
Planning High Order Trajectories with General Initial and

Final Conditions and Asymmetric Bounds

Ben Ezair1,3 Tamir Tassa1 Zvi Shiller2∗†‡

Abstract

This paper presents a trajectory planning algorithm for linear multi-axis systems.
It generates smooth trajectories of any order subject to general initial and final con-
ditions, and constant state and control constraints. The algorithm is recursive, as it
constructs a high order trajectory using lower order trajectories. Multi-axis trajecto-
ries are computed by synchronizing independent single-axis trajectories to reach their
respective targets at the same time.

The algorithm’s efficiency and ability to handle general initial and final conditions
make it suitable for reactive real time applications. Its ability to generate high order
trajectories makes it suitable for applications requiring high trajectory smoothness. The
algorithm is demonstrated in several examples for single- and two-axis trajectories of
orders 2− 6.

1 Introduction

This paper addresses the problem of planning time-efficient trajectories for linear multi-axis
systems with arbitrary initial and final states, subject to constant constraints on any number
of trajectory derivatives. In the context of robot motion, the trajectory planning problem
consists of generating a smooth trajectory that connects given initial and final conditions,
is optimal with respect to some cost function, and satisfies given bounds on a number of
its time derivatives. The number of derivatives considered, also called the trajectory order,
usually reflects the order of the robot dynamic model, whereas the bounds on the time
derivatives reflect state and control constraints of the robot system.

Pre-computed feasible trajectories can be used to accurately guide a dynamic system
to the destination state by serving as the desired inputs to the system’s joint controllers.
A carefully selected trajectory can prevent the joint controllers from reaching saturation, a
common cause for tracking errors. In addition, they are essential when coordinated motion
of several joints is desired. When used in a feed-forward fashion, they can significantly
reduce tracking errors by reducing the magnitude of the tracking error needed to drive the
system along the trajectory [22].

∗1Ben Ezair and Tamir Tassa are with The Department of Mathematics and Computer Science, The
Open University, Israel. ben e@hotmail.com & tamirta@openu.ac.il

†2Zvi Shiller is with the Department of Mechanical Engineering and Mechatronics, Ariel University.
shiller@ariel.ac.il

‡3The research of the first author was partially supported by The Open University of Israel’s Research
Fund (grant no. 32046).

1



High order trajectories are needed to account for actual and unmodeled system dy-
namics. Unmodeled dynamics may arise from unmodeled actuators and drivers, and from
unmodeled flexible modes. For both cases, high order smooth trajectories are desired. In
the case of unmodeled actuator and driver dynamics, a smooth trajectory may be easier to
follow when using it as a control input, since it may not demand a response that is beyond
the capabilities of the actuator/driver system. For example, using a third order trajectory
to drive a DC motor assumes that the motor voltage serves as the control input. Hence,
by choosing a third order trajectory in this context it is assumed that the motor can react
instantaneously to abrupt switches in the voltage signal. In practice, however, the driver
may not be able to generate instantaneous voltage changes, thus causing some delay in the
system response, or even completely ignoring (filtering) particularly short voltage pulses.
Such delays and inaccuracies are the cause of tracking errors. Tracking errors could be
avoided if the trajectory was of a higher order, for which the third derivative, and hence the
voltage signal, is smooth. A further discussion of the benefits of higher order trajectories,
including experimentation, can be found in [16, 13].

In the case of a flexible system, a high order smooth trajectory may not excite high
frequency flexible modes, thus resulting in slower, yet vibration-free motion. It should be
noted that the clear benefits of high order smooth trajectories come at the cost of slower
motion. The appropriate balance between motion time and smoothness should be set in
accord with the characteristics of the application at hand. Some applications may demand
extreme accuracy and, hence, should use a high order trajectory; in other applications, a
fast second or third order trajectory may suffice. One of the advantages of our algorithm is
that this choice can be easily made by specifying the desired trajectory order.

One challenge in trajectory planning is to generate a high order smooth trajectory on
the fly, during motion, to account for the current motion state and to respond to events
that are identified during motion [11]. This, in turn, requires the algorithm to be highly
efficient and to be able to accept arbitrary initial and final conditions.

The algorithm proposed herein generates time-efficient trajectories between arbitrary
initial and final states for a linear system of any given order, subject to constant and
asymmetric state and control constraints. Given the motion constraints, the algorithm
generates a feasible trajectory while attempting to minimize motion time. The algorithm is
recursive, in the sense that it reduces the original problem of order m to smaller problems of
order m−1. The recursion is based on a binary search, which contributes to the algorithm’s
computational efficiency. Multi-axis trajectories are computed by synchronizing single-axis
trajectories to reach their respective targets at the same time.

1.1 Related work

Early work on trajectory planning of multi-axis systems was based on decomposing the prob-
lem into path planning and trajectory planning. It consists of first generating a feasible path,
then computing the time optimal velocity profile along the specified path [2, 18, 24, 25, 26],
and finally modifying the path to obtain the time optimal trajectory [1, 23]. The optimal
velocity profile is computed by switching between the maximum and minimum allowed ac-
celeration values along the path, for a second order system [2]. Adding velocity constraints
results in a bang-zero-bang structure of the acceleration profile [21]. The optimization along

2



a specified path was extended to account for non-linear third order systems, subject to gen-
eral jerk constraints [28]. While this approach allowed solving difficult multi-axis problems
with non-linear second or (at most) third order dynamics and any obstacle constraints, it is
off-line in nature. Higher order dynamics are often needed to produce smooth trajectories
that account for high order actuator dynamics and high order vibration modes. Computing
smooth high order trajectories poses a special challenge in online motion planning, namely,
applications where the trajectory is updated “on the fly” to account for tracking errors
and changes in the environments. There are several different approaches used by more
recent works for generating smooth trajectories. One approach uses polynomials or other
functions to approximate the desired trajectories, often optimizing a parametric curve in
order to achieve near optimal results [15, 17, 19]. Piazzi and Visioli [19] optimize cubic
splines to minimize jerk for a specified motion time. Petrinec and Kovacic [17] use fourth
and fifth order polynomials and various heuristics to produce smooth multi-axis trajecto-
ries. Macfarlane and Croft [15] compute trajectories that are represented by fifth order
polynomials.

Another approach for trajectory generation relies on Pontryagin’s maximum principle
[20], which for time optimal control for linear systems with state constrains suggests a bang-
zero-bang structure for the control input. Hence, the sought after trajectory is divided into
segments, where the value of the highest derivative is constant in each segment, equaling
its upper or lower bounds, or zero.

Liu [14] presents an algorithm that produces a third order trajectory that is constructed
by dividing the trajectory to seven segments. They limit the trajectory to be one of several
forms that are possible for a seven segment trajectory. This allows them to reduce the
problem to two steps: first identifying the best form out of a finite set, then solve the
equations for that form to calculate the exact trajectory. This basic approach can be
extended to produce multi-axis trajectories by synchronizing several single-axis trajectories
[9, 3, 10]. They use a similar method for each individual axis but also lower the derivative
bounds of faster axes in order to synchronize them with the slower ones.

Haschke et al. [8] also produce a multi-axis third order trajectory based on a seven
segment approach. They emphasize the online capabilities of their algorithm that is designed
to produce a third order halting trajectory. The main tool used here is a manipulation of the
acceleration profile to slow the trajectory. This allows slowing down single-axis trajectories
so that they comply with the derivative bounds, and not overshoot the target position; it
can also be used to synchronize them with slower axes. Works by Kroger et al. [11, 12]
also focus on online algorithms for second and third order trajectories, using a thorough
analysis of possible acceleration profiles to handle more general initial and final conditions.
These works in many ways formalize the steps used by other algorithms. The first step of
identifying the general form of the trajectory is accomplished through the use of decision
trees that map out all possible forms for the requested trajectory. Each of the possible
forms can then be used to define a system of equations, that is solved to get all possible
solutions, amongst which the optimal solution can be found. This also allows a more
thorough approach to be used to synchronize multiple axes: since all possible solutions for
each axis are known, the best motion time to synchronize all axes can be easily identified.

Lambrechts et al. [13] produce fourth order trajectories. Here too the basic idea is
dividing the trajectory into segments where the highest derivative has one of three constant

3



values. A fourth order trajectory, however, requires more segments than a third order
trajectory, and is much more complex. They solve this by limiting themselves to dealing
with rest to rest motion, and assuming a single specific trajectory form. This form has eight
segments with a non-zero snap (the fourth derivative of position), and all of these segments
have the exact same time length. By progressively reducing the length of these segments,
so that they comply with the motion derivative limits and the target position, they then
calculate the desired fourth order trajectory. Nguyen et.al. [16] developed an algorithm that
generates trajectories of arbitrary order with zero initial and final conditions and symmetric
state and control constraints. It is based on dividing the trajectory into a recursive structure
of S-curve segments. This recursive structure is used to construct an algorithm that is a
generalization to an arbitrary order of the fourth order trajectory generation algorithm
described in [13]. The use of recursive S-curves forms is also the basis for the algorithm
which we present herein.

