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Abstract—The k-anonymization method is a commonly used
privacy-preserving technique. Previous studies used various
measures of utility that aim at enhancing the correlation
between the original public data and the generalized public
data. We, bearing in mind that a primary goal in releasing the
anonymized database for data mining is to deduce methods
of predicting the private data from the public data, propose
a new information-theoretic measure that aims at enhancing
the correlation between the generalized public data and the
private data. Such a measure significantly enhances the utility
of the released anonymized database for data mining. We
then proceed to describe a new and highly efficient algorithm
that is designed to achieve k-anonymity with high utility.
That algorithm is based on a modified version of sequential
clustering which is the method of choice in clustering, and it
is independent of the underlying measure of utility.
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I. INTRODUCTION

Our society experiences in recent years unprecedented
growth in the amount of data that is collected on individuals,
organizations, companies and other entities. Of particular
interest are data containing structured information on in-
dividuals. Data holders are then faced with the intricate
task of releasing information that does not compromise
privacy. The goal is to allow releasing of data in order to
detect interesting trends or correlations, while still protecting
the privacy of individuals. Privacy-preserving data mining
[2] has been proposed as a paradigm of exercising data
mining while protecting the privacy of individuals. Many
approaches were suggested, implemented and theoretically
studied for playing this delicate game that requires finding
the right path between data hiding and data disclosure. One
of these approaches, proposed by Samarati and Sweeney
[14], is k-anonymization. The technique of k-anonymization
suggests to modify the values of the public attributes of the
data by means of generalization so that if the database is
projected on the subset of the public attributes, each record
of the table becomes indistinguishable from at least k−1
other records. Consequently, the private data may be linked
to sets of individuals of size no less than k, whence the
privacy of the individuals is protected to some extent. The
model of k-anonymity has been shown to be insufficient
to protect against all types of linking attack, e.g. [6], [10],
[16]. However, k-anonymity remains an important model

since it is used in practice and its study is relevant to other
aggregation-based methods as well.

The main challenge is to achieve k-anonymity with min-
imal loss of information or, alternatively speaking, with
maximal utility. The definition of the target function, namely,
the measure of utility, is critical in this discussion. Several
measures of utility were suggested in the literature. The
problem of finding the k-anonymization with maximal utility
(or minimal information loss) was shown to be NP-hard
[1], [8], [11]. Hence, the possible approaches are either
heuristical algorithms [4], [7], [12] or approximation algo-
rithms with a guaranteed approximation factor [1], [8], [11].
Usually, the former type of algorithms outperforms the latter
type.

Our contribution in this study is twofold: First, we propose
a new information-theoretic measure of utility that takes
into account the private attributes and aims at enhancing
the correlation between the generalized public data and the
private data. This is in contrast to most all measures of
utility that were used in previous studies that rely only
on the public data and quantify the correlation between
the original public data and the generalized public data. A
primary goal of data mining is to find frequent patterns or
rules to predict the private data from the public data. Hence,
we deem our measure as one that best serves the purpose of
obtaining anonymized tables with maximal utility for such
applications of data mining. Then, we proceed to describe
a sequential clustering algorithm that obtains high-utility
anonymizations. Our algorithm, which is independent of the
underlying utility measure, is based on a modified version
of sequential clustering that is the method of choice in
clustering. It offers similar results (in terms of utility) as the
current heuristical algorithm of choice, but it is significantly
faster.

The paper is organized as follows. In Section II we
provide the basic notations and terminology. In Section
III we discuss the mutual information utility measure [8].
That discussion sets the ground for the introduction of our
private mutual information utility measure in Section IV.
Then, we proceed to describe in Section V our proposed
sequential clustering algorithm. In Section VI we describe
the experimental results.



II. NOTATIONS AND TERMINOLOGY

Consider a database that holds information on individuals
in some population. Each individual is described by a col-
lection of r public attributes, A1, . . . , Ar (e.g. gender, age,
address), and a private attribute, Ar+1 (that could represent,
for example, a medical diagnosis for that individual, his
credit limit etc.).1 Each of the attributes consists of several
possible values: Aj = {aj,` : 1 ≤ ` ≤ mj}, 1 ≤ j ≤ r + 1 .
For example, if Aj is gender then Aj = {M,F}, while if it
is the age of the individual, it is a bounded nonnegative
natural number. The public database holds all publicly
available information on the individuals; letting n denote
the number of individuals, it takes the form

D = {R1, . . . , Rn} , where Ri ∈ A1 × · · · ×Ar . (1)

The corresponding private database holds the private infor-
mation,

D̃ = {S1, . . . , Sn} , Si ∈ Ar+1 . (2)

The complete database is the concatenation of those two
databases, D‖D̃ = {R1‖S1, . . . , Rn‖Sn}. We refer here-
inafter to the tuples Ri and Si, 1 ≤ i ≤ n, as the public
and private records, respectively. The jth component of the
record Ri (namely, the (i, j)th entry in the database D) will
be denoted hereinafter by Ri(j).

