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ABSTRACT
We present a novel approach for teaching interpolation
in the introductory course in numerical analysis. We
view the interpolation problem as a problem in linear
algebra, whence the various forms of the interpolation
polynomial are seen as different choices of a basis to
the subspace of polynomials of the corresponding de-
gree. This approach enables us to relate this topic to the
topic of numerical solution of linear algebraic systems
and, consequently, to introduce the important notion of
stability. Finally, we propose to spice up the discussion
of interpolation by describing its usage in cryptography
for secret sharing.

Categories and Subject Descriptors
G.1 [Numerical Analysis]: G.1.1 Interpolation, G.1.2
Approximation, G.1.3 Numerical Linear Algebra

General Terms
Theory

Keywords
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1. INTRODUCTION
One of the fundamental topics in numerical analysis is
function approximation. Given a metric linear space
V and a subspace U ⊂ V of ”simple” functions, the
approximation problem takes the following form: given
f ∈ V , find P ∈ U that best approximates f , in the
sense that it minimizes d(f, P ), where d(·, ·) is the un-
derlying metric. Students of introductory courses in nu-

merical analysis usually encounter three versions of this
general approximation problem:

1. Uniform approximation: V is the space of bounded
functions on some finite closed interval I ⊂ R; U
is the subspace of polynomials of degree less than
or equal to k, for some k ∈ N; and

d(f, g) = max
x∈I
|f(x)− g(x)| . (1)

2. Least squares approximation: V is the space
of square-integrable functions on some finite closed
interval I ⊂ R; U is the subspace of polynomials
of degree less than or equal to k, for some k ∈ N;
and

d(f, g) =

∫
x∈I
|f(x)− g(x)|2dx . (2)

3. Interpolation: V is the space of continuous func-
tions on some finite closed interval I ⊂ R; U is
the subspace of polynomials of degree less than or
equal to k, for some k ∈ N; and

d(f, g) =

k∑
j=0

|f(xj)− g(xj)| , (3)

where xj ∈ I for all 0 ≤ j ≤ k (here d is only a
semi-norm since d(f, g) = 0 does not imply that
f = g for all x ∈ I).

There are some variants of these problems that may
also be discussed: The first two problems have discrete
versions (for example, in the discrete least squares prob-
lem, the integral d(f, g) =

∫
x∈I |f(x) − g(x)|2dx is re-

placed with a sum d(f, g) =
∑n

j=1 |f(xj) − g(xj)|2); in
all of these problems we may replace U with another
subspace of simple functions (say, the space of trigono-
metric polynomials of some degree, or the space of ra-
tional functions); and the interpolation problem may in-
volve also derivatives (in which case we get Hermite or
Birkhoff interpolation problems). In this paper we con-
centrate on the basic interpolation problem. This ap-



proximation problem differs from the other two above-
mentioned approximation problems, since the best ap-
proximating polynomial P in that problem achieves the
best possible distance from the approximated function,
namely, d(f, P ) = 0, where d is as in (3) (this is in con-
trast to the first two approximation problems where the
underlying metrics, (1) and (2), sample f and P in ”too
many” points and hence, unless f ∈ U , the minimal dis-
tance is positive). The discussion of this problem is also
somewhat simpler than that of the other two problems
and therefore it is usually the first of the approximation
problems that is taught. We describe here a novel ap-
proach in teaching this topic. We begin by describing
the common approach in which interpolation is taught,
Section 2. Then, in Section 3, we propose an equivalent
linear algebraic approach for teaching this topic.