1.2 Our algorithm

This paper presents a novel algorithm for planning trajectories for linear systems of any
order between arbitrary initial and final states (position and its time derivatives), subject
to given constant state and control constraints; the algorithm is geared towards minimizing
motion time. The generality of our approach makes the algorithm suitable for both online
and offline trajectory planning. The algorithm is recursive, as it reduces the original problem
of order m to problems of order m − 1, until it reaches basic problems that can be solved
directly. The algorithm is modular, as it may accept any external solver for the basic
trajectory generation problem which is solved directly in order to terminate the recursion.
(Here, we offer to stop the recursion at order m = 2, for which a simple analytical solution
exists. However, it can also continue until m = 1, for which the basic solution is trivial, or
until any other order for which a direct and efficient solution exists or will become available.)

The algorithm is efficient, as demonstrated in several experiments (see Table 2 in Sec-
tion 2.3). Finally, the basic algorithm is extended to generate multi-axis trajectories by
synchronizing independent single-axis trajectories to reach their respective targets at the
same time.

Table 1 compares our algorithm with the leading comparable algorithms that consider
similar settings as ours; i.e., algorithms that deal with linear systems subject to constant
constraints and attempt to minimize motion time. (All of those algorithms were reviewed
in Section 1.1.)

All of the comparable algorithms are limited either in the order of the trajectories
that they may produce, or in the initial and final conditions that they may accept. Our
algorithm’s main advantage is its generality and flexibility, as it is applicable to a wider
range of scenarios than the other algorithms.

It should be noted that algorithms for non-linear systems exist, e.g. [5, 7, 28], however,
they are limited (at least for now) to order m ≤ 3, use other cost functions, or are limited
to a specified path (usually using an arc length parametrization). Algorithms treating
non-linear systems, which are typically computationally intensive, may not be suitable for
multi-axis non-linear systems that need to react on-line to fast changing environments.
One approach to handling such cases is to approximate the non-linear system with a linear

4



model, and then use an efficient on-line trajectory generator. The resulting trajectory may
not be optimal, but it would be smooth, of the desired order, not constrained to a specified
path, and satisfying approximate (constant) state and control constraints. So, in effect,
linear trajectory generators may be useful for both linear and non-linear systems. It is in
this context that we propose our algorithm as a contribution to the existing class of ”linear”
trajectory generators.

Ref. Order Initial & Final Conditions Constraints Online Optimal

[11] 2 general symmetric yes yes
[3] 3 zero acceleration symmetric yes yes
[8] 3 ends at rest symmetric yes yes
[12] 3 zero final acceleration symmetric yes yes
[13] 4 rest to rest symmetric no no
[16] any rest to rest symmetric no no
Ours any general asymmetric yes no

Table 1: Comparison of trajectory generation algorithms

2 Single-axis trajectories

We wish to compute a pair ⟨T, x(t)⟩, where x(t) denotes the position of a moving object
along a given axis, such that (a) x(t) satisfies given initial and final conditions at t = 0 and
t = T ,

x(0) = x0s , x(i)(0) = xis , 1 ≤ i ≤ m− 1 , (1)

x(T ) = x0f , x(i)(T ) = xif , 1 ≤ i ≤ m− 1 , (2)

where x(i)(t), i ≥ 1, is the i-th order derivative of x(t); (b) it is constrained by constant
lower and upper bounds,

ximin < 0 < ximax , 1 ≤ i ≤ m (3)

ximin ≤ x(i)(t) ≤ ximax , t ∈ [0, T ] , 1 ≤ i ≤ m ; (4)

and (c) the time T =
∫ T
0 1dt is minimized. The number m ≥ 1 of constrained derivatives is

called the order of the problem. A pair ⟨T, x(t)⟩ that satisfies the initial and final conditions,
(1)–(2), and the lower and upper bounds (4) is called a feasible solution. A solution is
optimal if is feasible and minimizes T .

This single-axis trajectory planning problem may be viewed as a time optimal control
problem of a linear system of ordinary differential equations with m state variables (being
the position function x(t) and its first m−1 derivatives) and a single control variable (being
the m-th derivative x(m)(t)), subject to initial and final conditions and state and control
constraints. The structure of the optimal control for such problems can be shown to have
a bang-zero-bang structure [4].

The solution for the case m = 1 is trivial, consisting of a constant velocity motion.
A solution for m = 2 is given in [11]. Our approach in solving higher order problems is
recursive, as it reduces a problem of order m to problems of order m− 1, repeatedly, until
m = 2, in which case the problem can be solved directly.

5



2.1 A single-axis trajectory planning algorithm

2.1.1 Overview

The algorithm for computing high order trajectories is motivated by the observation that
integrating a bang-zero-bang control profile yields an S-curve structure (see Figure 1 for
the case m = 3). A typical S-curve can be divided into three segments: (I) acceleration
from the initial state; (II) cruising at a constant velocity; and (III) deceleration to the final
state. This structure, repeats recursively since the velocity profile, as well as the profiles of
higher derivatives, consist of two or more S-curve segments.

0

500

1000

 

0

1000

2000

 

 

−2

0

2
x 10

4

 

 

0 0.2 0.4 0.6
−2

0

2
x 10

5

 

 

x

x
(1)

x
(2)

x
(3)

t

I
II

I II III

III

Figure 1: The recursive structure of the trajectory

The recursive algorithm looks for a solution with an S-curve position profile. The
main loop attempts to find the best value for the constant velocity in segment II. Given a
candidate value v for that velocity, the algorithm computes the velocity profile in segments
I and III by invoking recursion. Specifically, it solves in each of those segments a reduced
order trajectory planning problem for the velocity profiles. Once the velocity profiles in
all three segments are found, the algorithm checks that the corresponding position profile
is a feasible solution. When the resulting solution is non-feasible, the algorithm reduces
|v|; when the resulting solution is feasible, the algorithm increases |v| in order to reduce
motion time. The algorithm terminates when the optimal value of v is found within some
predetermined accuracy, and it outputs the found position profile x(t).

2.1.2 Detailed description

We proceed to describe the operation of Algorithm 1 that implements the above procedure.
The algorithm accepts as inputs the problem order, the initial and final conditions, and the
lower and upper constraints. It outputs a feasible solution ⟨T, x(t)⟩ which is time-efficient
and in some cases optimal.

If m = 2 the algorithm outputs the analytic solution (Step 1). Otherwise, we set ∆x to
be the distance to be traveled (Step 2) and start a binary search for v within the allowed
range of values [x1min, x

1
max]. The variables vmin and vmax hold the lower and upper limits

of the search range; they are initialized in Step 3. The variable v̂ holds the last value of v

6



that produced a feasible solution. It is initialized to an illegal value (x1max + 1) in Step 3,
and so is v.

During the binary search (Steps 4-18), we consider the midpoint of the current range as
the candidate value for v (Step 6). Given a candidate value for v, the trajectory planning
problem in the acceleration and deceleration segments (I and III) are well defined and can
be solved by invoking recursion. Let v1(t) be the velocity profile in segment I, from the
initial value x1s to the cruising velocity v, and let τ1,v denote the duration of that segment.
Then in Step 7 we compute ⟨τ1,v, v1(t)⟩ by solving a problem of order m− 1 for x′(t) along
that segment. The initial conditions for that reduced order problem are (x1s, . . . , x

m−1
s );

its final conditions are (v, 0, . . . , 0) (since we wish to reach the velocity v with all higher
derivatives zero); and the lower and upper bounds on the derivatives are in accord with
those of the original problem. Similarly, we invoke recursion in Step 8 to compute v3(t), the
velocity profile in segment III, from v to the final value x1f , and the corresponding duration
τ3,v.

Next, we compute the distance covered in segments I and III, ∆x1 and ∆x3 (Step 9). ∆
is the remaining distance that needs to be traveled in the intermediate segment II in order to
complete a journey of length ∆x. Since the velocity along segment II is constant and equals
v, the duration of that segment should be τ2,v = ∆/v (Step 10). If τ2,v is nonnegative, then
this tested value of v leads to a valid trajectory; in that case we record that value of v in
the variable v̂ (Step 11).

The search ends once the lower and upper limits of the search are sufficiently close (Steps
12-14). In that case, we set v, vmin and vmax to be the last value of v that produced a valid
solution. If v̂ still equals its initial value x1max + 1 (a forbidden value for v, as it is outside
the allowed range [x1min, x

1
max]), then the search failed to find a valid v. This may occur if

the problem parameters define a range of legitimate v values that is smaller than ε, and,
consequently, cannot be captured using a binary search with such accuracy. (We note that
instead of using the same value of ε for all levels, we may define for each level i, 1 ≤ i ≤ m,
a different value εi.) Otherwise, if v̂ is a legal value, then the algorithm performs another
iteration. Since v, vmin, and vmax equal the last valid value of v, the subsequent setting of
last v and v in Steps 5-6 will cause the algorithm to perform the next iteration with v = v̂
and then terminate the loop when it examines the termination condition in Step 18.

