
Multi-axis High-order Trajectory Planning

Ben Ezair1 Tamir Tassa1 Zvi Shiller2

Abstract— This paper presents a trajectory planning algo-
rithm for multi-axis systems. It generates smooth trajectories
of any order subject to general initial and final conditions,
and constant state and control constraints. The algorithm is
recursive, as it constructs a high order trajectory using lower
order trajectories. Multi-axis trajectories are computed by
synchronizing independent single-axis trajectories to reach their
respective targets at the same time.

The algorithm’s efficiency and ability to handle general
initial and final conditions make it suitable for reactive real
time applications. Its ability to generate high order trajectories
makes it suitable for applications requiring high trajectory
smoothness. The algorithm is demonstrated in several examples
for single- and two-axis trajectories of order 2− 6.

I. INTRODUCTION

The trajectory planning problem, in the context of robot
motion, is the problem of generating a trajectory in the
robot’s state space that connects given initial and final
states, subject to state and control constraints, and is optimal
with respect to some given cost function. A trajectory is
essentially a time-parameterized path between two points in
the configuration space. While path planning has traditionally
been concerned with generating the shortest path that avoids
obstacles, trajectory planning is concerned in addition with
the robot’s dynamic behavior by imposing constraints on
the robot’s velocity, acceleration, jerk and possibly higher
derivatives. Bounding the motion derivatives yields smooth
trajectories, which can be tracked with smooth control inputs
that do not excite high vibration modes. In addition, they
increase tracking accuracy [11]. The number of bounded
derivatives in the trajectory is called the order of the tra-
jectory.

Several approaches for trajectory generation have been
developed. One approach uses polynomials or other functions
to approximate the desired trajectories. Piazzi and Visioli
[13] optimize cubic splines to minimize jerk for a specified
motion time. Petrinec and Kovacic [12] use 4th and 5th
order polynomials to produce smooth multi-axis trajectories.
Macfarlane and Croft [10] compute trajectories that are
represented by fifth-order polynomials.

Another approach for trajectory generation is to divide
the trajectory into segments where the value of the highest
derivative is constant in each segment. Liu et al. [9] present
an algorithm that produces a third order trajectory that is
constructed by dividing the trajectory to seven segments.

1Ben Ezair and Tamir Tassa are with The Department of Mathematics and
Computer Science, The Open University, Israel. ben e@hotmail.com
& tamirta@openu.ac.il

2Zvi Shiller is with the Department of Mechanical Engi-
neering and Mechatronics, Ariel University Center of Samaria.
shiller@ariel.ac.il

This approach is used to produce multi-axis trajectories by
synchronizing several single-axis trajectories [4], [1], [5].
Haschke et al. [3] emphasize the online capabilities of their
algorithm that is designed to produce a third order halting
trajectory. Works by Kroger et al. [6], [7] also focus on
online algorithms, using a thorough analysis of possible
acceleration profiles to handle more general initial and fi-
nal conditions. Lambrechts et al. [8] produce fourth order
trajectories. Nguyen et. al. [11] developed an algorithm that
generates trajectories of arbitrary order with zero initial and
final conditions and symmetric state and control constraints.
It is based on dividing the trajectory into a recursive structure
of S-curve segments. The use of S-curves forms also the
basis for the algorithm which we present herein.

A. Our algorithm

This paper presents a novel algorithm for planning tra-
jectories of arbitrary order between arbitrary initial and
final states (position and its time derivatives), subject to
arbitrary constant state and control constraints, which is
geared towards minimizing motion time. The generality of
our approach makes the algorithm suitable for both online
and offline trajectory planning. The algorithm is recursive,
as it reduces the original problem of order m to problems
of order m − 1, until it reaches basic problems that can be
solved directly. The algorithm is also modular, as it may
accept any external solver for the basic trajectory generation
problem which is solved directly in order to terminate the
recursion. The algorithm is efficient, as demonstrated in
several experiments (see Table II in Section II-B.2).

Finally, the basic algorithm is extended to generate multi-
axis trajectories by synchronizing single-axis trajectories to
reach their respective targets at the same time.

Table I compares our algorithm with a few comparable al-
gorithms that were presented in the above described studies.
Most of the comparable algorithms are limited in the order
of the trajectories that they may produce, or in the initial and
final conditions that they may accept. Our algorithm’s main
advantage is its generality and flexibility, as it is applicable
to a wider range of scenarios than the other algorithms.