2. THE COMMON APPROACH
The interpolation problem is defined as follows in all
textbooks, e.g. [1, 4, 5, 6, 8, 9, 10]: Given k + 1 dis-
tinct points in R, xj , 0 ≤ j ≤ k, and a function f ,
find a polynomial of degree less than or equal to k that
agrees with f on these points. The first question that
arises is whether that problem is well-posed. Namely,
does a solution (an interpolating polynomial) exist and
is it unique. Existence is usually demonstrated by the
Lagrange polynomials. The Lagrange polynomials for
{xj}0≤j≤k are defined as follows:

Lj(x) =
∏

0≤i≤k,i6=j

x− xi
xj − xi

, 0 ≤ j ≤ k . (4)

Since

Lj(xi) = δi,j , 0 ≤ i, j ≤ k , (5)

the polynomial

P (x) =

k∑
j=0

f(xj)Lj(x) (6)

is a polynomial of degree ≤ k that satisfies P (xj) =
f(xj), 0 ≤ j ≤ k. As for uniqueness, assume that Q(x)
is another interpolating polynomial of degree ≤ k. Then
D = P −Q is a polynomial of degree ≤ k that vanishes
in the k + 1 distinct points xj , 0 ≤ j ≤ k. This is
possible only if D ≡ 0, namely, if P and Q are the same
polynomial.

The Lagrange polynomials, (4), provide a neat closed
form formula for the interpolating polynomial, (6). How-
ever, this form of the interpolating polynomial suffers
from two major disadvantages. First, the evaluation of
the expression in (6) is inefficient as it involves a large
number of multiplications and divisions. Moreover, hav-
ing the value of the interpolation polynomial to f on the
set of points {xj}kj=0, Pk, at some intermediate point ξ,
it is impossible to use Pk(ξ) in order to compute the
value of a higher degree interpolating polynomial to f
at ξ, Pk+1(ξ), once we are given the value of f in an

additional point xk+1. A new computation that begins
from scratch is inevitable.

In view of these disadvantages, the Lagrange form of the
interpolation polynomial are considered to be mainly a
theoretical value. The alternative Newton form is more
practical. The Newton form of the polynomial is

P (x) =

k∑
j=0

aj

j−1∏
i=0

(x− xi) .

The coefficients in this representation are the so-called
divided differences of f ,

aj = f [x0, . . . , xj ] 0 ≤ j ≤ k ,

where the divided differences of a function f are defined
recursively as follows:

f [x0, . . . , xj ] =
f [x1,...,xj ]−f [x0,...,xj−1]

xj−x0
,

f [xi] = f(xi).

(7)

This form of the interpolating polynomial is much more
practical than that of the Lagrange form. It may be
efficiently evaluated using Hörner’s method, and when
given the value of f at a new sampling point, xk+1, all
we have to do is to compute the (k+ 1)th order divided
difference f [x0, . . . , xk+1], using (7) and the kth order
divided differences, and then add to P (x) the value of
the last term only, namely,

P (x) 7→ P (x) + f [x0, . . . , xk+1] ·
k∏

i=0

(x− xi) .

In a recent review, [2], Berrut and Trefethen argue that
the widespread view that Lagrange interpolation have
analytic utility more than numerical practicality is not
utterly justified. They discuss a variant of Lagrangian
interpolation that is called barycentric interpolation, demon-
strate its numerical advantages in terms of efficiency
and stability, and argue that it should be taught along-
side standard Lagrange and Newton interpolation. Our
present discussion is independent of their arguments,
as we introduce a novel approach to the presentation
and comparison of the various forms of the interpola-
tion polynomials.

3. A LINEAR ALGEBRAIC APPROACH
The interpolation problem is nothing but a problem of
solving a system of linear equations. We propose to
present the interpolation problem as such, and then
present the various forms of the interpolating polyno-
mial as different choices of a basis to the subspace of
polynomials. We begin by reformulating the interpo-
lation problem in a way that ignores the approximat-
ing origin of the problem (i.e., we do not care that the
given data are samples of some function f) and focuses
on the main issue in hand: finding a vector in a given



finite-dimensional space that satisfies a number of linear
equalities.

The interpolation problem: Given k + 1 points in R2,
{(xj , yj) : 0 ≤ j ≤ k}, find the polynomial P ∈ Rk[x],
where Rk[x] is the linear space of real univariate poly-
nomials of degree ≤ k, such that P (xj) = yj for all
0 ≤ j ≤ k.