In case the lower and upper limits of the search are still far apart, we check the value
of ∆ to determine how to proceed with the search: if ∆ > 0, then we examine profiles with
higher values of v (Step 15); if ∆ < 0, we consider lower values of v (Step 16); if ∆ = 0,
we terminate the search by setting last v to equal v (Steps 17). The search ends when
last v = v. After determining the value v, we compute T and construct the profile of x′

as the concatenation of three segments – v1(t), v,v3(t) (Steps 19-20). Finally, we integrate
x′(t) to obtain x(t) (Step 21).

2.1.3 A note on optimality

Algorithm 1 uses a simple greedy approach in the search of a solution with a minimal motion
time. The solution is optimal for rest-to-rest motions of order m ≤ 3. The proof of this
claim and further discussion can be found in Appendix A. Although Algorithm 1 attempts
to minimize motion time, the solution is not necessarily optimal, because the algorithm is

7



based on two assumptions that are not always satisfied:
(A1) The duration of segment II is a continuous and monotonic function of v.
(A2) The velocity during segment II is constant, implying that during this phase all

higher derivatives are zero.
The first assumption affects the way the algorithm updates v (steps 15-16). If this

assumption is not satisfied, the algorithm may choose a value of v that will result in a
non-optimal motion time. The second assumption is more central to Algorithm 1, as it
allows us to subdivide the trajectory into two S curves that can be joined together with
a simple constant velocity motion. However, this assumption is not always true, e.g. in
cases where the optimal trajectory either always accelerates or always decelerates. In such
cases, the algorithm would return a solution that is of a different structure than that of the
optimal trajectory. Both assumptions make the algorithm efficient by limiting the number
of possible trajectory forms we need to consider. This, in turn, greatly simplifies the search
for segment II that connects segments I and III.

2.2 Complexity

The main computational effort in Algorithm 1 is the binary search, performed in steps 4-18,
for the optimal value of v in the interval [x1min, x

1
max]. All other operations performed by

the algorithm (including the solutions for m = 1 and m = 2) take constant time. Since
the binary search terminates when the interval size becomes smaller than or equal to ε1,

it executes at most log2
x1
max−x1

min
ε1

iterations. In each of those iterations, the algorithm
invokes two recursive calls for solving problems of order m − 1; in addition, it performs
the computations in Steps 9-17. The time complexity of the latter computations can be
bounded by a constant. If this constant is denoted d, and the time for solving the problem
of order m is denoted Tm, then:

Tm =

(
log2

x1max − x1min

ε1

)
· (2Tm−1 + d) . (5)

This search repeats for each level i in the recursion in the range [ximin, x
i
max]; it terminates

when the interval size becomes smaller than or equal to εi. Solving the recursive equation
(5) yields Tm in terms of T2, d, the interval lengths (ximax − ximin), and εi:

Tm = T2 ·
m−2∏
i=1

(2Ci) + d ·

m−2∑
j=1

(
2j−1

j∏
i=1

Ci

) , (6)

where

Ci = log2
ximax − ximin

εi
, (7)

Let Ĉ = max1≤i≤m−2Ci. Then, by Eq. (6):

Tm ≤ T2 · (2Ĉ)m−2 + dĈ ·

m−2∑
j=1

(2Ĉ)j−1

 = T2 · (2Ĉ)m−2 + dĈ · (2Ĉ)m−2 − 1

2Ĉ − 1
.

8



As Ĉ > 1 for any reasonable setting of εi, we conclude that

Tm ≤ (2Ĉ)m−2 ·

(
T2 +

dĈ

2Ĉ − 1

)
≤ (2Ĉ)m−2(T2 + d) .

Thus

Tm ≤
(
2 max
1≤i≤m−2

log2
ximax − ximin

εi

)m−2

(T2 + d) . (8)

The total time taken by the algorithm is determined by the range of values that have
to be searched at each level ximax − ximin, the desired accuracy in that level εi, and the
problem order m. The more accurate is the search (lower εi), the longer is the computation
time. Similarly, the larger is the range, the longer is the search. However, since this is a
binary search, the overall dependence on these factors is only logarithmic. In contrast, the
dependence of the runtime on m is exponential. However, as m denotes the order of the
problem, its value in practical applications is typically very small (note that most studies
thus far concentrated on m ≤ 3 and only few studies considered orders up to m = 5). For
such values of m, and even higher ones, the algorithm is still computationally practical, as
demonstrated by our experimentation in the next section.

2.3 Experiments: Single-axis trajectories

Algorithm 1 was implemented in C++ and was executed as a normal priority process on
an Intel Pentium D 3.0 GHz processor, using a normal Microsoft windows XP system. We
tested the algorithm for high order trajectories (with orders up to m = 7) with zero and
non-zero initial and final conditions. The bounds used for the motion derivatives in these
examples were chosen high (and low) so that motion derivatives reach their maximal (and
minimal) values. Tight bounds on the high derivatives might result in frequent switches of
the highest derivative, which might not let the lower derivatives reach (and sustain) their
extreme values.

Figure 2 shows trajectories computed by the algorithm for various values of m, ∆x = 50,
zero initial and final conditions (xis = xif = 0, 1 ≤ i ≤ m− 1); the state constraints in this

example were |x(i)| ≤ 102+i. These results show that motion time and smoothness increase
with the trajectory order, because of the added limits on higher derivatives. The m = 2
profile in Figure 2 is the fastest, but it is not smooth as already its acceleration profile
is discontinuous. The m = 6 profile, on the other hand, is the slowest, but it exhibits
discontinuities only in its sixth derivative.

Figure 3 shows a solution for the same setting as in Figure 2, for m = 4, except that the
initial and final conditions on the velocity are nonzero: x1s = 70 and x1f = 60. All of these
solutions share the familiar bang-zero-bang pattern.

Figure 4 shows an asymmetric third order trajectory that was computed by our al-
gorithm. For this trajectory we used ∆x = 50, and zero initial and final conditions
(xis = xif = 0, 1 ≤ i ≤ m − 1); the derivative constraints were −1000 ≤ x(1) ≤ 200,

−10000 ≤ x(2) ≤ 2000, and −100000 ≤ x(3) ≤ 20000. The capability of our algorithm to
support asymmetric constraints may be useful in situations where such asymmetry is part

9



of the system dynamics: e.g., in a standard car where acceleration is created by a motor,
while deceleration is achieved through the use of a mechanical brake.

Figure 5 shows another trajectory computed by the algorithm. For this fourth order
trajectory we used ∆x = 20, and zero initial and final conditions (xis = xif = 0, 1 ≤ i ≤
m − 1). The derivative constraints for this case were: −10 ≤ x(1) ≤ 10, −1 ≤ x(2) ≤ 1,
−10 ≤ x(3) ≤ 10, and −10 ≤ x(4) ≤ 10. Using tight bounds on the high derivatives resulted
in most derivatives not reaching their extreme values, except the acceleration for which the
bounds were particularly tight.

0 0.5 1
0

10

20

30

40

50

t

x

 

 

m=2
m=3
m=4
m=5
m=6

0 0.5 1
0

200

400

600

800

t

x(1)

 

 

m=2
m=3
m=4
m=5
m=6

Figure 2: Trajectory position (left) and velocity (right) for m = 2, 3, 4, 5, 6

0 0.1 0.2 0.3 0.4
0

20

40

60

t

x

0 0.1 0.2 0.3 0.4
50

100

150

200

250

t

x(1)

Figure 3: Fourth order trajectory position (left) and velocity (right) with nonzero initial
and final conditions

Table 2 shows the average runtimes of Algorithm 1 for various values ofm, when executed
with the same inputs as used to generate the trajectories in Figure 2. The parameter εi

was set so that the accuracy is 0.01%, i.e.,
xi
max−xi

min
εi

= 0.0001 for all i. For each m, the
average runtime was computed by averaging several runs of the algorithm.

As can be seen in Table 2, the runtime changes exponentially with respect to m, as
discussed in Section 2.2. However, as m is typically a small integer, the algorithm remains
computationally practical. In particular, the runtimes form ≤ 5 are practical for both offline
and online applications. The runtime for m = 6 might call for code optimization in order to
be practical for online applications, but it is certainly practical for offline applications. The

10



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

10

20

30

40

50

60

t

x

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

20

40

60

80

100

120

140

160

180

200

x(1)

t

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−3000

−2000

−1000

0

1000

2000

3000

x(2)

t
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−12

−10

−8

−6

−4

−2

0

2

4
x 10

4

x(3)

t

Figure 4: A third order trajectory with asymmetric bounds (position and all derivatives).

runtime for m = 7 (an order which seems currently to be beyond the need of any practical
application) renders the algorithm still practical for offline applications.

We note that Algorithm 1 may be parallelized, as Steps 7 and 8 are independent of each
other and could be executed in parallel. It is therefore possible to reduce the runtime by a
factor of up to 2m−2 on a multi-core CPU, depending on the number of processes that can
be executed in parallel.