II. SINGLE-AXIS TRAJECTORIES

We wish to compute a pair ⟨T, x(t)⟩, where x(t) denotes
the position of a moving object along a given axis, such that
(a) x(t) satisfies given initial and final conditions at t = 0
and t = T ,

x(0) = x0
s , x(i)(0) = xi

s , 1 ≤ i ≤ m− 1 , (1)

x(T) = x0
f , x(i)(T) = xi

f , 1 ≤ i ≤ m− 1 , (2)

Ref. Order Initial & Final Conditions Online Optimal
[6] 2 general yes yes
[1] 3 zero acceleration yes yes
[3] 3 ends at rest yes yes
[7] 3 zero final acceleration yes yes
[8] 4 rest to rest no no
[11] any rest to rest no no
Ours any general yes no

TABLE I
COMPARISON OF TRAJECTORY GENERATION ALGORITHMS

where x(i)(t), i ≥ 1, is the i-th order derivative of x(t); (b)
it is constrained by constant lower and upper bounds,

xi
min < 0 < xi

max , 1 ≤ i ≤ m (3)

xi
min ≤ x(i)(t) ≤ xi

max , t ∈ [0, T] , 1 ≤ i ≤ m ; (4)

and (c) the time T =
∫ T

0
1dt is minimized. The number

m ≥ 1 of constrained derivatives is called the order of the
problem. A pair ⟨T, x(t)⟩ that satisfies the initial and final
conditions, (1)–(2), and the lower and upper bounds (4) is
called a feasible solution. A solution is optimal if is feasible
and minimizes T .

This single-axis trajectory planning problem may be
viewed as a time optimal control problem of a linear system
of ordinary differential equations with m state variables (be-
ing the position function x(t) and its first m−1 derivatives)
and a single control variable (being the m-th derivative
x(m)(t)), subject to initial and final conditions and state
and control constraints. The structure of the optimal control
for such problems can be shown to have a bang-zero-bang
structure [2].

The solution for the case m = 1 is trivial, consisting of
a constant velocity motion. The solution for m = 2 was
derived in [6]. Our approach in solving higher order problems
is recursive, as it reduces a problem of order m to problems
of order m − 1, repeatedly, until m = 2, in which case the
problem can be solved directly.

A. A single-axis trajectory planning algorithm

1) Overview: The algorithm for computing high order
trajectories is motivated by the observation that integrating
a bang-zero-bang control profile yields an S-curve structure.
A typical S-curve can be divided into three segments: (I)
acceleration from the initial state; (II) cruising at a constant
velocity; and (III) deceleration to the final state. This struc-
ture, as illustrated in Figure 1 for m = 3, repeats recursively
since the velocity profile, as well as the profiles of higher
derivatives, consist of two or more S-curve segments.

The recursive algorithm looks for a solution with an S-
curve position profile. The main loop attempts to find the best
value for the constant velocity in segment II. Given a can-
didate value v for that velocity, the algorithm computes the
velocity profile in segments I and III by invoking recursion.
Specifically, it solves in each of those segments a reduced
order trajectory planning problem for the velocity profiles.
Once the velocity profiles in all three segments are found, the

0

500

1000

0

1000

2000

−2

0

2
x 10

4

0 0.2 0.4 0.6
−2

0

2
x 10

5

x

x
(1)

x
(2)

x
(3)

t

I
II

I II III

III

Fig. 1. The recursive structure of the trajectory

algorithm checks that the corresponding position profile is a
feasible solution. When the resulting solution is non-feasible,
the algorithm reduces |v|; when the resulting solution is
feasible, the algorithm increases |v| in order to reduce motion
time. The algorithm terminates when the optimal value of v
is found within some predetermined accuracy, and it outputs
the found position profile x(t).

2) Detailed description: We proceed to describe the op-
eration of Algorithm 1 that implements the above procedure.
The algorithm accepts as inputs the problem order, the initial
and final conditions, and the lower and upper constraints. It
outputs a feasible solution ⟨T, x(t)⟩ which is time-efficient
and in some cases optimal.