The standard basis for Rk[x] is {xj : 0 ≤ j ≤ k}.
Seeking the solution for the interpolation problem in
its representation with respect to this basis, P (x) =∑k

j=0 ajx
j , we need to solve a full system of linear equa-

tions,

V a = y , (8)

where V is the Vandermonde matrix over {xj : 0 ≤ j ≤
k}, namely, Vi,j = xji , 0 ≤ i, j ≤ k, a = (a0, . . . , ak)T is
the vector of unknown coefficients, and y = (y0, . . . , yk)T

is the vector of required polynomial values. As done in
several textbooks [1, 4, 8, 9], the linear system (8) may
be shown to have a unique solution, since

detV =
∏

0≤i<j≤k

(xj − xi) 6= 0. (9)

This provides a unified and a beautiful proof of the ex-
istence as well as uniqueness of the interpolation poly-
nomial. We believe that this proof must be presented
alongside the two separate proofs of existence and unique-
ness that were described in Section 2 because of the im-
portance of the Vandermonde matrix, the beauty of the
proof of (9), and, most importantly, because existence
of a solution of a square linear system is equivalent to
uniqueness, and, therefore, it is wrong to discuss these
two questions as though they are not related.

There is another advantage for beginning the discus-
sion of the interpolation problem by presenting the lin-
ear system (8). One of the most important notions in
mathematical analysis is the notion of well-posedness.
Loosely speaking, a mathematical problem is well-posed
if it has a solution, the solution is unique, and its depen-
dence on the problem parameters is stable. Stability, the
last ingredient, is of paramount importance especially in
numerical analysis since it is important to consider the
effect of small rounding, measurement and truncation
errors on the solution of the problem. For some rea-
son, the question of stability is usually not addressed
in the context of the interpolation problem. Assuming
that the students have already learnt the subject of nu-
merical solutions to linear systems, equality (8) implies
that

‖a‖ ≤ ‖V −1‖ · ‖y‖ ,

for any vector norm ‖ · ‖ and the corresponding induced
matrix norm (denoted also by ‖·‖). Hence, the maximal
error in the coefficients of the polynomial is bounded by
the `∞ norm of V −1 times the maximal error in the

data. This establishes the stability of the interpolation
problem, whence, together with existence and unique-
ness, it is a well posed problem. In our opinion, a first
course in numerical analysis must introduce the terms of
stability and well-posedness, even informally, and then
the interpolation problem provides an excellent frame-
work in which those terms may be exemplified.

The next step is to discuss the linear system (8) from
a numerical point of view. This is a full system that
needs to be solved, and, in addition, the Vandermonde
matrices are often ill-conditioned [7]. While the analy-
sis of the condition number of Vandermonde matrices is
beyond the scope of an introductory course, it is impor-
tant to state this and exemplify it, as a good example
for the theory of numerical solution of linear systems.
Having said that, the standard basis proves to be of the-
oretical importance only, whence we proceed to seek an
alternative basis of Rk[x].

As our next choice of a basis of Rk[x], we consider the
basis of Lagrange polynomials, (4). The instructor may
ask the students to show their linear independence and
conclude that it is a basis of Rk[x]. Then, looking for
our interpolation polynomial in its representation with
respect to this basis, we find out, thanks to (5), that
the matrix of coefficients is the identity matrix. Hence,
this basis seems like the best that one may hope for, as
it replaces a full ill-conditioned system with the trivial
system. However, due to the problems that were dis-
cussed before, this is still not the basis of choice.

Finally, we arrive at the most suitable choice of a basis
of Rk[x], i.e., the Newton basis:

Nj(x) =

j−1∏
i=0

(x− xi) , 0 ≤ j ≤ k .

Once again, it is a good exercise to prove that this set of
polynomials is linearly independent, and, consequently,
a basis of Rk[x]. Trying to find the representation of the
interpolation polynomial with respect to this basis, we
get a triangular system of equations, since Nj(xi) = 0
for all 0 ≤ i ≤ j − 1. A triangular system is definitely
better than a full system, as in (8), since its cost of
solution is O(k2) rather than O(k3). On the other hand,
it is inferior to the trivial system, where the solution
is given for free. However, the advantages that were
discussed before make the Newton basis the basis of
choice.