Order Number of runs Average runtime [s]

3 1000 0.000074
4 1000 0.002141
5 10 0.0625
6 10 1.9515
7 10 80.064

Table 2: Runtimes (seconds) for several profile orders

3 Multi-axis trajectories

The single-axis trajectory planning algorithm can be used for solving multi-axis trajectory
planning problems. We wish to compute a pair ⟨T, (x1(t), . . . , xn(t))⟩, where (x1(t), . . . , xn(t))
is a function that connects two points in the Euclidean space Rn in minimal time, subject
to the following constraints: (a) xj(t) satisfies given initial and final conditions at t = 0 and

11



0 2 4 6 8 10
0

5

10

15

20

25

t

x

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x(1)

t

0 2 4 6 8 10

−1

−0.5

0

0.5

1

x(2)

t
0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

x(3)

t

0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

x(4)

t

Figure 5: A fourth order trajectory with low bounds for the higher derivatives (position
and all derivatives).

t = T ,

xj(0) = xj,0s , x
(i)
j (0) = xj,is , (9)

xj(T ) = xj,0f , x
(i)
j (T ) = xj,if , (10)

where 1 ≤ i ≤ m−1 and 1 ≤ j ≤ n (hereinafter the index j denotes the axis while i denotes
the derivative order); (b) it is constrained by constant lower and upper bounds,

xj,imin ≤ x
(i)
j (t) ≤ xj,imax , t ∈ [0, T ] , (11)

where 1 ≤ i ≤ m and 1 ≤ j ≤ n; and (c) the time T =
∫ T
0 1dt is minimized.

To solve the multi-axis trajectory planning problem, we begin by first solving the n
independent single-axis problems. For each axis 1 ≤ j ≤ n, we get a single-axis trajectory,
xj(t), that satisfies the initial and final conditions and kinematic bounds along that axis,

12



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

t

x

 

 

m=2
m=3
m=4
m=5
m=6

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

t

x(1)

 

 

m=2
m=3
m=4
m=5
m=6

Figure 6: Trajectories — position and velocity for m = 2, . . . , 6, with Text = 1.5

and completes the journey in minimal time. The goal is now to combine those n single-axis
trajectories, each reaching its final position at a possibly different time, into one multi-
axis trajectory, (x1(t), . . . , xn(t)). This is done by identifying the slowest axis, and then
“stretching” the trajectories along the other axes so that they all reach their respective
target at the same time. The stretching procedure may be repeated until all single-axis
trajectories reach their target at the same time.

In order to stretch a trajectory that was generated by Algorithm 1, we slightly modify
the function ComputeTrajectory that the algorithm implements into a new function, called
ComputeTrajectory-TimeLimit. That function receives the same inputs as ComputeTra-
jectory, and one additional positive scalar parameter denoted Text. It then proceeds to
generate a trajectory that complies with the given inputs and takes minimal time that is no
less than Text. To this end, if the modified algorithm generates a trajectory that reaches its
goal in less than Text, it slows down the motion by decreasing the absolute value of v, the
constant velocity during segment II. Specifically, if the value of v for the faster-than-Text
solution is positive, the algorithm lowers the upper bound of the binary search so that it
examines smaller values for v; if, on the other hand, the value of v for the faster-than-Text
solution is negative, the algorithm sets it as the lower bound of the binary search to explore
higher values for v. To achieve the above described functionality, the only modification
that needs to be introduced is adding the next command after Step 11: if (τ2,v > 0) and
(τ1,v + τ2,v + τ3,v < Text) then ∆ = −∆.

To illustrate the effect of calling the modified function ComputeTrajectory-TimeLimit
with a positive Text, we ran the algorithm with various values of m, ∆x = 1, zero initial
and final conditions (xis = xif = 0, 1 ≤ i ≤ m−1), state constraints |x(i)| ≤ 2 ·10i−1, and set
Text = 1.5. The resulting trajectories, for m = 1, . . . , 6, all with travel time of T = 1.5, are
shown in Figure 6. Note that all trajectories use a cruising velocity well below the upper
velocity constraint in order to comply with the given lower bound Text = 1.5 on the motion
time.

It should be noted that in this case, the algorithm succeeded in generating a trajectory
that ends at the exact time Text = 1.5. There are, however, cases where the algorithm
generates a trajectory that completes the journey in time significantly larger than Text.
Such situations occur since the set of all feasible times for a single-axis trajectory planning
problem is not necessarily continuous, as shown in [12]. Namely, if the optimal solution for

13



a given single-axis problem is, say, ⟨10, x(t)⟩, it does not imply that a solution exists for
every T ≥ 10. The range of possible completion times may be discontinuous, and may take
the form, say, [10, 15] ∪ [20,∞) .

Algorithm 2 solves the multi-axis problem, for any number of axes, iteratively by search-
ing for the shortest common motion time. It saves in Tmax the duration of the currently
slowest trajectory, and in sync the number of axes along which it already found a feasible
solution with motion time Tmax (or at least a motion time T ∈ [Tmax, Tmax + θ], where
θ is a small parameter that determines the desired level of accuracy). To this end, after
initializing those two variables (Step 1), it starts a cyclic loop over all axes (Steps 2-9) in
search of the smallest value of Tmax for which there is a feasible solution along each of
the n axes with motion time T ∈ [Tmax, Tmax + θ]. In order to synchronize the single-axis
trajectories, Algorithm 2 computes a trajectory along each axis by invoking the modified
Algorithm 1 (namely, the function ComputeTrajectory-TimeLimit) with Text that equals
the current slowest motion time (Step 4). If ComputeTrajectory-TimeLimit succeeds in
finding a feasible solution with T ∈ [Tmax, Tmax + θ], it records that success by increasing
sync (Step 5). Otherwise, the found feasible solution ends in time T > Tmax + θ; in that
case, Tmax is reset to T , and sync is reset to 1 (Step 6). The loop ends only when sync = n
(Step 9), since then all single-axis trajectories have the same duration (up to a tolerable
difference of θ). The algorithm then stops and returns the found feasible multi-axis solution
(Step 10).

0 10 20
−5

0

5

10

15

20

25

y

x

CD

A B

0 10 20
−5

0

5

10

15

20

25

y

x

D C

BA

−10 0 10 20 30
−5

0

5

10

15

20

25

y

x

D C

BA

−10 0 10 20 30
−5

0

5

10

15

20

25

y

x

D C

BA

Figure 7: Trajectories along a square path as described in Example 1: Scenario 1 (top left),
2 (top right), 3 (bottom left), and 4 (bottom right).

14



Algorithm 1 ComputeTrajectory

Input:

(1) The system order m ≥ 2.

(2) Initial and final states: xi
s, x

i
f , 0 ≤ i ≤ m− 1.

(3) Bounds: xi
min, x

i
max, 1 ≤ i ≤ m.

Output: A feasible solution ⟨T, x(t)⟩.
1: if m = 2 then return the analytic solution and stop.
2: ∆x = x0f − x0s.

3: vmin = x1min, vmax = x1max, v = v̂ = x1max + 1.
4: repeat
5: last v = v.
6: v = (vmax + vmin)/2.
7: ⟨τ1,v, v1(t)⟩ ← ComputeTrajectory[m− 1,

(x1s, . . . , x
m−1
s ), (v, 0, . . . , 0), {(ximin, x

i
max)}mi=2]

8: ⟨τ3,v, v3(t)⟩ ← ComputeTrajectory[m− 1,
(v, 0, . . . , 0), (x1f , . . . , x

m−1
f ), {(ximin, x

i
max)}mi=2]

9: ∆x1 =
∫ τ1,v
0 v1(t)dt; ∆x3 =

∫ τ3,v
0 v3(t)dt.

10: ∆ = ∆x−∆x1 −∆x3; τ2,v = ∆/v.
11: if τ2,v ≥ 0, v̂ = v.
12: if |vmax − vmin| ≤ ε then
13: v = vmin = vmax = v̂.
14: if (v̂ = x1max + 1) then stop and output “Failed”.
15: elseif ∆ > 0 then vmin = v
16: elseif ∆ < 0 then vmax = v
17: else last v = v endif
18: until last v = v
19: T = τ1,v + τ2,v + τ3,v.

20: x′(t) =


v1(t) [0, τ1,v]
v [τ1,v, τ1,v + τ2,v]
v3(t− τ1,v − τ2,v) [τ1,v + τ2,v, T ]

21: Return ⟨T, x(t)⟩, where x(t) =
∫ t
0 x

′(τ)dτ + x0s.

15



Algorithm 2 SynchronizeTrajectories

Input:

(1) The system order m ≥ 1.

(2) The number n ≥ 1 of trajectories that need to be synchronized.

(3) An accuracy parameter for the motion time, θ ≥ 0.

(4) Initial values: xj,i
s , 0 ≤ i ≤ m− 1, 1 ≤ j ≤ n.

(5) Final values: xj,i
f , 0 ≤ i ≤ m− 1, 1 ≤ j ≤ n.

(6) Bounds: xj,i
min ≤ 0 ≤ xj,i

max, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Output:

(1) Total motion time, T > 0.

(2) Trajectories xj(t), 1 ≤ j ≤ n, that satisfy the input constraints, each spanning the time T .

