are

R̂(n,m) (see its de�nition in Step 3 of Protocol 2) and ξ (R(n,m)),
for all n ∈ [N ],m ∈ Ik . But 99.46% of those values are just zero, as

implied by the sparsity of the MovieLens 20M dataset (see Table 1).

While we stressed earlier the importance of using a probabilistic

encryption function that would hide from T the pa�ern of plain-

texts underneath the encryption, performing such a large number

of repeated encryptions is too extreme. (A direct application of

Protocol 2 would encrypt the value zero 1.48 · 10
9

times, since that

is the number of zeros in the matrices R̂(n,m) and ξ (R(n,m)) for

each vendor in the vertical distribution scenario that we consider

for that dataset.)

In order to dramatically decrease the runtime, we created, for

each vendor, a “dictionary” of

√
2NMk random and independent

encryptions of zero. �en, whenever we had to create a random

encryption of zero, we picked two elements from the dictionary and

multiplied them (without picking the same pair twice). �at way,

we were able to generate the needed number of zero encryptions

without repeating the same ciphertext twice. Since the cost of

multiplication is much smaller than that of encryption, the resulting

runtime was reduced to only 48 minutes.

For the online phase we used q = 80. (Recall that q is the size

of the item-neighborhoods which are used in predicting ratings
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and rankings.) �e overhead for predicting ratings (Protocol 3) is

negligible. �e overhead for ranking (Protocol 4) is much larger,

since for ranking, it is needed to compute a score for all items (while

in rating a score needs to be computed only for a single item). But

despite the fact that the runtimes for computing rankings are high

(few seconds in the three smaller datasets and over one minute, in

total, in the largest dataset), such runtimes are no show-stoppers for

three reasons: (a) �e computations ofT as well as those ofVk can be

parallelized so that by dedicating several machines for performing

the costly cryptographic operations it is possible to reduce the

computation time. (b) Presenting the toph recommended items for a

user may be a service which is o�ered at the initiation of the vendor

(as opposed to one that is triggered by a demand of the user). In

such a case, once the vendor identi�es a user as an active consumer

who should be presented with such recommendations, it may start

this computation and present the issued recommendations to the

user when they become available. (c) Vk may de�ne upfront for un
a subset of items Ik (n) ⊂ Ik that could be of interest for him (say,

based on his history or demographics) and then notify T of that

subset. �en, T could compute x(m) and y(m) only for m ∈ Ik (n).
�e resulting runtime, for both T and Vk , will consequently reduce

by a factor of Mk/|Ik (n)|.

Table 2: Cryptographic runtime overheads

Dataset O�ine Rating Ranking

Vk T Vk T Vk
MovieLens 100K 14.5m 13.1ms 5.1ms 2.6s 1.7s

MovieLens 1M 3.4h 15.8ms 5.1ms 5.8s 3.8s

MovieLens 20M 48m(*) 15.1ms 5.1ms 42.8s 34s

FilmTrust 37.2m 13.4ms 5.1ms 3.3s 2.1s

6 CONCLUSION
We devised herein secure multi-party protocols for executing item-

based PPCF over distributed datasets. In this extended abstract

we focused on the vertical distributed se�ing; the horizontal case

is deferred to the full version. Our protocols rely on a mediator.

Such a mediator is essential since, without it, the di�erent vendors

would need to constantly be online and be ready to serve requests

by other vendors. Our protocols issue exactly the same results as

their non-privacy preserving counterparts, and they protect each

vendor’s data from other vendors as well as from the mediator. Our

protocols rely solely on existing cryptographic arsenal; this o�ers

a signi�cant advantage as they can be readily implemented on top

of standard libraries.

�is study suggests several future research directions: (a) En-

hancing our protocols so that they o�er privacy even if some of the

interacting parties do not act honestly, or collude. To the best of our

knowledge, none of the existing PPCF studies had considered such

se�ings. (b) Generalizing our protocols to deal with an arbitrary

distribution se�ing (i.e, not a purely vertical or a purely horizontal

split). (c) Examining the applicability of our techniques to other CF

algorithms, such as matrix factorization-based algorithms and their

extensions (e.g. [21]) and compare their performance to that of

existing privacy-preserving matrix factorization algorithms, such

as [16, 17].
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