To summarize, a linear algebraic approach to the prob-
lem of interpolation enables to introduce the three forms
of the interpolation polynomial as representations with
respect to three different bases of the subspace of poly-
nomials of degree less than or equal to k; it conveys
the important message that having identified a problem
as a problem in linear algebra is not enough - a good



choice of a basis is of paramount importance. This ap-
proach highlights the advantages and disadvantages of
those three forms; it enables to relate this discussion to
the topic of numerical solution of linear systems that is
usually also taught in introductory courses of numerical
analysis; and it provides an appropriate stage for the
introduction of the important notion of stability.

4. SECRET SHARING
It is not a secret that the introductory course in nu-
merical analysis is not considered an attractive course.
Students, as well as some instructors whose areas of
interest do not include numerical analysis and scien-
tific computing, tend to consider it a dull course that
deals with ”errors” and ”number crunching”, and the
main reason for studying it is the simple fact that in
many programs in both mathematics and computer sci-
ence it is a mandatory course. However, we believe that
by highlighting the theoretical foundations of numerical
analysis (namely, focusing more on the analysis and less
on the numerical aspects), this course may become more
attractive. This is one of the main incentives behind
the linear algebraic approach that we proposed herein
and, from our classroom experience, this approach in-
deed caught the attention and interest of the students.

Another way of spicing up the course is by providing
more refreshing examples than the ones that are usu-
ally given. The typical examples of interpolation revolve
around the computation of some function in intermedi-
ate points based on some samples of that function. We
found that giving the following usage of interpolation
fascinated the students and contributed a lot to their
enthusiasm in class.

The topic of secret sharing was introduced, indepen-
dently, by Blakley and Shamir in their seminal works
[3, 11]. It deals with the safe sharing of a secret among
a group of people. For example, assume that Interpola-
nia is a country that has nuclear missiles. In order to
launch those missiles, a secret password must be intro-
duced. This password should be given to the president,
the prime minister, the minister of defense, and the chief
of staff only. However, providing the password to each
of these persons gives each one of them the power to
launch the missiles. This is a very risky situation. In-
stead, as a security measure, we would like to give each
one of them a piece of information that, on its own, re-
veals nothing on the actual secret, but any two of these
pieces enable the reconstruction of the secret. This way,
at least two of the above mentioned persons must col-
laborate in order to launch the missiles.

More generally, let S be a secret and let U be a group
of n participants. We would like to give each of these
participants a piece of information, called a share, so
that any k ≤ n shares enable the reconstruction of S,
while any lesser number of shares reveals no information

about S.

The solution that was proposed by Shamir is extremely
elegant. The secret S in his method is presented as
an element in a large finite field F. Every participant
u ∈ U is identified with some distinct field element,
xu ∈ F, where xu 6= 0. Next, the dealer (the party that
generates the secret S and deals to each participant her
or his share) generates k−1 random field elements ai ∈
F, and creates the polynomial P (x) = S +

∑k−1
i=1 aix

i.
Then, each participant u ∈ U receives the share P (xu).
Obviously, every k participants from U may recover P
by means of interpolation and then deduce the value
of S = P (0). On the other hand, any lesser number of
participants may learn no information on S, even if they
pool together all of their shares, since any k′ < k point
values of P at points xu 6= 0 still allow P (0) to equal
any value in the field F (this is a consequence of the
existence of a solution to the interpolation problem).

This is a very good example of a possible usage of inter-
polation since it is different from the typical examples
from engineering or physics and since it is a discrete ex-
ample: numerical analysis, by definition, deals with the
approximate solution of problems of continuous nature.
Hence, the underlying field is usually R (or C in some
cases). Here, the underlying field is a finite one. Never-
theless, the theory of interpolation is indifferent to the
underlying field.

In this context, the following exercises may be very il-
lustrative:

1. To show that the secret S may be the coefficient
of the highest power xk−1 (as opposed to the orig-
inal suggestion to use the coefficient of x0 as the
secret). To that end, the students need to show
that every k participants may deduce the value of
S while any lesser number of participants cannot
reveal anything about its value.

2. To show that apart from the two extreme coef-
ficients, none of the intermediate coefficients can
serve for that matter.
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