
Session F2C

0-7803-7961-6/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

F2C-18

NON-DETERMINISM IN CS HIGH-SCHOOL CURRICULA

Michal Armoni1 and Judith Gal-Ezer2

1 Michal Armoni, The Open University of Israel and Tel-Aviv University, 16 Klausner St., Ramat -Aviv, P.O. Box 39328, Tel-Aviv, 61392, Israel,
michal@openu.ac.il
2 Judith Gal-Ezer, The Open University of Israel, 16 Klausner St., Ramat-Aviv, P.O. Box 39328, Tel-Aviv, 61392, Israel, galezer@openu.ac.il

Abstract - One of the units in the relatively new high school
CS curriculum which is being implemented in Israel is a
theoretical unit on computational models. It includes
deterministic and non-deterministic finite automata, regular
and non-regular languages, closure properties of regular
languages, pushdown automata, closure properties of
context free languages, Turing machines, the Church-Turing
thesis and the halting problem. This paper focuses on part of
a study we conducted on the unit, dealing with the topic of
non-determinism of finite automata. One of the aspects dealt
with was how students perceived non-determinism. 339
students were given a relatively complicated regular
language, and asked to construct a finite automaton that
accepts this language. We found that many students did not
choose the easiest way to solve the problem: Many students
preferred to construct a deterministic automaton, even
though constructing a non-deterministic automaton for the
language is much simpler. We analyze and categorize the
students' solutions, thus shedding some light on their
perception of the abstract concept of non-determinism.

Index Terms – Computational model, Deterministic finite
automata, Non-determinism, Non-deterministic finite
automata.

COMPUTATIONAL MODELS IN THE HIGH SCHOOL
CS CURRICULUM IN ISRAEL

A relatively new high school CS curriculum is being
implemented in Israel [1, 2] which has two different
versions, a three-unit version and a five-unit version. The
fifth unit is an elective component, and one of the
alternatives is a theoretical unit on computational models
(CM), for which a textbook and a teachers’ guide were
written [3]. This unit was developed by a team chaired by
the first author, in consultation with the second. The unit is
planned for 90 hours, and taught during one school year. It
has three parts. The first and largest part (about 50 hours)
deals with finite automata. This part introduces various
models of finite automata, and discusses the equivalence of
these models. It also includes a discussion of the limits of
computation of finite automata (that is, the existence of non-
regular languages) and provides proofs of some closure
properties of regular languages.

The second part (about 25 hours) focuses on the
pushdown automata model. After introducing the new
model, pushdown automata are proved to be stronger than
finite automata. As in the first part, this part also discusses
the computational limits of the model, and the closure
properties of the family of languages accepted by this model:
context -free languages.

The third and last part (about 15 hours) is dedicated to
the Turing Machine model. As was the case for the previous
models, after introducing the new model, there is a
discussion of its computational power (that is, its
equivalence to a computer) and its computational limits
(demonstrated by proving the non-computability of the
halting problem).

Most of the topics introduced in the CM unit are not
usually covered in high school CS curricula; some of the
technical issues that relate to constructing automata are
sometimes touched upon but without discussing any
theoretical aspects. The ACM high school computer science
curriculum [4], for example, includes very few references to
some of these, and then only as optional topics. However,
most academic curricula [5, 6, 7, 8] recognize these issues as
fundamental to computer science. Therefore, the designers
of our high school CS curriculum decided that it was
important to expose high school students to these issues to
enable them to become familiar with some of the theoretical
aspects of computer science.

Non-determinism in the CM unit

The concept of non-determinism is introduced in the fourth
chapter of the CM unit. The non-deterministic finite
automaton (NFA) model is usually defined as a
straightforward version of the definition of the deterministic
finite automaton (DFA) [9]. In a DFA, the transition
function maps each state and input letter to a single state,
while in an NFA, the transition function maps each state and
input letter to a set of states (which can also be empty). To
illustrate, figures 1 and 2 show two simple automata, both
accepting the language that contains all words over the
alphabet {a, b, c} which end with the string “bc”. The first
automaton (Figure 1) is deterministic, while the second one
(Figure 2) is non-deterministic.