The basic technique for obtaining k-anonymization is by
means of generalization. By generalization we refer to the
act of replacing the values that appear in the public database
with subsets of values, so that each entry Ri(j) ∈ Aj is
replaced by a subset Ri(j) ⊆ Aj that includes that element.

Definition 2.1: Let Aj , 1 ≤ j ≤ r, be finite sets and
let Aj be a collection of subsets of Aj . A mapping g :
A1 × · · · × Ar → A1 × · · · × Ar is called a generalization
if for every (b1, . . . , br) ∈ A1 × · · · × Ar, it holds that
(b1, . . . , br) ∈ g(b1, . . . , br).

If, for example, Aj consists of all singleton subsets plus
the entire set, i.e. Aj = Aj ∪ {Aj}, this is the case of
generalization by suppression (each entry either remains
unchanged or is totally suppressed, e.g. [11]). A more refined
scheme of generalization [1] is that in which there is a
hierarchy of clusterings of Aj , the finest one consisting of
all singleton subsets, and the coarsest one consisting of just
the entire set.

There are two main models of generalization. In global
recoding, each collection of subsets Aj is a clustering of
the set Aj and then every entry in the jth column of the
database is mapped to the unique subset in Aj that contains
it. As a consequence, every single value a ∈ Aj is always
generalized in the same manner. In local recoding, the
collection of subsets Aj is a cover of the set Aj but it is not a
clustering. In that case, each entry in the table’s jth column

1We assume one private attribute for the sake of simplicity; the extension
to any number of private attributes is straightforward.

is generalized independently to one of the subsets in Aj that
includes it. In such a model, if the age 34 appears in the
table in several records, it may be left unchanged in some,
and be generalized to 30− 39 or totally suppressed in other
records. Clearly, local recoding is more flexible and might
enable k-anonymity with smaller losses of information.

III. THE MUTUAL INFORMATION UTILITY MEASURE

Many measures of loss of information were suggested in
the study of k-anonymity, e.g., the Loss Metric [9], [12],
the Ambiguity Metric [12], the Discernibility Metric [3], or
the Classification Metric [9]. None of those measures was
information-theoretic, even though they aim to measure in-
formation. An information-theoretic measure of information-
loss was recently introduced in [8]. We describe it here in
a manner that is based on the notion of mutual information.
Our description is somewhat different from the one in [8].
Specifically, we describe it as a utility measure (denoted
U(g(D)) rather than a measure of information-loss; as such,
the goal is to maximize it (while measures of information-
loss are sought to be minimized). The discussion here
provides the technical background and motivation for the
new utility measure that we introduce in the next section.

Let D = {R1, . . . , Rn} be a database and let A1, . . . , Ar

be its public attributes. For each 1 ≤ j ≤ r, denote by Xj

the random variable that corresponds to the attribute Aj . By
looking at the table’s jth column – {R1(j), . . . , Rn(j)} – as
the sample space for the variable Xj , we get the probability
distribution:

Pr(Xj = a) =
|{1 ≤ i ≤ n : Ri(j) = a}|

n
, a ∈ Aj . (3)

The entropy of Xj is then defined as follows [5],

H(Xj) = −
∑

a∈Aj

Pr(Xj = a) log Pr(Xj = a) . (4)

First, we derive the mutual information utility measure in
the case of global recoding. In such settings, each column
in g(D) includes subsets that constitute a clustering of the
corresponding attribute. Letting Aj , 1 ≤ j ≤ r, be one
of the public attributes, the corresponding column in the
generalized table includes values from Âj = {C1, . . . , Ctj}
where Âj is just a clustering of Aj in the sense that
C1, . . . , Ctj are disjoint subsets of Aj whose union equal
Aj . (For example, if Aj is the age, Âj may consist of ranges
of ages of the form 10− 19, 20− 29, 30− 39 etc.)

While the jth column in D defines a random variable Xj

on Aj , the jth column in g(D) defines a random variable
X̂j on Âj , where for each C` ∈ Âj :

Pr(X̂j = C`) =
∑

a∈C`

Pr(Xj=a) .