If m = 2 the algorithm outputs the analytic solution (Step
1). Otherwise, we set ∆x to be the distance to be traveled
(Step 2) and start a binary search for v within the allowed
range of values [x1

min, x
1
max]. The variables vmin and vmax

hold the lower and upper limits of the search range; they are
initialized in Step 3. The variable v̂ holds the last value of v
that produced a feasible solution. It is initialized to an illegal
value (x1

max + 1) in Step 3, and so is v.
During the binary search (Steps 4-18), we consider the

midpoint of the current range as the candidate value for v
(Step 6). Given a candidate value for v, the trajectory plan-
ning problem in the acceleration and deceleration segments
(I and III) are well defined and can be solved by invoking
recursion. Let v1(t) be the velocity profile in segment I,
from the initial value x1

s to the cruising velocity v, and
let τ1,v denote the duration of that segment. Then in Step
7 we compute ⟨τ1,v, v1(t)⟩ by solving a problem of order
m − 1 for x′(t) along that segment. The initial conditions
for that reduced order problem are (x1

s, . . . , x
m−1
s); its final

conditions are (v, 0, . . . , 0) (since we wish to reach the
velocity v with all higher derivatives zero); and the lower and
upper bounds on the derivatives are in accord with those of
the original problem. Similarly, we invoke recursion in Step
8 to compute v3(t), the velocity profile in segment III, from
v to the final value x1

f , and the corresponding duration τ3,v .
Next, we compute the distance covered in segments I and

III, ∆x1 and ∆x3 (Step 9). ∆ is the remaining distance

that needs to be traveled in the intermediate segment II in
order to complete a journey of length ∆x. Since the velocity
along segment II is constant and equals v, the duration of
that segment should be τ2,v = ∆/v (Step 10). If τ2,v is
nonnegative, then this tested value of v leads to a valid
trajectory; in that case we record that value of v in the
variable v̂ (Step 11).

The search ends once the lower and upper limits of the
search are sufficiently close (Steps 12-14). In that case, we
set v, vmin and vmax to be the last value of v that produced
a valid solution. If v̂ still equals its initial value x1

max + 1
(a forbidden value for v, as it is outside the allowed range
[x1

min, x
1
max]), then the search failed to find a valid v. This

may occur if the problem parameters define a range of
legitimate v values that is smaller than ε, and, consequently,
cannot be captured using a binary search with such accuracy.
(We note that instead of using the same value of ε for all
levels, we may define for each level i, 1 ≤ i ≤ m, a different
value εi.) Otherwise, if v̂ is a legal value, then the algorithm
performs another iteration. Since v, vmin, and vmax equal
the last valid value of v, the subsequent setting of last v
and v in Steps 5-6 will cause the algorithm to perform the
next iteration with v = v̂ and then terminate the loop when
it examines the termination condition in Step 18.

In case the lower and upper limits of the search are still far
apart, we check the value of ∆ to determine how to proceed
with the search: if ∆ > 0, then we examine profiles with
higher values of v (Step 15); if ∆ < 0, we consider lower
values of v (Step 16); if ∆ = 0, we terminate the search by
setting last v to equal v (Steps 17). The search ends when
last v = v. After determining the value v, we compute T
and construct the profile of x′ as the concatenation of three
segments – v1(t), v,v3(t) (Steps 19-20). Finally, we integrate
x′(t) to obtain x(t) (Step 21).

3) A note on optimality: Algorithm 1 uses a simple greedy
approach in the search of a solution with a minimal motion
time. The solution is optimal for rest-to-rest motions of order
m ≤ 3. (The proof of this claim is deferred to the full version
of this paper.) Although Algorithm 1 attempts to minimize
motion time, the solution is not necessarily optimal, because
the algorithm is based on two assumptions that are not always
satisfied:

(A1) The duration of segment II is a continuous and
monotonic function of v.

(A2) The velocity during segment II is constant, implying
that during this phase all higher derivatives are zero.

The first assumption affects the way the algorithm updates
v (steps 15-16). If this assumption is not satisfied, the
algorithm may choose a value of v that will result in a
non-optimal motion time. The second assumption is more
central to Algorithm 1, as it allows us to subdivide the
trajectory into two S curves that can be joined together with
a simple constant velocity motion. However, this assumption
is not always true, e.g. in cases where the optimal trajectory
either always accelerates or always decelerates. In such cases,
the algorithm would return a solution that is of a different
structure than that of the optimal trajectory.

Algorithm 1 ComputeTrajectory
Input:
(1) The system order m ≥ 2.
(2) Initial and final states: xi

s, x
i
f , 0 ≤ i ≤ m− 1.