1: Tmax = 0; sync = 0.
2: j = 1.
3: repeat
4: ⟨T, xj(t)⟩ ← ComputeTrajectory-TimeLimit[m,

(xj,0s , . . . , xj,m−1
s ), (xj,0f , . . . , xj,m−1

f ), {(xj,imin, . . . , x
j,i
max)}mi=1, Text = Tmax]

5: if T − Tmax ≤ θ then sync = sync+ 1
6: else Tmax = T , sync = 1
7: j = j + 1.
8: if j = n+ 1 then j = 1
9: until sync = n

10: Return ⟨Tmax, (x1(t), . . . , xn(t))⟩.

16



3.1 Examples of multi-axis trajectories

3.1.1 Example 1

This example demonstrates the use of Algorithm 2 to generate a trajectory that passes
through four points in the plane with specified velocities and accelerations. The resulting
trajectory demonstrates the algorithm’s ability to produce a high order continuous path.

Let A = (0, 0), B = (20, 0), C = (20, 20), and D = (0, 20) be four points in the x − y
plane. We wish to move a body through these points, A→ B → C → D → A, starting and
finishing at rest. We consider trajectories of order m = 3 with the following bounds along
each of the four motion segments: |x(i)| ≤ 102+i, 1 ≤ i ≤ m.

We examine four scenarios that differ in the inner corner velocities and accelerations,
at B, C and D. In Scenario 1, the body reaches a full stop in each inner corner before
continuing its motion. In Scenario 2, the velocity in each inner corner is 50 in the direction
leading to the corner, and the acceleration there is zero. In Scenario 3, the corner velocities
are counterclockwise 45o rotations of the corresponding corner velocities in Scenario 2 (so
that the velocity at B, for example, is (50/

√
2, 50/

√
2) instead of (50, 0) as it was in Scenario

2); the acceleration in each corner is set to zero. This adjustment of the velocity to the
right-angle turn in each corner results in a shorter overall motion time with respect to
Scenario 2. Finally, Scenario 4 is identical to Scenario 2 except for the acceleration values
in the inner corners. These acceleration values are designed so that the moving body begins
accelerating for the next motion segment earlier, in order to reduce the overall motion time.
The acceleration values are (−2000, 2000) at B, (−2000,−2000) at C, and (2000,−2000) at
D. The trajectories in these scenarios are shown in Figure 7.

As expected, the motion time in Scenario 1 is the longest, T1 = 0.743. In Scenario 2,
where the body is not forced to stop in each inner point, it is T2 = 0.701. In Scenario 3, in
which the corner velocities are better adjusted to the counterclockwise turns in each corner,
the motion time reduces to T2 = 0.683. Finally, in Scenario 4, with the added benefit of
acceleration conditions, the body completes the journey in time T4 = 0.620.

3.1.2 Example 2

This example demonstrates the use of Algorithm 2 to generate trajectories for a typical task
of a mobile robot that needs to pass through a few specified points at specified velocities
and accelerations. Figure 8 show three trajectories that pass through the points: (0, 0),
(2, 3), (4, 1), and (5, 5) at velocities (25, 7), (5, 3), (22, 25), and (14,−25). At each point,
the velocity vector is marked by a line. The three trajectories differ in their order of
their control input: third (m = 3), fourth (m = 4), and fifth (m = 5). The bounds on
the derivatives for both axes were set to: |x(1)| ≤ 1000, |x(2)| ≤ 10000, |x(3)| ≤ 100000,
|x(4)| ≤ 5000000, |x(5)| ≤ 100000000. The rather large bounds for the higher derivatives
were chosen to allow the lower derivatives to reach higher values and get an overall faster
motion. It should be noted that large is a relative term here as for lower order trajectories
these values are effectively set to infinity.

All trajectories pass through the specified points at the specified velocities. They differ,
however, in their smoothness and geometric path due to the larger number of switches of
the higher order trajectories.

17



The fastest motion time of 0.3s was achieved by the third order trajectory; the motion
times for the fourth and fifth order trajectories were 0.41s and 0.67s, respectively.

Figure 9 shows the acceleration along the y-axis for the third and fifth order trajectories.
The high order trajectory is smoother, exerting, as a result, lower accelerations along the
path. This explains the differences in the geometric shape of the paths shown in Figure 8:
the paths generated by lower order trajectories are visually smoother than those generated
by high order trajectories, because the higher accelerations applied by the lower order
trajectory made it possible to connect the specified velocities with smooth curves, followed
at high speeds; the higher order trajectories applied lower accelerations, which required to
slow down before making the turn and accelerating to velocity at the next point. This
illustrates the use of high order trajectories to limit the effort applied by the control system
while achieving the desired motion. In a real application, this limited effort will likely result
in a more accurate motion, smaller power consumption, and lower wear on the system.

For completeness, Figure 10 shows all derivatives for the x and y axes in the exemplified
third order trajectory.

−1 0 1 2 3 4 5 6
−1

0

1

2

3

4

5

6

x

y

 

 

m=5
m=4
m=3

Figure 8: Trajectories along a path.

18



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−4000

−3000

−2000

−1000

0

1000

2000

3000

t

y(2)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−2500

−2000

−1500

−1000

−500

0

500

1000

1500

2000

t

y(2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

t

y(2)

Figure 9: Acceleration profiles for the third (top left) fourth (top right) and fifth (bottom)
order trajectories in Example 2.

19



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

x

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

3

4

5

6

t

y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
5

10

15

20

25

t

x(1)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−60

−40

−20

0

20

40

60

80

t

y(1)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−1500

−1000

−500

0

500

1000

1500

t

x(2)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−4000

−3000

−2000

−1000

0

1000

2000

3000

t

y(2)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

5

t

x(3)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

5

t

y(3)

Figure 10: All derivatives for the third order trajectory in Example 2.

20



3.1.3 Example 3

In this example, a simple high level planner uses our algorithm to generate the trajectories
for a planar three-wheeled non-holonomic mobile robot. The underlying simulation engine
used here is the ODE given in [27]. An executable file for running the simulation can be
found at [6].

The trajectories are shown in Figure 11. Figure 12 shows a diagram of the robot. The
parameters of this robot are given in Table 3. It is controlled by specifying the longitudinal
speed v = ωr and the steering rate β(1), where ω is the rotational speed of the rear wheels,
r is the wheel radius, and β is the steering angle of the front wheel. The bounds used for
the two control inputs are:

• |β(1)| < 5 [rad/s], |β(2)| < 10 [rad/s2], |β(3)| < 10 [rad/s3]

• |ω| < 5 [rad/s], |ω(1)| < 10 [rad/s2], |ω(2)| < 10 [rad/s3]

A high level planner then uses our algorithm to compute a sequence of control inputs
that would drive the robot to the target position from any given state. The trajectory input
parameters are determined by a simple state machine, which selects between three motion
primitives: (a) a straight line motion, (b) a right or left curve at a constant speed, and
(c) a transition from a curve to a straight line. Alternating between these three motion
primitives, one can reach the target from any state. The handling of non-holonomic con-
straints in this example is done indirectly by the interaction between the high level planner
and our algorithm. The high level planner reacts (online) to the current state and uses our
algorithm to generate trajectory segments in an order that ensures reaching the goal. This
example demonstrates the use of our algorithm to generate a series of concatenated smooth
trajectories online as directed by a high level motion planner.

Component Dimensions [m] Weight [Kg]

Body 0.7× 0.5× 0.2 10
Wheels 0.1 radius 0.2

Table 3: Robot parameters

The attached simulation shows the robot moving towards a randomly selected target
from a given initial state. The simulation demonstrates that by generating control inputs as
trajectories of high order we can improve tracking accuracy as well as produce a smoother
ride. The simulation also shows that trajectories are not limited to simple XY-paths but
can be incorporated in many different applications.

21



−2.5−2−1.5−1−0.500.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

y [m]

x [m] Start

Target

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

v
[m/s]    

t [s]

0 2 4 6 8 10 12 14
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

β
[rad]     

t [s]
0 2 4 6 8 10 12 14

−1.5

−1

−0.5

0

0.5

1

1.5

t [s]

β (1)

[rad/s]          

Figure 11: The trajectories for β, v and the resulting XY path from (0, 0) to the target.

Figure 12: Top view of the simulated robot.

22



3.1.4 Example 4

This example demonstrates our algorithm for the 3 axis robot shown in Figure 13. The
two links are both of 1.4m length. The underlying simulation engine used here is again the
ODE in [27].

The robot is controlled by specifying the angular velocity of its three joint angles: θ1,
θ2, θ3. The robot’s task is to move its tip from rest at the initial position (where all joint
angles are 0) to rest at point C, while passing through points A,B at specified velocities.
The trajectory is planned in the joint space.