Session F2C

0-7803-7961-6/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

F2C-19

FIGURE 1

AN EXAMPLE OF A DFA

FIGURE 2
AN EXAMPLE OF AN NFA

For didactic reasons, the introduction of NFA in the CM

unit is preceded by the introduction of another model: the
non-complete deterministic finite automaton (NCDFA). In
this model, the transition function maps each state and input
letter to a single state or to an empty set of states. Figure 3
shows an example of an NCDFA that accepts the language
of all the words over the alphabet {a, b, c} that begin with
the string “bc”.

FIGURE 3
AN EXAMPLE OF AN NCDFA

Thus, the first difference between a DFA and an NFA,

which permits omitting transitions while preserving the
deterministic nature of the model, is shown in the definition
of the NCDFA; while the second difference, which permits
non-determinism, is expressed only in the definition of the
next model taught, the NFA. The abstract concept of non-
determinism is thus isolated, and is introduced by itself. The
addition of the NCDFA model also enriches the variety of
models introduced in the CM unit, and enables practicing
comparison of models.

For the same didactic reasons, the definition of NFA in
the CM unit does not permit ε-transitions (which are
transitions that can be made without reading any input
symbol). The concept of ε-transitions is even more abstract
and subtle, and is not really needed for the definition of a
non-deterministic model (since the resulting models are
equivalent).

The unit explains the motivation for introducing the
NFA in three ways:
• Practicing the “theoretical game” which characterizes

the theoretical study in CS. That is, after a certain
mathematical abstraction is defined (in this case the
definition of DFA), it is interesting to check the
theoretical results of generalizing this definition in
various ways: whether the resulting models will be
equivalent to the original one, stronger or weaker.

• A few examples, given in the chapter, demonstrate that
for certain formal languages, constructing an NFA is
simpler and more natural than constructing a DFA.

• By using the non-deterministic model, additional
closure properties of regular languages can be proven.

The second part of the fourth chapter focuses on

practicing constructions of NFAs and NCDFAs, and
studying the properties of the new models.

THE STUDY

The work described in this paper is part of a wider research
which examined the correlation between achievements of
students studying the CM unit, and other factors such as the
student’s previous computer-related background (not
necessarily computer science), the grade level (11th or 12th),
and the level on which the student studies mathematics
(which can be 3, 4 or 5 units). We also checked to what
extent the students use reductions when solving questions
related to computational models, and their perception of
non-determinism. This paper focuses on the latter.

Developing the CM unit involved a three-year long
experiment, during which the unit was taught in selected
schools, under the close supervision of the developing team.
The majority of the study population includes students who
took the CM unit in 1997-98, the third year of the
experiment. The rest are students who learned the unit in
2000-01.

In the third year of the experiment, all the teachers who
taught the CM unit were asked to administer a background
questionnaire to their students at the beginning of the year.
The questionnaire included the students’ grade level,
previous computer-related background and level of
mathematics studied. During the year, the teachers were
asked to include a number of questions provided by the
developers on exams and to send the students’ answers to
the developers. At the end of the year they were asked to
send the developers the students’ answers on the final exam.
The same data was collected from the classes which studied
the CM unit in 2000-01.

The research instrument

One of the exam questions provided to the teachers tested
the material in chapter 4 of the CM unit. The teachers were
asked to include the question on an exam given after they
finished teaching the chapter. The rest of the questions were

q2

q0

q1

b

c

a, b, c

q2

q0

q1

b

c

a, c

b

a b

a, c

q2

q0

q1

b

c

a, b, c

Session F2C

0-7803-7961-6/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

F2C-20

written by the teachers. This question, reproduced below,
served as our main research instrument for collecting the
data reported in this paper:

Design an automaton that accepts the language over the
alphabet {a, b, c}, that contains exactly the words for
which at least one of the following conditions holds:

1. The word ends with the string “bc”.
2. The word consists of two parts: The first part

contains the string “ba”, and the second part contains the
string “ab”.

There are a number of ways to answer this question,
which are listed below in brief:
• Directly constructing a DFA for this language. This is a

relatively complicated DFA, containing 8 states and 24
transitions.