(3) Bounds: xi
min, x

i
max, 1 ≤ i ≤ m− 1.

Output: A feasible solution ⟨T, x(t)⟩.
1: if m = 2 then return the analytic solution and stop.
2: ∆x = x0

f − x0
s.

3: vmin = x1
min, vmax = x1

max, v = v̂ = x1
max + 1.

4: repeat
5: last v = v.
6: v = (vmax + vmin)/2.
7: ⟨τ1,v, v1(t)⟩ ← ComputeTrajectory[m− 1,

(x1
s, . . . , x

m−1
s), (v, 0, . . . , 0), {(x2

min, x
2
max)}mi=2]

8: ⟨τ3,v, v3(t)⟩ ← ComputeTrajectory[m− 1,
(v, 0, . . . , 0), (x1

f , . . . , x
m−1
f), {(x2

min, x
2
max)}mi=2]

9: ∆x1 =
∫ τ1,v
0

v1(t)dt; ∆x3 =
∫ τ3,v
0

v3(t)dt.
10: ∆ = ∆x−∆x1 −∆x3; τ2,v = ∆/v.
11: if τ2,v ≥ 0, v̂ = v.
12: if |vmax − vmin| ≤ ε then
13: v = vmin = vmax = v̂.
14: if (v̂ = x1

max + 1) then stop and output “Failed”.
15: elseif ∆ > 0 then vmin = v
16: elseif ∆ < 0 then vmax = v
17: else last v = v endif
18: until last v = v
19: T = τ1,v + τ2,v + τ3,v .

20: x′(t) =

 v1(t) [0, τ1,v]
v [τ1,v, τ1,v + τ2,v]
v3(t− τ1,v − τ2,v) [τ1,v + τ2,v, T]

21: Return ⟨T, x(t)⟩, where x(t) =
∫ t

0
x′(τ)dτ + x0

s.

Both assumptions make the algorithm efficient by limiting
the number of possible trajectory forms we need to consider.
This, in turn, greatly simplifies the search for segment II that
connects segments I and III. It is possible to remove these
assumptions, while keeping the recursive structure of the
algorithm, and produce the optimal trajectory by exhaustively
searching for the initial and final conditions of segment II, at
the obvious cost of increasing the computational complexity.

B. Experiments

1) Examples of trajectories: We tested Algorithm 1 for
high order trajectories (with orders up to m = 7) with zero
and non-zero initial and final conditions. Figure 2 shows
trajectories computed by the algorithm for various values of
m, ∆x = 50, zero initial and final conditions (xi

s = xi
f = 0,

1 ≤ i ≤ m − 1); the state constraints in this example were
|x(i)| ≤ 102+i. These results show that motion time and
smoothness increase with the trajectory order, because of
the added limits on higher derivatives. The m = 2 profile
in Figure 2 is the fastest, but it is not smooth as already its
acceleration profile is discontinuous. The m = 6 profile, on
the other hand, is the slowest, but it exhibits discontinuities
only in its sixth derivative.

0 0.5 1
0

10

20

30

40

50

t

x

m=2
m=3
m=4
m=5
m=6

0 0.5 1
0

200

400

600

800

t

x(1)

m=2
m=3
m=4
m=5
m=6

Fig. 2. Trajectory position (top) and velocity (bottom) for m = 2, 3, 4, 5, 6

Figure 3 shows a solution for the same setting as in Figure
2, for m = 4, except that the initial and final conditions on
the velocity are nonzero: x1

s = 70 and x1
f = 60.

All of the these solutions share the familiar bang-zero-
bang pattern.

2) Runtimes: The algorithm was implemented in C++
and was executed as a normal priority process on an Intel
Pentium D 3.0 GHz processor, using a normal Microsoft
windows XP system.

Table II shows the average runtimes of Algorithm 1 for
various values of m, when executed with the same inputs as
used to generate the trajectories in Figure 2. The parameter
εi was set so that the accuracy is 0.01%, i.e., xi

max−xi
min

εi
=

0.0001 for all i. For each m, the average runtime was
computed by averaging several runs of the algorithm. As
can be seen in Table II, the runtime changes exponentially
with respect to m, since the algorithm is recursive in m. As
m is always a small integer, that exponential dependence on
m poses no practical problem.