The conditional entropy of Xj given X̂j is:

H(Xj |X̂j) = −
∑

a∈Aj

Pr(Xj = a) log Pr(Xj = a|X̂j = g(a)) ,



where g(a) is the (unique) generalization of a ∈ Aj .
The mutual information between two random variables is

a measure of the information that is disclosed on one of
those variables by providing the value of the other one. The
mutual information between Xj and X̂j is:

I(Xj ; X̂j) = H(Xj)−H(Xj |X̂j) =

∑

a∈Aj

Pr(Xj = a) log
Pr(Xj = a|X̂j = g(a))

Pr(Xj = a)
.

Using (3) we get that

I(Xj ; X̂j) =
1

n

n∑

i=1

log
Pr(Xj = Ri(j)|Xj ∈ Ri(j))

Pr(Xj = Ri(j))
. (5)

The mutual information between the tuples 〈X1, ..., Xr〉
and 〈X̂1, ..., X̂r〉 is a natural way to measure the information
that the anonymized table reveals on the original table. How-
ever, the relative sparsity of the multidimensional data makes
the empirical estimation unreliable. Hence, we use instead an
approximation based on the assumption that the attribute ran-
dom variables are independent (an assumption that implicitly
underlies all previously used measures). This yields the
mutual information utility measure U(g(D)) := I(D; g(D))
where I(D; g(D)) is the following mutual information,

I(D; g(D)) :=
1

r

r∑

j=1

I(Xj ; X̂j) .

Hence, the goal is to find a clustering of each of the attributes
that will render the database k-anonymized while keeping
the mutual information, I(D; g(D)), maximal.

Having defined the mutual information utility measure
in the case of global recoding, we proceed to define it
in the case of local recoding. Assuming that Aj is the
collection of subsets of Aj that may be used as generalized
values, the generalized table g(D) takes the form g(D) =
{R1, . . . , Rn} where Ri(j) ∈ Aj . Although we cannot for-
malize this local generalization as a joint distribution of the
two random-variables (the original one and the generalized
one) we can still apply the local interpretation of the mutual
information between the jth column in the original table
and the corresponding column in the anonymized table, (5).
Therefore, the preserved information per attribute can still
be written as

I(Xj ;R(j)) =
1

n

n∑

i=1

log
Pr(Xj = Ri(j)|Xj ∈ Ri(j))

Pr(Xj = Ri(j))

(6)
where R(j) stands for the jth column in g(D). Finally,
the mutual information (MI) utility measure is U(g(D)) :=
I(D; g(D)) where

I(D; g(D)) :=
1

r

r∑

j=1

I(Xj ;R(j)) (7)

=
1

nr

n∑

i=1

r∑

j=1

log
Pr(Xj = Ri(j)|Xj ∈ Ri(j))

Pr(Xj = Ri(j))
.

The corresponding mutual information measure of
information-loss is

ΠMI(D, g(D)) = (8)

− 1

nr

n∑

i=1

r∑

j=1

log Pr(Xj = Ri(j)|Xj ∈ Ri(j)) .

Clearly, ΠMI(D, g(D)) is minimized when the utility mea-
sure U(g(D)) = I(D; g(D)) in (7) is maximized.

IV. THE PRIVATE MUTUAL INFORMATION UTILITY
MEASURE

All previously used measures of information-loss are
based entirely on the public information and ignore the
private information. (The only exception is the Classification
Metric, which is a very basic measure that was suggested
in [9].) However, one should keep in mind that one of
the main goals in publishing the database is to learn the
relation between the public data and private data and to
deduce methods of predicting the private data from the
public data. Therefore, the information-loss caused by the
generalization process should be measured in the context
of this prediction task. Specifically, generalization of public
attributes that are weakly correlated with the private data
should be less penalized than generalization of other public
attributes that are strongly correlated with the private data.

We proceed to present here a new utility measure that
quantifies the mutual information between the generalized
public data and the private data. So, instead of looking at
I(D; g(D)) (namely, how much information do the general-
ized public data reveal on the original public data), we look
at U(g(D)) := I(D̃; g(D)) – the amount of information that
the generalized public data reveal on the private data. (Recall
that D̃ = {S1, . . . , Sn}, where Si ∈ Ar+1, is the ith private
record, see Equation (2).) As before, let Xj denote the
random variable that corresponds to the jth public attribute
and let R(j) stand for the jth column in g(D), 1 ≤ j ≤ r.
In addition, we introduce the random variable Y that corre-
sponds to the private attribute. (The probability distribution
of Y on the set of possible values for the attribute Ar+1 is
derived from the private database D̃ in similarity to the way
that we defined the probability distribution of Xj according
to the jth column in D.) In a way similar to definition (6)
in the previous section, we define the mutual information
between Y and the anonymized version of the jth public
attribute Xj as follows:

I(Y ;R(j)) =
1

n

n∑

i=1

log
Pr(Y = Si|Xj ∈ Ri(j))