The intermediate velocities were specified in the joint space as±0.2 [rad/s2] at each point
(the sign was dictated by the direction of motion towards the next point). Our algorithm
generated three trajectories, one for each joint angle, that pass through the specified via
points and speeds. The bounds used for generating the fourth order trajectories are:

• |θ(1)1 | < 0.5 [rad/s], |θ(2)1 | < 1 [rad/s2], |θ(3)1 | < 2.5 [rad/s3], |θ(4)1 | < 5 [rad/s4]

• |θ(1)2 | < 0.5 [rad/s], |θ(2)2 | < 1 [rad/s2], |θ(3)2 | < 2.5 [rad/s3], |θ(4)2 | < 5 [rad/s4]

• |θ(1)3 | < 0.5 [rad/s], |θ(2)3 | < 1 [rad/s2], |θ(3)3 | < 2.5 [rad/s3], |θ(4)3 | < 5 [rad/s4]

Figure 15 shows the resulting trajectory in the workspace, along with the intermediate
Cartesian velocities at the intermediate points. The generation time for the entire three
dimensional three point trajectory was about 30 milliseconds, which is consistent with Table
2 and the discussion in Section 3.2.

23



Figure 13: Top (left) and side (right) views of the robot in Example 4.

24



0 2 4 6 8 10 12 14 16 18
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

θ
1

0 2 4 6 8 10 12 14 16 18

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

θ
1
(1)

0 2 4 6 8 10 12 14 16 18
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

θ
2

0 2 4 6 8 10 12 14 16 18
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t

θ
2
(1)

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

t

θ
3

0 2 4 6 8 10 12 14 16 18
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

θ
3
(1)

Figure 14: The joint angles and velocities for Example 4.

25



−2
−1

0
1

2

−2

0

2

0

0.5

1

1.5

2

2.5

3

XY

Z

A
B

C

Figure 15: The path followed by the robot’s tip and the Cartesian velocities at the via
points in Example 4.

26



3.2 Multi-axis runtimes

The typical time needed to calculate a multi-axis trajectory with n axes, is the time it would
take to calculate 2n − 1 single-axis trajectories. This is because n single-axis trajectory
calculations are needed to find the slowest axis, and additional n − 1 runs to synchronize
the faster ones. This typical number may be exceeded however in cases when the other axes
can not all be synchronized to the runtime of the slowest axis. In such cases (as discussed
before) a new slowest axis will be found and all trajectories will have to be synchronized to
it. The number of times this could happen for a single-axis however is limited to the number
of discontinuities in the range of possible completion times for the single-axis problems. As
discussed in [12], this is limited to a certain number depending on the order of the trajectory.
So the worst runtime for the multi-axis case will still be polynomial with regards to the
number of axes, since the process can only repeat a limited number of times for each axis
with n− 1 single-axis runs required each time.

Typical runtimes for the multi-axis case are shown in Table 4. Except for the initial
and final conditions, this calculation uses the same setting as in the third order trajectory
in Table 2. The initial and final conditions are set to: xj,0s = 0, xj,0f = 100j, xj,1s = xj,1f = 5,

xj,2s = xj,2f = 0. These results show the typical dependency on the number of axes. The
multi-axis runtimes are roughly 2n − 1 times what it would take to calculate a single-axis
trajectory.

#Axes Number of runs Average runtime [s]

2 1000 0.000234
3 1000 0.000375
4 1000 0.000516

Table 4: Runtimes (seconds) for several multi-axis problems

4 Conclusions

This paper presented a trajectory planning algorithm for single- and multi-axis trajecto-
ries, subject to general initial and final conditions and derivative bounds. It is based on
a recursive process that reduces the original high order trajectory problem to lower order
problems. The recursion is applied until reaching low orders (m = 1 or m = 2) for which a
direct solution is available. The resulting algorithm is simple and efficient, as was demon-
strated in our runtime results. The proposed algorithm can be used off-line to produce high
order trajectories, as well as on-line in applications where efficiency and reactiveness are
essential.

In this paper we focused on multi-axes trajectories with no concern to geometrical
constraints, apart from the initial and final positions. Extending our algorithm to account
for geometrical constraints, such as imposed by obstacles or by a specified path, is a subject
of future research.

27



References

[1] J.E. Bobrow. Optimal robot path planning using the minimum time criterion. IEEE
Trans. Rob. Autom., 4(4):443–450, 1988.

[2] J.E. Bobrow, S. Dubowsky, and J.S. Gibson. Time-optimal control of robotic manip-
ulators along specified paths. The International Journal of Robotics Research, 4(3):3,
1985.

[3] X. Broquère, D. Sidobre, and I. Herrera-Aguilar. Soft motion trajectory planner
for service manipulator robot. In Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on, pages 2808–2813. IEEE, 2008.

[4] A.E. Bryson and Y.C. Ho. Applied Optimal Control. Blaisdell Publishing Co., Cam-
bridge, MA, 1969.

[5] D. Costantinescu and E.A. Croft. Smooth and time-optimal trajectory planning for
industrial manipulators along specified paths. Journal of Robotic Systems, 17(5):233–
249, 2000.

[6] B. Ezair, T. Tassa, and Z. Shiller. Robot application simulation. http://www.ariel.
ac.il/sites/shiller/ravlab/online_trajectory/simulation.zip, 2013.

[7] C. Guarino Lo Bianco and O. Gerelli. Online trajectory scaling for manipulators subject
to high-order kinematic and dynamic constraints. Robotics, IEEE Transactions on,
27(6):1144–1152, 2011.

[8] R. Haschke, E. Weitnauer, and H. Ritter. On-line planning of time-optimal, jerk-
limited trajectories. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ
International Conference on, pages 3248–3253. IEEE.

[9] I. Herrera-Aguilar and D. Sidobre. On-line trajectory planning of robot manipulators
end effector in cartesian space using quaternions. In 15th International Symposium on
Measurement and Control in Robotics, Belgium, November, 2005.

[10] I. Herrera-Aguilar and D. Sidobre. Soft motion trajectory planning and control for ser-
vice manipulator robot. Workshop on Physical Human-Robot Interaction in Anthropic
Domains at IROS, pages 13–22, 2006.

[11] T. Kroger, A. Tomiczek, and F.M. Wahl. Towards on-line trajectory computation. In
Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pages
736–741. IEEE, 2006.

[12] T. Kroger and F.M. Wahl. Online trajectory generation: basic concepts for instanta-
neous reactions to unforeseen events. Robotics, IEEE Transactions on, 26(1):94–111,
2010.

[13] P. Lambrechts, M. Boerlage, and M. Steinbuch. Trajectory planning and feedforward
design for high performance motion systems. In American Control Conference, 2004.
Proceedings of the 2004, volume 5, pages 4637–4642. IEEE.

28



[14] S. Liu. An on-line reference-trajectory generator for smooth motion of impulse-
controlled industrial manipulators. In Advanced Motion Control, 2002. 7th Interna-
tional Workshop on, pages 365–370. IEEE, 2002.

[15] S. Macfarlane and E.A. Croft. Jerk-bounded manipulator trajectory planning: Design
for real-time applications. Robotics and Automation, IEEE Transactions on, 19(1):42–
52, 2003.

[16] K.D. Nguyen, I.M. Chen, and T.C. Ng. Planning algorithms for s-curve trajectories.
In Advanced intelligent mechatronics, 2007 IEEE/ASME international conference on,
pages 1–6. IEEE, 2007.

[17] K. Petrinec and Z. Kovacic. Trajectory planning algorithm based on the continuity of
jerk. In Control & Automation, 2007. MED’07. Mediterranean Conference on, pages
1–5. IEEE, 6.

[18] F. Pfeiffer and R. Johanni. A concept for manipulator trajectory planning. IEEE
Trans. on Robotics and Automation, RA-3(3):115–123, 1987.

[19] A. Piazzi and A. Visioli. Global minimum-jerk trajectory planning of robot manipula-
tors. Industrial Electronics, IEEE Transactions on, 47(1):140–149, 2000.

[20] L.S. Pontryagin. The mathematical theory of optimal processes. In Intelligent Robots
and Systems, 2006 IEEE/RSJ International Conference on. Interscience, 1962.

[21] Z. Shiller. On singular time-optimal control along specified paths. IEEE Transactions
on Robotics and Automation, 10(4), August 1994.

[22] Z. Shiller and H. Chang. Trajectory preshaping for high-speed articulated systems.
In ASME Journal of Dynamic Systems, Measurement and Control, volume 117 No. 3,
pages 304–310, September 1995.

[23] Z. Shiller and S. Dubowsky. Time-optimal path-planning for robotic manipulators with
obstacles, actuator, gripper and payload constraints. Intl. J. Rob. Research, 8(6):3–18,
Dec. 1989.

[24] Z. Shiller and H.H. Lu. Computation of path constrained time optimal motions with
dynamic singularities. Journal of Dynamic Systems, Measurement and Control, 114:34–
40, 1992.

[25] K.G. Shin and N.D. McKay. Minimum-time control of robotic manipulators with
geometric path constraints. IEEE Trans. Aut. Ctrl., AC-30(6):531–541, June 1985.

[26] J. Slotine and H. Yang. Improving the efficiency of time-optimal path-following algo-
rithms. IEEE Transactions on Robotics and Automation, 5(1):118124, 1989.

[27] R. Smith. Open dynamics engine. http://www.ode.org, 2007.