We note that Algorithm 1 may be parallelized, as Steps 7
and 8 are independent of each other and could be executed
in parallel. It is therefore possible to reduce the runtime by
a factor of up to 2m−2 on a multi-core CPU, depending on
the number of processes that can be executed in parallel.

III. MULTI-AXIS TRAJECTORIES

The single-axis trajectory planning algorithm can be
used for solving multi-axis trajectory planning problems.
We wish to compute a pair ⟨T, (x1(t), . . . , xn(t))⟩, where
(x1(t), . . . , xn(t)) is a function that connects two points
in the Euclidean space Rn in minimal time, subject to the
following constraints: (a) xj(t) satisfies given initial and final

0 0.1 0.2 0.3 0.4
0

20

40

60

t

x

0 0.1 0.2 0.3 0.4
50

100

150

200

250

t

x(1)

Fig. 3. 4th order trajectory position (top) and velocity (bottom) with
nonzero initial and final conditions

Order Number of runs Average runtime [s]
3 1000 0.000074
4 1000 0.002141
5 10 0.0625
6 10 1.9515
7 10 80.064

TABLE II
RUNTIMES (SECONDS) FOR SEVERAL PROFILE ORDERS

conditions at t = 0 and t = T ,

xj(0) = xj,0
s , x

(i)
j (0) = xj,i

s , (5)

xj(T) = xj,0
f , x

(i)
j (T) = xj,i

f , (6)

where 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n (hereinafter the index
j denotes the axis while i denotes the derivative order); (b)
it is constrained by constant lower and upper bounds,

xj,i
min ≤ x

(i)
j (t) ≤ xj,i

max , t ∈ [0, T] , (7)

where 1 ≤ i ≤ m and 1 ≤ j ≤ n; and (c) the time T =∫ T

0
1dt is minimized.

To solve the multi-axis trajectory planning problem, we
begin by first solving the n independent single-axis prob-
lems. For each axis 1 ≤ j ≤ n, we get a single-axis
trajectory, xj(t), that satisfies the initial and final conditions
and kinematic bounds along that axis, and completes the
journey in minimal time. The goal is now to combine those
n single-axis trajectories, each reaching its final position
at a possibly different time, into one multi-axis trajectory,
(x1(t), . . . , xn(t)). This is done by identifying the slowest
axis, and then “stretching” the trajectories along the other
axes so that they all reach their respective target at the same

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

t

x

m=2
m=3
m=4
m=5
m=6

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

t

x(1)

m=2
m=3
m=4
m=5
m=6

Fig. 4. Trajectories — position (top) and velocity (bottom) for m =
2, . . . , 6, with Text = 1.5

time. The stretching procedure may be repeated until all
single-axis trajectories reach their target at the same time.

In order to stretch a trajectory that was generated by
Algorithm 1, we slightly modify the function ComputeTra-
jectory that the algorithm implements into a new function,
called ComputeTrajectory-TimeLimit. That function receives
the same inputs as ComputeTrajectory, and one additional
positive scalar parameter denoted Text. It then proceeds to
generate a trajectory that complies with the given inputs
and takes minimal time that is no less than Text. To that
end, if the modified algorithm generates a trajectory that
reaches its goal in less than Text, it slows down the motion
by decreasing the absolute value of v, the constant velocity
during segment II. Specifically, if the value of v for the faster-
than-Text solution is positive, the algorithm lowers the upper
bound of the binary search so that it examines smaller values
for v; if, on the other hand, the value of v for the faster-
than-Text solution is negative, the algorithm sets it as the
lower bound of the binary search to explore higher values
for v. To achieve the above described functionality, the only
modification that needs to be introduced is adding the next
command after Step 11: if (τ2,v > 0) and (τ1,v+τ2,v+τ3,v <
Text) then ∆ = −∆.

To illustrate the effect of calling the modified function
ComputeTrajectory-TimeLimit with a positive Text, we ran
the algorithm with various values of m, ∆x = 1, zero initial
and final conditions (xi

s = xi
f = 0, 1 ≤ i ≤ m − 1),

state constraints |x(i)| ≤ 2 · 10i−1, and set Text = 1.5. The
resulting trajectories, for m = 1, . . . , 6, all with travel time of
T = 1.5, are shown in Figure 4. Note that all trajectories use
a cruising velocity well below the upper velocity constraint
in order to comply with the given lower bound Text = 1.5
on the motion time.