• Directly constructing an NFA for this language. If the
student understands the non-deterministic model well,
the automaton is not very difficult to construct; it
contains 7 states and 9 transitions.

• Decompose the language into two sublanguages
(corresponding to conditions 1 and 2), construct a DFA
for each, and use a non-deterministic union
construction to obtain an NFA that accepts the union of
the two sublanguages.

• Decompose the language into two sublanguages
(corresponding to conditions 1 and 2), construct an
NFA for each, and use a non-deterministic union
construction to obtain an NFA that accepts the union of
the two sublanguages.

• Decompose the language into two sublanguages
(corresponding to conditions 1 and 2), construct a DFA
for each, and use a Cartesian-product construction to
obtain a DFA that accepts the union of the two
sublanguages. This construction, if performed
gradually, can result in a DFA with 10 states and 30
transitions.

• Decompose the language into three sublanguages
(corresponding to condition 1 and the two sub-
conditions of condition 2), construct a DFA for each,
and use a non-deterministic concatenation construction
and then a non-deterministic union construction to
obtain an NFA that accepts the union of the first
sublanguage with the concatenation of the other two.

• Decompose the language into three sublanguages
(corresponding to condition 1 and the two sub-
conditions of condition 2), construct an NFA for each,
and use a non-deterministic concatenation construction
and then a non-deterministic union construction to
obtain an NFA that accepts the union of the first
sublanguage with the concatenation of the other two.

All of these solutions represent correct solution patterns,

though the resulting solution may be incorrect if the student
erred in one or more of the stages of the solution (in

constructing the automata, in identifying the correct regular
operation, etc.). There is one more way to solve the problem;
this one is necessarily wrong:
• Decompose the language into three sublanguages

(corresponding to condition 1 and the two sub-
conditions of condition 2), construct a DFA for each,
and use a non-deterministic concatenation construction
to obtain an NFA which accepts the concatenation of
two of the sublanguages and then use a Cartesian-
product construction to obtain an NFA that accepts the
union of the first sublanguage with the concatenation
of the other two.

This solution is wrong since the Cartesian-product
construction was defined and proved for DFAs and not for
NFAs, and the concatenation construction can result in an
NFA, even if the basic automata were deterministic.

QUANTITATIVE RESULTS

A total of 11 teachers in 9 schools teaching 339 students in
17 classes submitted their students’ answers to the question
described above.

For the purposes of this paper, we decided to ignore the
issue of correctness and focus only on the way in which the
student chose to solve the problem. Obviously there is a
connection between the method of solving the problem and
the correctness of the solution. For example, if the solution
involves constructing complicated automata, then there is a
good chance that the student will make errors in the
constructions. However, we were mainly interested in
finding out whether the students chose to solve the problem
using the non-deterministic model. Since the fourth chapter
of the CM unit emphasizes and demonstrates the relative
ease of the construction process in the non-deterministic
model, as compared to the deterministic model, we reasoned
that if, in spite of that, the students preferred to use the
deterministic model, this may indicate that they did not fully
understand the non-deterministic model.

Two main factors are involved in the process of solving
the problem: the reduction of the problem into sub-problems
and the use of non-determinism. Though these two factors
may seem orthogonal to each other, they are not fully
independent. For example, if the student chooses to
decompose the language into two or three sublanguages, the
resulting sublanguages will be quite simple, and therefore
constructing a DFA for each will not be overly complicated.
However, in this paper we limit ourselves to the factor of
non-determinism. Decomposition was part of our wider
study, and will be discussed elsewhere.

In relation to the use of non-determinism, the students’
answers can be divided into 5 groups:
• Fully deterministic solutions
• Solutions in which the students used decomposition to

two or three sublanguages. The automata built for these
sublanguages were fully deterministic, and only the use
of construction algorithms introduced non-determinism

Session F2C

0-7803-7961-6/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

F2C-21

into the process. We categorized this as a
deterministically-based solution since when
independent thinking was required, the student used the
deterministic model.

• Almost deterministic solutions, with only few local
non-deterministic behaviors.