Pr(Y = Si)
. (9)

The mutual information I(Y ;R(1), ..., R(r)) can be utilized
to measure the information that the anonymized table reveals



on the private data. However, as discussed in the previous
section, the relative sparsity of the multidimensional data
makes the empirical estimation unreliable. Hence, we ap-
proximate that expression with the following one that can
be easily computed:

I(D̃; g(D)) :=
1

r

r∑

j=1

I(Y ;R(j)) . (10)

The goal is then to maximize U(g(D)) := I(D̃; g(D)) that
is defined through (9)+(10), i.e.,

I(D̃; g(D)) =
1

nr

n∑

i=1

r∑

j=1

log
Pr(Y = Si|Xj ∈ Ri(j))

Pr(Y = Si)
.

(11)
We refer to this utility measure as the private mu-
tual information utility measure (PMI). The corresponding
information-loss measure is

ΠPMI(D, g(D)) = (12)

− 1

nr

n∑

i=1

r∑

j=1

log Pr(Y = Si|Xj ∈ Ri(j)) .

It expresses the amount of mutual information that is lost
by replacing D with g(D). Clearly, ΠPMI(D, g(D)) is
minimized when I(D̃; g(D)) is maximized.

The PMI utility measure is defined in (10) as an average
of the mutual information between the private attribute and
each of the generalized public attributes. As such an averag-
ing might hide a strong correlation of one of the generalized
public attributes with the private attribute, another possible
definition of that measure is

I(D̃; g(D)) := max
1≤j≤r

I(Y ;R(j)) . (13)

A possible compromise between the `1-norm in (10) and the
`∞-norm in (13) is the `2-norm version

I(D̃; g(D)) :=
1

r




r∑

j=1

I(Y ;R(j))2




1/2

. (14)

In this study we focus on the first `1-version, (10). The com-
parison between the effectiveness of the different versions
is left for future experiments and study.

We now turn to discuss the monotonicity of the PMI utility
measure, U(g(D)) = I(D̃; g(D)). A natural property that
one might expect from any utility measure is monotonicity.
In other words, we expect that coarser generalizations will
be characterized by smaller values of the utility measure.
We focus here on the case of global recoding. Assume
that g′(D) is a generalization that is coarser than g(D).
Since both g(D) and g′(D) are based on global recoding,
they define for the jth attribute two random variables, X̂j

and X̂
′
j respectively (see Section III). The random variables

Y,Xj , X̂j and X̂
′
j form a Markov chain:

Y ←− Xj −→ X̂j −→ X̂
′
j .

Hence, the Data Processing Lemma [5] implies that
I(Y ; X̂j) ≥ I(Y ; X̂

′
j). Summing up those inequalities for

all 1 ≤ j ≤ r and dividing by r we conclude that
I(D̃; g(D)) ≥ I(D̃; g′(D)).

In the more general case of generalization based on
local recoding, the PMI utility measure (11) is not always
monotone. For example, let D||D̃ be the following table
with a single public attribute and a single private attribute:

D a a a a b b b b c
D̃ 0 0 0 1 0 1 1 1 1

(15)

Consider the following 3-anonymization of D:

g(D) a a a * * b b b *
D̃ 0 0 0 1 0 1 1 1 1

(16)

In this case, by (12), ΠPMI(D, g(D)) ≈ −0.126 < 0.
Therefore, I(D̃;D) < I(D̃; g(D)), even though g(D) is
a generalization of D, whence monotonicity is violated.
Nonetheless, the PMI utility measure is still meaningful for
local recoding and serves well the purposes of data-mining,
as we proceed to explain. The generalization g(D) in (16)
is the 3-anonymization that maximizes I(D̃; g(D)), since
it selects to obfuscate the outlier records. The PMI utility
measure favors the generalization g(D) over the original
table D in (15), since the latter has outlier records that blur
the two prominent association rules “a implies 0” and “b
implies 1”, while the former eliminates those outliers and
accentuates those two rules.

The above example exemplifies the advantage that our
newly proposed utility measure has to offer with respect
to the previous measures. Measures that rely only on the
public attributes cannot distinguish between the various 3-
anonymizations of D and cannot identify g(D) as the best
one. Hence, using the PMI measure may yield anonymized
tables with greater utility for data mining.