Algorithm 2 solves the multi-axis problem, for any number

of axes, iteratively by searching for the shortest common
motion time. It saves in Tmax the duration of the currently
slowest trajectory, and in sync the number of axes along
which it already found a feasible solution with motion time
Tmax (or at least a motion time T ∈ [Tmax, Tmax + θ],
where θ is a small parameter that determines the desired
level of accuracy). To that end, after initializing those two
variables (Step 1), it starts a cyclic loop over all axes (Steps
2-9) in search of the smallest value of Tmax for which there
is a feasible solution along each of the n axes with motion
time T ∈ [Tmax, Tmax + θ]. In order to synchronize the
single-axis trajectories, Algorithm 2 computes a trajectory
along each axis by invoking the modified Algorithm 1
(namely, the function ComputeTrajectory-TimeLimit) with
Text that equals the current slowest motion time (Step 4). If
ComputeTrajectory-TimeLimit succeeds in finding a feasible
solution with T ∈ [Tmax, Tmax + θ], it records that success
by increasing sync (Step 5). Otherwise, the found feasible
solution ends in time T > Tmax + θ; in that case, Tmax

is reset to T , and sync is reset to 1 (Step 6). The loop
ends only when sync = n (Step 9), since then all single-
axis trajectories have the same duration (up to a tolerable
difference of θ). The algorithm then stops and returns the
found feasible multi-axis solution (Step 10).

Algorithm 2 SynchronizeTrajectories
Input:
(1) The system order m ≥ 1.
(2) The number n ≥ 1 of trajectories that need to be synchronized.
(3) An accuracy parameter for the motion time, θ ≥ 0.
(4) Initial values: xj,i

s , 0 ≤ i ≤ m− 1, 1 ≤ j ≤ n.
(5) Final values: xj,i

f , 0 ≤ i ≤ m− 1, 1 ≤ j ≤ n.
(6) Bounds: xj,i

min ≤ 0 ≤ xj,i
max, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Output:
(1) Total motion time, T > 0.
(2) Trajectories xj(t), 1 ≤ j ≤ n, that satisfy the input constraints,

each spanning the time T .

1: Tmax = 0; sync = 0.
2: j = 1.
3: repeat
4: ⟨T, xj(t)⟩ ← ComputeTrajectory-TimeLimit[m,

(xj,0
s , . . . , xj,m−1

s), (xj,0
f , . . . , xj,m−1

f),
{(xj,i

min, . . . , x
j,i
max)}mi=1, Text = Tmax]

5: if T − Tmax ≤ θ then sync = sync+ 1
6: else Tmax = T , sync = 1
7: j = j + 1.
8: if j = n+ 1 then j = 1
9: until sync = n

10: Return ⟨Tmax, (x1(t), . . . , xn(t))⟩.

Example. This example demonstrates the use of Algo-
rithm 2 to generate a trajectory that passes through four
points in the plane with specified velocities and accelerations.
The resulting trajectory demonstrates the algorithm’s ability
to produce a high-order continuous path.

Let A = (0, 0), B = (20, 0), C = (20, 20), and D =
(0, 20) be four points in the x−y plane. We wish to move a

0 10 20
−5

0

5

10

15

20

25

y

x

D C

BA

−10 0 10 20 30
−5

0

5

10

15

20

25

y

x

D C

BA

−10 0 10 20 30
−5

0

5

10

15

20

25

y

x

D C

BA

Fig. 5. Trajectories along a square path as described in Example 2: Scenario 2 (left), 3, and 4 (right).

body through these points, A→ B → C → D → A, starting
and finishing at rest. We consider trajectories of order m = 3
with the following bounds along each of the four motion
segments: |x(i)| ≤ 102+i, 1 ≤ i ≤ m.