[28] M. Tarkiainen and Z. Shiller. Time optimal motions of manipulators with actuator
dynamics. In Proc. 1993 IEEE International Conference on Robotics and Automation,
volume 2, pages 725–730, 1993.

29



A On the optimality of the solution

We prove herein the optimality of the solution produced by Algorithm 1 for m ≤ 3, in the
case where the initial and final conditions are zero, x1s = x1f = x2s = x2f = 0.

Lemma A.1. Consider the trajectory planning problem MP := MP(m;xs, xf , xmin, xmax)
with zero initial and final conditions. Then the travel time of an optimal solution is strictly
increasing with respect to the distance that needs to be traveled, |∆x| = |x0f − x0s|.

Proof. Without loss of generality, we assume that x0s = 0 and that x0f > 0. (The case

x0f < 0 can be reduced to the case x0f > 0.) Let ⟨T,X(t)⟩ be an optimal solution of

MP := MP(m;xs, xf , xmin, xmax), where xf = (x0f , 0, . . . , 0), and let ⟨T̂ , X̂(t)⟩ be an opti-

mal solution of M̂P := MP(m;xs, x̂f , xmin, xmax) where x̂f = (x̂0f , 0, . . . , 0) and x̂0f > x0f .

Assume, towards contradiction, that T̂ ≤ T . Set k = x0f/x̂
0
f < 1, and define the function

Z(t) = kX̂(k−1/mt). We claim, and prove below, that ⟨k1/mT̂ , Z(t)⟩ is a solution of MP.
However, since k1/mT̂ < T̂ ≤ T that would contradict the optimality of ⟨T,X(t)⟩.

To show that ⟨k1/mT̂ , Z(t)⟩ is a solution of MP, we first observe that it satisfies the
required initial and final position requirements:

Z(0) = kX̂(0) = 0 ; Z(k1/mT̂ ) = kX̂(k−1/mk1/mT̂ ) = kX̂(T̂ ) = kx̂0f = x0f .

Its derivatives are given by:

Z(i)(t) = k1−i/m · X̂(i)(k−1/mt) , 1 ≤ i ≤ m− 1 .

It is easy to see that all those derivatives vanish at t = 0 and t = k1/mT̂ since all derivatives
of X̂ vanish at t = 0 and at t = T̂ . It remains to show that the derivatives are properly
bounded along the interval [0, k1/mT̂ ]. Indeed, as k < 1:

max
t∈[0,k1/mT̂ ]

k1−i/m · X̂(i)(k−1/mt) = k1−i/m · max
t∈[0,T̂ ]

X̂(i)(t) ≤ k1−i/m · ximax < ximax ,

whence Z respects the upper bounds xmax. Similarly, it respects also the lower bounds
xmin. The proof is thus complete.

Lemma A.2. Consider the trajectory planning problem MP := MP(m ≤ 2;xs, xf , xmin, xmax),
where x1s = x1f = 0, and let ⟨T,X(t)⟩ be an optimal solution. Let Y (t) be a function that
satisfies the initial conditions xs, and its derivatives are bounded by xmax and xmin. Then
if Y (T ) ≤ X(T ), it holds that Y (t) ≤ X(t) for all t ∈ [0, T ].

Proof. Assume, towards contradiction, that Y (t) > X(t) for some t ∈ [0, T ]. Then, as
Y (0) = X(0) and Y (T ) ≤ X(T ), the difference Y (t)−X(t) must have a positive maximum
in (0, T ), say at t = t0. Define

Z(t) =

{
Y (t) t ∈ [0, t0] ,
X(t) + Y (t0)−X(t0) t ∈ [t0, T ] .

We claim, and prove below, that ⟨T,Z(t)⟩ is a solution to M̂P := MP(m;xs, x̂f , xmin, xmax)
where x̂f = (x̂0f , 0) and x̂0f > x0f . However, that is impossible in view of Lemma A.1.

30



Clearly, Z satisfies the initial conditions xs, since Y does. As for the final conditions,
Z(T ) = x̂0f := X(T ) + Y (t0) − X(t0) > X(T ) = x0f , and Z ′(T ) = X ′(T ) = 0 (recall that
m = 2 so the initial and final conditions are only on the position and velocity). It remains
to show that the derivatives of Z are properly bounded. Its derivatives are bounded by
xmin and xmax on [0, t0] since Y is, and they are bounded on [t0, T ] since X is. When
m = 1, that completes the proof (since in that case it is only needed to show that the first
derivative is bounded, but there is no need to show that it is continuous). When m = 2,
we need to show that Z ′ is continuous at t0. That is indeed the case since, as the function
Y (t)−X(t) reaches a maximum value at t0, it holds that Y

′(t0) = X ′(t0).

Lemma A.3. Consider the two problems MPi = MP(m ≤ 2;xs, xf , xmin, xmax), i = 1, 2,
where xfi = (ei, 0). Let ⟨Ti, Xi(t)⟩ be an optimal solution to MPi, i = 1, 2. Then if e1 ≥ e2,

it holds that
∫ T1

0 X1(t)dt ≥
∫ T2

0 X2(t)dt.

Proof. Assume that e1 ≥ e2. Then, by Lemma A.1, T1 ≥ T2. Let us extend the function
X2 to the interval [0, T1] as follows:

X̂2(t) =

{
X2(t) t ∈ [0, T2] ,
e2 t ∈ [T2, T1] .

It is easy to see that ⟨T1, X̂2(t)⟩ is another solution to MP2. (When m = 1 this is simple;
when m = 2, we have X ′

2(T2) = 0, whence X̂2(t) has a continuous derivative along [0, T1].)
By Lemma A.2 on X1(t) and X̂2(t), we get that X̂2(t) ≤ X1(t) for all 0 ≤ t ≤ T1. Hence,∫ T1

0
X1(t)dt ≥

∫ T1

0
X̂2(t)dt ≥

∫ T2

0
X2(t)dt .

Finally, we prove that when m ≤ 3 and the initial and final conditions are zero, Algo-
rithm 1 produces a solution which approximates an optimal solution.

Theorem A.4. Consider the trajectory planning problem MP(m ≤ 3;xs, xf , xmin, xmax)
with zero initial and final conditions, x1s = x1f = x2s = x2f = 0. Let ⟨T,X(t)⟩ be an optimal
solution for which v0 := max[0,T ]X

′ is maximal (from among all optimal solutions for the
problem). Then the solution x(t) = xε(t) generated by Algorithm 1 converges to X(t) when
ε→ 0.

Proof. The theorem is true for m = 1 since the solution that it returns in that case is
clearly optimal. We proceed by induction. Without loss of generality, we assume that
∆x = x0f − x0s > 0. (The case ∆x < 0 can be reduced to the case ∆x > 0.) In such cases,
the algorithm will reject all values of v ≤ 0 since for such values the resulting velocity will
be always non-positive, whence cannot travel a positive distance ∆x.

Let v0 be the maximum of X ′(t) on [0, T ]. Consider now the sequence of values of v
that are tested in the binary search by Algorithm 1. For some of those values the algorithm
manages to construct a valid solution (when ∆/v ≥ 0), while for others it fails (when ∆/v <
0). If v is a value for which the algorithm managed to find a valid solution, we shall denote
that solution by ⟨Tv, xv(t)⟩. We will show that v → v0 and that ⟨Tv, xv(t)⟩ → ⟨T,X(t)⟩. To
this end, we prove the following claims:

31



C1: If v is a value that the algorithm accepts, then ⟨Tv, xv(t)⟩ is the optimal solution from
among all solutions for which the first derivative is upper bounded by v.

C2: In the binary search, every v > v0 will be rejected by the algorithm.

C3: In the binary search, every 0 < v ≤ v0 will be accepted by the algorithm.

C4: When v → v0, ⟨Tv, xv(t)⟩ → ⟨T,X(t)⟩.

• Proving C1: The solution ⟨Tv, xv(t)⟩ constructed by the algorithm for the value v has
a derivative x′v(t) with the following structure:

x′v(t) =


v1(t) [0, τ1,v] ,
v [τ1,v, τ2,v + τ1,v] ,
v3(t− τ2,v − τ1,v) [τ2,v + τ1,v, Tv] .

Since, by induction, the algorithm returns the optimal solution for m− 1, then ⟨τ1,v, v1(t)⟩
is an optimal solution for the reduced MP problem described in Step 7 of the algorithm.