V. ALGORITHMS FOR k-ANONYMITY

The problem of finding a k-anonymization of a given
table with minimal information loss is NP-hard. Several
polynomial-time approximation algorithms were devised for
this problem. The first one [11] has an approximation
guarantee of O(k logn) and runtime of O(rn2 + n3) (for
the case of suppressions only). The algorithm in [1] runs
in time O(kn2) and approximates the optimal solution to
within O(k) (for the case of generalization by hierarchical
clustering). As k may be relatively large in practice, those
approximation factors might be unsatisfactory. A signifi-
cant improvement was proposed in [8], with an O(log k)-
approximation algorithm that applies to any generalization



and any measure. Alas, its run time, O(n2k), renders it
impractical. A more efficient O(log k)-approximation al-
gorithm was proposed in [13], but it is restricted only to
generalizations by suppression.

Due to the poor performance and limitations of the
provable approximation algorithms, heuristical algorithms
are invoked. The current popular approach is agglomerative
algorithms that are based on a bottom-up merging procedure
(Section V-B). We describe here (Section V-C) an alternative
approach, based on sequential clustering, that we propose in
this context. In order to discuss those two approaches, we
begin by providing the basic definitions of cluster closure
and generalization cost.

A. Generalization cost

Any k-anonymization induces a clustering of the records
in D to clusters of size at least k. Conversely, every
clustering of D into clusters of size at least k induces a
k-anonymization, g(D), in the following manner. Assume
that {Ri1 , . . . , Rim} is one of the clusters. Then the records
Ri1 , . . . , Rim in g(D) will be all equal, and their jth entry
will be the minimal set in Aj that includes the values
Ri1(j), . . . , Rim(j). We aim at finding such a clustering that
induces an optimal k-anonymization under a given measure
of loss of information.

Let C = {C1, . . . , Ct} be a clustering of the records
in D, where all clusters are of size at least k. Such a
clustering induces a k-anonymization g(D) of D. Letting Π
be some measure of information-loss, we proceed to define
an anonymization cost, gc, for each of the clusters, Ci,
1 ≤ i ≤ t. The generalization cost gc will be defined so
that the information-loss of the anonymization g(D) will be
given by

Π(D, g(D)) =
1

n

t∑

j=1

gc(Cj) · |Cj | . (17)

In other words, we wish to define gc so that the average over
all n records in D of the gc value of that record’s cluster
will be the information-loss of the anonymization g(D) that
is induced by that clustering.

We proceed to define gc. Let C be one of the clusters
in C. Without loss of generality, we assume that C =
{R1, . . . , Rm}. The closure of C is the minimal generalized
record R that generalizes every single record in C. Namely,
for all 1 ≤ j ≤ r, R(j) is the minimal set in the collection
Aj that includes all of the values R1(j), . . . , Rm(j). In the
anonymized table g(D) that corresponds to the clustering
C, all records in C will be replaced by the closure of C.
Then the corresponding generalization cost of C, gc(C),
is the average information loss that is caused by replac-
ing each of the records in C by the generalized record
R = (R(1), . . . , R(r)).

For the MI measure, (8), and the PMI measure, (12), the
generalization cost may differ from one record to another in

the same cluster. In the former, it depends on the original
public attributes in the record,

gcMI(C) = − 1

mr

m∑

i=1

r∑

j=1

log Pr(Xj = Ri(j)|Xj ∈ Ri(j)) ,

while in the latter it depends on the private attribute in the
record,

gcPMI(C) = − 1

mr

m∑

i=1

r∑

j=1

log
Pr(Y = Si|Xj ∈ Ri(j))

Pr(Y = Si|Xj = Ri(j))
.

B. Agglomerative algorithms

Agglomerative algorithms were proposed in [4], [7], [12].
The basic idea in such algorithms is to start with singleton
clusters and then keeping unifying the two closest clusters
until all clusters become larger than k. A key ingredient
in all agglomerative algorithms is the definition of distance
between clusters. It is natural to define the distance so that it
best fits the cost function of the k-anonymization. We used
in our experiments one of the distance functions that were
proposed in [7],

dist(A,B) = |A∪B| ·gc(A∪B)−|A| ·gc(A)−|B| ·gc(B) ,

which, in view of (17), expresses the difference in the overall
generalization cost if we unify the clusters A and B.

C. Sequential Clustering Algorithm

The most fundamental non-agglomerative clustering tech-
nique is K-means. As the number of clusters is unknown,
but is bounded from above by bn/kc, we may set K to
a number in the vicinity of that upper bound, select K
random centers, and then use any of the utility measures
that were defined in the previous sections as the underlying
metric. Alternatively, we can apply a greedy sequential
algorithm that can be viewed as a sequential version of
the K-means algorithm. The sequential greedy algorithm is
known to perform well in terms of both clustering quality
and computational complexity [15].