We examine four scenarios that differ in the inner corner
velocities and accelerations, at B, C and D. In Scenario
1, the body reaches a full stop in each inner corner before
continuing its motion. In Scenario 2, the velocity in each
inner corner is 50 in the direction leading to the corner, and
the acceleration there is zero. In Scenario 3, the corner veloc-
ities are counterclockwise 45o rotations of the corresponding
corner velocities in Scenario 2 (so that the velocity at B, for
example, is (50/

√
2, 50/

√
2) instead of (50, 0) as it was in

Scenario 2); the acceleration in each corner is set to zero.
This adjustment of the velocity to the right-angle turn in each
corner results in a shorter overall motion time with respect
to Scenario 2. Finally, Scenario 4 is identical to Scenario
2 except for the acceleration values in the inner corners.
These acceleration values are designed so that the moving
body begins accelerating for the next motion segment earlier,
in order to reduce the overall motion time. The acceleration
values are (−2000, 2000) at B, (−2000,−2000) at C, and
(2000,−2000) at D. The trajectories in Scenarios 2, 3 and
4 are shown in Figure 5. (The trajectory in Scenario 1 is not
shown since it is a perfect square.)

As expected, the motion time in Scenario 1 is the longest,
T1 = 0.743. In Scenario 2, where the body is not forced
to stop in each inner point, it is T2 = 0.701. In Scenario
3, in which the corner velocities are better adjusted to
the counterclockwise turns in each corner, the motion time
reduces to T2 = 0.683. Finally, in Scenario 4, with the added
benefit of acceleration conditions, the body completes the
journey in time T4 = 0.620.

IV. CONCLUSION

This paper presented a trajectory planning algorithm for
single and multi-axis a trajectories, subject to general initial
and final conditions and derivative bounds. It is based on
a recursive process that reduces the original high order
trajectory problem to lower order problems. The recursion
is applied until reaching low orders (m = 1 or m =
2) for which a direct solution is available. The resulting
algorithm is simple and efficient, as was demonstrated in

our runtime results. The proposed algorithm can be used off-
line to produce high order trajectories, as well as on-line in
applications where efficiency and reactiveness are essential.

In this paper we focused on multi-axes trajectories with
no concern to geometrical constraints, apart from the initial
and final positions. Extending our algorithm to account for
geometrical constraints, such as imposed by obstacles or by
a specified path, is a subject of future research.

REFERENCES

[1] X. Broquère, D. Sidobre, and I. Herrera-Aguilar. Soft motion trajectory
planner for service manipulator robot. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2808–2813.
IEEE, 2008.

[2] A.E. Bryson and Y.C. Ho. Applied Optimal Control. Blaisdell
Publishing Co., Cambridge, MA, 1969.

[3] R. Haschke, E. Weitnauer, and H. Ritter. On-line planning of time-
optimal, jerk-limited trajectories. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 3248–3253. IEEE, 2008.

[4] I. Herrera-Aguilar and D. Sidobre. On-line trajectory planning of robot
manipulators end effector in cartesian space using quaternions. In The
15th Int. Symposium on Measurement and Control in Robotics, 2005.

[5] I. Herrera-Aguilar and D. Sidobre. Soft motion trajectory planning and
control for service manipulator robot. In Workshop WS-7 on Physical
Human-Robot Interaction in Anthropic Domains, 2006.

[6] T. Kroger, A. Tomiczek, and F.M. Wahl. Towards on-line trajectory
computation. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 736–741. IEEE, 2006.

[7] T. Kroger and F.M. Wahl. Online trajectory generation: basic concepts
for instantaneous reactions to unforeseen events. IEEE Transactions
on Robotics, 26(1):94–111, 2010.

[8] P. Lambrechts, M. Boerlage, and M. Steinbuch. Trajectory planning
and feedforward design for high performance motion systems. In
American Control Conference, pages 4637–4642. IEEE, 2004.

[9] S. Liu. An on-line reference-trajectory generator for smooth motion
of impulse-controlled industrial manipulators. In 7th International
Workshop on Advanced Motion Control, pages 365–370. IEEE, 2002.

[10] S. Macfarlane and E.A. Croft. Jerk-bounded manipulator trajectory
planning: Design for real-time applications. IEEE Transactions on
Robotics and Automation, 19(1):42–52, 2003.

[11] K.D. Nguyen, I.M. Chen, and T.C. Ng. Planning algorithms for s-curve
trajectories. In IEEE/ASME international conference on Advanced
intelligent mechatronics, pages 1–6. IEEE, 2007.

[12] K. Petrinec and Z. Kovacic. Trajectory planning algorithm based on
the continuity of jerk. In Mediterranean Conference on Control and
Automation, pages 1–5. IEEE, 2007.

[13] A. Piazzi and A. Visioli. Global minimum-jerk trajectory planning
of robot manipulators. IEEE Transactions on Industrial Electronics,
47(1):140–149, 2000.