Assume that ⟨Tg, g(t)⟩ is another solution MP for which Tg ≤ Tv and max g′ ≤ v. We
shall prove that in such a case g coincides with xv. By Lemma A.2, for x′v and g′ (as X and
Y respectively), g′(t) ≤ x′v(t) for all t ∈ [0, τ1,v]. Hence,∫

[0,τ1,v ]
g′(t)dt ≤

∫
[0,τ1,v ]

x′v(t)dt . (12)

Applying Lemma A.2 for x′v(Tv − t) and g′(Tg − t) on [0, τ3,v] we infer that g′(Tg − t) ≤
x′v(Tv − t) for all t ∈ [0, τ3,v], whence∫

[0,τ3,v ]
g′(Tg − t)dt ≤

∫
[0,τ3,v]

x′v(Tv − t)dt . (13)

Consider now the interval

I = [0, Tg] \
(
[0, τ1,v]

∪
[Tg − τ3,v, Tg]

)
. (14)

Since Tg ≤ Tv, that interval is contained in the interval [τ1,v, Tv−τ3,v] along which x′v(t) = v.
Hence, as g′ ≤ v, ∫

I
g′(t)dt ≤

∫
I
x′v(t)dt . (15)

Adding up inequalities (12)–(15), we infer that∫ Tg

0
g′(t) ≤

∫
[0,τ1,v ]

x′v(t)dt+

∫
[0,τ3,v ]

x′v(Tv − t)dt+

∫
I
x′v(t)dt . (16)

The integral on the left of (16) is the total distance covered by g along the time interval
[0, Tg]; therefore it equals ∆x. The sum of integrals on the right of (16) equals∫ Tv

0
x′v(t)dt+ δ = ∆x+ δ where δ :=

(∫
I
x′v(t)dt−

∫ Tv−τ3,v

τ1,v

x′v(t)dt

)
.

32



The definition of the interval I, (14), and the assumption Tg ≤ Tv, imply that I is contained
in [τ1,v, Tv− τ3,v]. Since x

′
v = v > 0 along the latter interval, it follows that δ ≤ 0 and δ = 0

if and only if Tg = Tv. To summarize, the left hand side in inequality (16) equals ∆x and
the right hand side equals ∆x + δ, for δ ≤ 0. The only way for the inequality to hold is
if δ = 0, i.e. Tg = Tv. Therefore, g′ and x′v are two continuous functions on [0, Tv] where
g′(t) ≤ x′v(t) for all t ∈ [0, Tv] and their integrals along the interval coincide. This can occur
if and only if g′ = x′v for all t. Since g(0) = xv(0) = 0, we infer that g and xv coincide.

• Proving C2: Assume, towards contradiction, that the algorithm produced a valid
solution X̂(t) with maximal velocity v > v0. By C1, X̂(t) is at least as good as all other
solutions whose maximal velocity is bounded from above by v. But X(t) is such a solution.
Hence, since X(t) is an optimal solution, so is X̂(t). But that contradicts our assumption
that X(t) is an optimal solution that maximizes maxX ′.

• Proving C3: In testing a value v, the algorithm finds, by recursion, the optimal solution
to the problem

MP(m− 1; (0, 0), (v, 0), (x1min, . . . , x
m
min), (x

1
max, . . . , x

m
max)) .

Let us denote that solution by ⟨τ1,v, v1,v⟩. Similarly, ⟨τ3,v, v3,v⟩ is the optimal solution to
the problem

MP(m− 1; (v, 0), (0, 0), (x1min, . . . , x
m
min), (x

1
max, . . . , x

m
max)) .

Let y(t) denote the concatenation of v1,v0 and v3,v0 , i.e.,

y(t) =

{
v1,v0(t) t ∈ [0, τ1,v0 ] ,
v3,v0(t− τ1,v0) t ∈ [τ1,v0 , τ1,v0 + τ3,v0 ] .

Since τ1,v0 is smaller than the time it takes X ′ to reach v0 (owing to the optimality of
⟨τ1,v0 , v1,v0⟩), and, similarly for the decreasing part of the profile, the time interval on which
y is defined is smaller than T (the interval on which X is defined). Hence, by Lemma A.1,
the distance covered by Y (t) =

∫ t
0 y(τ)dτ does not exceed ∆x, the distance covered by X.

By Lemma A.3, as v ≤ v0,∫ τ1,v

0
v1,v(t)dt ≤

∫ τ1,v0

0
v1,v0(t)dt .

In similarity, the integral of v3,v in the third interval will be at most the integral of v3,v0 .
Therefore, the distance covered by v1,v and v3,v does not exceed ∆x. But then ∆ = ∆(v) ≥
0, whence the algorithm would accept v.

• Proving C4: By C2 and C3, the sequence v that the algorithm accepts must converge to
v0. By C3, the algorithm would accept the value v0; the corresponding constructed solution,
⟨Tv0 , xv0⟩, is the optimal solution X(t), as implied by C1. Hence, we only need to show
the continuous dependence of ⟨Tv, xv⟩ on v. But this is trivial, since the explicit solution
for x′v on the first and third intervals depend continuously on v) and hence, when v → v0,
Tv → Tv0 and x′v(t) → x′v0(t) for all t. By integration, we conclude that xv(t) → xv0(t) for
all t.

33



Corollary A.5. Under the conditions of Theorem A.4, the optimal solution ⟨T,X(t)⟩ is
unique.

Proof. Assume that there exists more than one optimal solution and let v0 be as defined
in Theorem A.4. By C3 in the proof of the theorem, Algorithm 1 would accept the value
v0 and return a solution ⟨Tv0 , xv0⟩. By C1 in the proof, any other solution to the problem
whose first derivative is bounded by v0 must coincide with ⟨Tv0 , xv0⟩. Hence, ⟨Tv0 , xv0⟩ is
the unique optimal solution.

A.1 Non-optimality in the general case

We showed in which cases the algorithm’s solution is guaranteed to be optimal. Here, we
examine the cases when the solution found by the algorithm may not be optimal. There are
two assumptions made to make the search for the solution faster and more efficient. These
assumptions, however, are not always true, and there are (somewhat rare) instances when
they may mislead the algorithm into missing the optimal solution.

The first assumption may cause the optimal solution to be missed when dealing with
third order (or higher) profiles with non-zero initial or final conditions. When we search
for the optimal cruising velocity (the value v in the algorithm), we are looking for the
velocity that will yield the lowest ∆, which is the distance covered during the constant
velocity phase. By minimizing ∆, we cover more of the total distance while accelerating
(or decelerating), which results in a faster profile. However, an underlying assumption that
the algorithm makes implicitly is that ∆ is monotonically non-increasing with respect to v,
the cruising velocity. This is indeed true for zero initial and final conditions, but it is not
always so otherwise. Figure 16 shows ∆ as a function of the cruising velocity for a third
order profile, which uses the same parameters as the third order profile in figure 2, except
for W = 15, x1s = 250, and x1f = 100. These nonzero initial and final conditions give rise
to two singularities in ∆(v), as the figure clearly shows. More importantly, the profile is
not monotonic, as assumed by the algorithm. In particular, while a monotonic function
attains the value 0 at most once, a non-monotonic function may attain it several times —
five times in the function shown. Hence, while the algorithm uses a simple binary search
to find the supposedly single zero of ∆(v), here, the existence of several zeros may lead
the algorithm into an arbitrary one of those zeros, and not necessarily the one which yields
minimal motion time.

The second assumption may affect third order profiles with non-zero initial or final
conditions, or problem instances with m ≥ 4. This time, the problem is in assuming that
there is a cruising phase at all (even a degenerate one with 0 time). This assumption is
shared by other works that produce higher than third order profiles, e.g. [16]. By assuming
a cruising phase, we know that there is a point in the profile where all derivatives other
than the velocity are 0. This greatly simplifies the search as we only have to search for an
optimal cruising velocity rather than a state vector of length m. However, if the optimal
trajectory always accelerates (or decelerates) then there will be no cruising phase. Also, if
m ≥ 4, the velocity profile may attain a true maximum (or minimum) velocity, and while
in such points the acceleration is indeed zero (as it is the first derivative of the velocity), at
least one higher derivatives will not be.

34



−50 0 50 100 150 200 250 300

−5

−4

−3

−2

−1

0

1

v

∆

Figure 16: ∆ as a function of v for an m = 3 profile

Hence, in each of these cases there will not be a cruising phase of any length. Figure
17 shows two m = 4 profiles. Solution 1 is the same profile as the m = 4 profile shown
in Figure 2. Solution 2 is a superior solution, produced by searching for a solution with a
true maximum for the velocity. Solution 1 completes the journey in time 0.4, rather than
in time 0.38 as the other solution. The most striking thing shown in Figure 17 is the fact
that the optimal velocity profile attains its maximum without having a cruising phase.

It should be noted that for third order trajectories these assumptions are not really
needed, and a solution that always finds the optimal solution (like those described in [12]
or [3]) can simply be used as the base step. However these methods will not work for higher
order profiles.

35



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

5

10

15

20

25

30

35

40

45

50

t

x

 

 

Solution 1
Solution 2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−50

0

50

100

150

200

250

300

350

t

x(1)

 

 

Solution 1
Solution 2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−3000

−2000

−1000

0

1000

2000

3000

t

x(2)

 

 
Solution 1
Solution 2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−8

−6

−4

−2

0

2

4

6
x 10

4

t

x(3)

 

 

Solution 1
Solution 2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

6

t

x(4)

 

 
Solution 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

6

t

x(4)

 

 
Solution 2

Figure 17: Two solutions for the same fourth order problem. Solution 1 is the one produced
by Algorithm 1; Solution 2 is a better one.

36