The sequential clustering algorithm starts with a random
partition of the records into clusters. Then, it goes over
the n records in a cyclic manner and for each record
checks whether it may be moved from its current cluster
to another one while increasing the utility of the induced
anonymization. This loop may be iterated until either we
reach a local optimum (i.e., a stage in which no single-record
transition offers an improvement) or the local improvements
of the utility become sufficiently small. As there is no
guarantee that such a procedure finds the global optimum,
it may be repeated several times with different random
partitions as the starting point, in order to find the best local
optimum among those repeated searches.

Usually, the number of clusters is given as an input to
the algorithm. In agglomerative (bottom-up) algorithms, the
merging process is executed until the desired number of



clusters is obtained. Sequential clustering algorithms are
initialized with a random clustering having the specified
number of clusters. However, in our k-anonymization clus-
tering problem, the constraint is on the size of the clusters
rather than on their number. To cope with this constraint, the
scheduling of the sequential algorithm should be modified.

A possible solution is the following. The initial number
of clusters in the random clustering is set to bn/k0c and the
initial clusters are chosen so that all of them are of size k0 or
k0+1, where k0 = αk is an integer and α is some parameter
that needs to be determined. Then, during the sequential
algorithm, we allow the size of the clusters to vary in the
range [2, ωk], for some predetermined fixed parameter ω.

When a cluster becomes a singleton, we remove it and
place that record in one of the other clusters where it fits
best. If a cluster becomes too large (i.e., its size becomes
larger than the upper bound ωk), we split it into two equally-
sized clusters in a random manner. The main loop of the
algorithm is repeated until we reach a stage where an entire
loop over all records of the database found no record that
could be moved to another cluster in order to improve the
utility. At this point, some of the clusters are large, in the
sense that their size is at least k, while others are small.
If there exist small clusters, we apply the agglomerative
algorithm on those clusters in order to merge them into
larger clusters of size k or more. Finally, if we are left at
the end with a single cluster that is small, we merge it with
the closest large cluster. This approach is summarized in
Algorithm 1.

Note that the agglomerative algorithm is in fact a special
case of this sequential algorithm that corresponds to the
selection k0 = 1.

1) Measuring the information loss: Let Cj and C` be
two clusters in C, and assume that Ri is a record in Cj . A
basic check that the algorithm performs is whether we may
gain utility by moving Ri from Cj to C`. In view of (17),
the difference in the overall information loss as a result of
such an action is

∆i:j→` =
1

n
· {[gc(Cj \ {Ri}) · (|Cj | − 1) (18)

+gc(C` ∪ {Ri}) · (|C`|+ 1)]−
[gc(Cj) · |Cj |+ gc(C`) · |C`|]} .

If that difference is negative, then we gain from such a
transition. Therefore, in each step of the algorithm we
reexamine the current location of each of the records Ri

in D and then look for an alternative location (cluster) that
provides the best improvement in terms of information loss.

It is preferable to have in the final clustering clusters of
size close to k, since larger clusters imply lesser utility. One
way of controlling the cluster sizes is by selecting properly
the size of the initial clusters, k0 = αk, and by selecting
the upper limit of cluster size, ωk. Our tests indicated that

Algorithm 1 Sequential clustering algorithm for k-
anonymization
input Table D = {R1, . . . , Rn}, integer k.
output A clustering of D into clusters of size at least k.

1: Choose a random partition of the data records into t :=
bn/k0c clusters of sizes either k0 or k0 +1. Denote the
clusters by C1, . . . , Ct.

2: for i = 1, . . . , n do
3: Let Cj be the cluster to which record Ri currently

belongs.
4: For each of the other clusters, C`, ` 6= j, compute

the difference in the information loss if we move Ri

from Cj to C` — ∆i:j→`.
5: Let C`0 be the cluster for which ∆i:j→` is minimal.
6: If Cj is a singleton, move Ri from Cj to C`0 and

remove cluster Cj .
7: Else, if ∆i:j→`0 < 0, move Ri from Cj to C`0 .
8: end for
9: If there exist clusters of size greater than ωk, split

each of those clusters randomly into two equally-sized
clusters.

10: If at least one record was moved during the last loop,
go to Step 2.

11: while the number of clusters of size smaller than k is
greater than 1 do

12: Unify the two closest small clusters.
13: end while
14: If there exists a small cluster, unify it with the cluster

to which it is closest.
15: Output the resulting clustering.

it is preferable to set α to a value smaller than 1 (namely,
initially all clusters are smaller than k), and to set ω to a
value smaller than 2. In all of our tests we used α = 0.5
and ω = 1.5.

VI. EXPERIMENTS

In Section VI-A we describe experiments that demon-
strate the advantages of the sequential algorithm over the
agglomerative algorithm. In Section VI-B we describe the
experiments that compare our proposed PMI measure to
the MI measure; those experiments used the sequential
algorithm.

A. Comparing the Sequential and Agglomerative Algorithms

We tested our algorithm versus the agglomerative algo-
rithm on the dataset Adult from the UCI Machine Learning
Repository.2 That dataset was extracted from the US Census
Bureau Data Extraction System. It contains demographic
information of a small sample of US population with 14
public attributes such as age, education-level, marital-status,

2http://mlearn.ics.uci.edu/MLSummary.html



occupation, and native-country. The private information is
an indication whether that individual earns more or less than
50 thousand dollars annually. The adult data contains 45,222
records after tuples with missing values are removed.

In the experiments that we report herein we restricted
our attention to generalization by suppression. In addition,
we implemented a non-repetitive version of the sequential
algorithm (i.e., one that does not perform the sequential
clustering several times, each time starting with a differ-
ent random initial clustering). We ran each of the two
algorithms with seven values of the anonymity parameter,
k = 10, 20, 30, 40, 50, 75, 100, and using three measures –
LM, MI, and our proposed PMI. (Namely, each of the two
algorithms ran on the Adult dataset 21 times in total.) For
each of those three measures and seven values of k, the two
algorithms issued generalizations with equivalent anonymity
(as dictated by the value of k) and with the same utility
score. However, while the two algorithms offer comparable
generalizations, they differ significantly in their runtime. The
runtime of the sequential algorithm was much faster than
that of the agglomerative one: Figure 1 reports the average
runtime of each of the two algorithms for each value of k
(the average being taken over the three different runs with
respect to the three utility measures). The two algorithms
were implemented in C on a Pentium (R) 4 CPU 3.40 GHz,
1.49 GB of RAM.
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Figure 1. Runtime comparison between the agglomerative
and sequential algorithms.

Note that the runtime of the agglomerative algorithm
slightly increases with k. Indeed, regardless of k, the ag-
glomerative algorithm starts with n clusters and the main
computational effort occurs in the early iterations where the
number of clusters is still O(n). The number of clusters
reduces by 1 in each iteration until all clusters are of size
at least k whence the final number of clusters is O(n/k).
Therefore, the number of iterations in the agglomerative
algorithm is roughly n− n/k.

The runtime of the sequential algorithm, on the other

hand, decreases with k. Since the number of clusters is
O(n/k), then each pass over all records in the table involves
O(n2/k) computations of utility gain by moving a record
from one cluster to another. The faster than O(1/k) decrease
in the runtime stems from the fact that the number of
iterations also reduces with k. Since, in practice, higher
values of k are required for greater privacy, the advantage
offered by the sequential algorithm over the agglomerative
one in terms of runtime is prominent.

We tested also the dependence of the runtime of the two
algorithms with respect to the number of public attributes.
We ran the two algorithms on a reduced Adult dataset
that has only 7 public attributes (selected out of the existing
14 attributes) and on an extended Adult dataset that
has 28 public attributes (the additional 14 attributes were
artificial ones). As expected, the runtime of each of the
two algorithms depends linearly on the number of public
attributes, regardless of the value of k or the underlying
utility measure.

B. Comparing the PMI and MI Measures

After establishing the superiority of sequential clustering
over agglomerative clustering, we proceeded to test the PMI
utility measure and compare it to the MI measure. To that
end, we recall the definition of diversity as appears in [10].
Given a cluster of anonymized records, its diversity is the
entropy of the distribution that it induces on the private
attribute. For example, if all records in that cluster have
the same private value then that cluster’s diversity is zero;
but if, on the other hand, all records have a unique private
value then the diversity is logm where m is the cluster size.
On one hand, we wish to arrive at a clustering in which
every cluster has a low diversity since that would indicate a
strong correlation between the generalized public data and
the private data. On the other hand, a too low diversity
(that helps learning) might jeopardize the privacy of the
individuals in that cluster. Therefore, Machanavajjhala et. al.
[10] suggested to impose a minimal diversity as a privacy
measure.

We ran the sequential clustering on the Adult database
with a weighted MI measure,

UwMI = w · UMI + (1− w) · UPMI ,

with w = 0, .25, .5, .75, 1, for k = 50, 75, 100. The average
diversities of the resulting clusterings in each of those cases
are shown in Table 1.

k\w 0 0.25 0.5 0.75 1
50 0.07 0.14 0.31 0.51 0.54
75 0.08 0.14 0.32 0.51 0.56
100 0.08 0.15 0.34 0.54 0.58

Table I
AVERAGE DIVERSITIES FOR DIFFERENT VALUES OF k

AND w.



We see that when w = 0 (which corresponds to the PMI
measure) the correlation between the generalized public data
and the private one is much stronger than in the case w = 1
(which corresponds to the MI measure). Hence, it is apparent
that anonymizations that were obtained by using the PMI
measure clearly are more valuable for mining association
rules.

It should be pointed out that in all of our experiments
(either with the above UwMI measures or with other mea-
sures such as the LM) there were clusters with zero diver-
sity. Hence, the problem that was identified in [10] does
occur, regardless of the utility measure (or the clustering
algorithm). Hence, it is necessary to impose also `-diversity
in the sense that each final cluster has diversity at least `. We
note that sequential clustering, due to its flexibility, can be
easily modified to guarantee also `-diversity, as opposed to
agglomerative clustering which is more rigid. Indeed, each
basic step in sequential clustering moves a record from its
current cluster to another cluster if such a transition increases
the utility. By starting with initial clustering that respects `-
diversity and performing only transitions of records that do
not violate `-diversity, we may apply sequential clustering to
obtain k-anonymized as well as `-diversified tables. Agglom-
erative clustering, on the other hand, is less accommodating
for `-diversification since it starts with a clustering that
violates `-diversity (as all initial clusters have zero diversity)
and the basic operation in that algorithm is the unification
of clusters rather than transitions of single records.

VII. CONCLUSIONS

In this study we proposed the private mutual information
(PMI) utility measure that aims at maximizing the correla-
tion between the generalized public data and the private data.
We showed that this measure is much more adequate for
the purposes of data mining that aims at finding association
rules to predict the private data from the public data. We
then described the sequential clustering algorithm. That
algorithm, which is independent of the underlying utility
measure, is comparable to agglomerative clustering in terms
of the resulting utility, but it is significantly faster, and it
may be `-diversified more easily.

Our initial experiments regarding the diversity show that
the PMI measure is much more suitable when the goal is
to achieve anonymizations from which association rules or
methods of predicting the private data from the public data
can be mined. A more thorough experimental validation
of this claim will proceed as follows: We intend to obtain
several k-anonymizations of the same table using different
measures of information-loss. Then each of those tables
will be used either for mining association rules or for
the computation of a classifier. Our conjecture, which is
supported by our initial experiments that we reported here,
is that the PMI-related table will produce a set of association
rules which is closer to the set of association rules that

can be mined from the original table; also, the PMI-derived
classifier is believed to be more accurate than a classifier
that is based on anonymizations that are based on other
measures of information-loss. It should be noted that the
actual design of such experiments requires a substantial
theoretical study and the derivation of methods that, to the
best of our knowledge, are still not available.

REFERENCES

[1] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Pan-
igrahy, D. Thomas, and A. Zhu. Approximation algorithms
for k-anonymity. J. of Privacy Tech., 2005.

[2] R. Agrawal and R. Srikant. Privacy-preserving data mining.
In ICDM, 2000.

[3] R. Bayardo and R. Agrawal. Data privacy through optimal
k-anonymization. In ICDE, 2005.

[4] J.W. Byun, A. Kamra, E. Bertino, and N.Li. Efficient k-
anonymization using clustering techniques. In DASFAA, 2007.

[5] T. M. Cover and J. A. Thomas. Elements of Information
Theory. John Wiley, New York, 1991.

[6] J. Domingo-Ferrer and V. Torra. A critique of k-anonymity
and some of its enhancements. In ARES, 2008.

[7] A. Gionis, A. Mazza, and T. Tassa. k-Anonymization revis-
ited. In ICDE, 2008.

[8] A. Gionis and T. Tassa. k-Anonymization with minimal loss
of information. In ESA, 2007.

[9] V. Iyengar. Transforming data to satisfy privacy constraints.
In SIGKDD, 2002.

[10] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkita-
subramaniam. l-Diversity: privacy beyond k-anonymity. In
ICDE, 2006.

[11] A. Meyerson and R. Williams. On the complexity of optimal
k-anonymity. In PODS, 2004.

[12] M. E. Nergiz and C. Clifton. Thoughts on k-anonymization.
In ICDE Workshops, 2006.

[13] H. Park and K. Shim. Approximate algorithms for k-
anonymity. In SIGMOD, 2007.

[14] P. Samarati and L. Sweeney. Generalizing data to provide
anonymity when disclosing information (abstract). In PODS,
1998.

[15] N. Slonim, N. Friedman, and N. Tishby. Unsupervised
document classification using sequential information maxi-
mization. In ACM SIGIR, 2002.

[16] R. Chi wing Wong, J. Li, A. Wai chee Fu, and K. Wang. (α,
k)-anonymity: an enhanced k-anonymity model for privacy
preserving data publishing. In ACM SIGKDD, pages 754–
759, 2006.