• Almost non-deterministic solutions, with only a few
instances in which the student ignored the freedom of
the non-deterministic model and used redundant
transitions.

• Fully non-deterministic solutions.

When categorizing the students’ answers, we found no

solutions which could be defined as “equally deterministic
and non-deterministic”. This is not surprising. It is
reasonable to assume that if students do not understand the
non-deterministic mechanism, they will not use it (partially
or at all), whereas if they understand the mechanism and its
advantages, they will try to utilize it as much as possible.
The distribution of the various types of solutions is shown in
Figure 4

78

60

33

37

131

0 50 100 150

fully non-deterministic

almost non-deterministic

almost deterministic

deterministically-based

fully deterministic

number of students

FIGURE 4

SOLUTIONS BY TYPE

Figure 5 is a version of Figure 4, but combines the three
deterministic or almost deterministic columns, and the two
almost non-deterministic and non-deterministic colu mns.

171 168

0

50

100

150

200

deterministic
approach

non-deterministic
approach

FIGURE 5

DETERMINISTIC VS. NON-DETERMINISTIC APPROACH

About half of the students solved this question
deterministically, or almost deterministically. No significant
differences were found for grade (11th and 12th) or level of
mathematics. This is surprising since in a study about the
perception of the concept of efficiency [10], Gal-Ezer and
Zur found a significant difference among 10th and 11th
graders. However, this may have been the case because the
students were not only in different grades, but also at a
different stage of their CS studies.

When we considered the data for each teacher
separately, we found that for about half of the teachers (5 of
11), the ratio between students using the deterministic
approach and those using the non-determinis tic approach
was about 50-50. For 3 teachers the ratio is about 60%, 70%
and 85%, in favor of the deterministic approach, while for
the other three teachers, the ratio is about 70%, 85% and
90% in favor of the non-deterministic approach. Thus, it
seems reasonable to hypothesize that the teacher factor is
significant. If the teacher emphasizes the non-deterministic
model, even more than it is emphasized in the textbook, and
demonstrates its advantages (for example, by using the non-
deterministic model whenever he/she constructs an
automaton, both when teaching chapter 4 and thereafter),
this may affect the students’ tendency to use the model.

QUALITATIVE RESULTS

In analyzing the students’ solutions, we recognized four
patterns which seem to indicate the exis tence of a problem in
the perception of non-determinism. We therefore believe
these patterns deserve close attention.
• The first pattern was found in most of the solutions in

the category “almost deterministic”. These solutions
include automata which are basically deterministic, but
contain local non-determinism, expressed in a few non-
deterministic transitions. In most cases, due to the
deterministic character of the automaton, these
transitions are redundant. An example of such an
automaton can be seen in Figure 6 which shows an
automaton for condition 1 in the language definition.
This automaton is deterministic in nature, except for
the initial state, in which there are two transitions with
the letter b: the first returns to the initial state, and the
second is to q1. The self loop with b in the initial state
is redundant, though it does not violate the correctness
of the automaton. However, its existence indicates an
only partial understanding of the non-deterministic
mechanism. Interestingly enough, most of the
redundant non-deterministic transitions that we found
were self loops in the initial state. Indeed, a self loop
transition, with all the alphabet letters, can be found in
many of the examples of NFAs in the CM textbook,
and some of the students may identify the non-
deterministic model with such a transition.

Session F2C

0-7803-7961-6/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

F2C-22

FIGURE 6

LOCAL NON-DETERMINISM IN AN ALMOST DETERMINISTIC AUTOMATON

• The second pattern is "symmetric" to the first. It can be
found in most of the solutions in the category “almost
non-deterministic”. These solutions include automata
which are basically non-deterministic, but contain a
few transitions which would be found in the
deterministic version of this automaton, but are
redundant in the non-deterministic automaton. An
example of such an automaton is shown in Figure 7,
which is an automaton for condition 1 in the language
definition. This automaton is non-deterministic in
nature, except for the state q1, in which there is a
redundant self loop transition with the letter b. Again,
this transition doesn’t violate the correctness of the
automaton. However, its existence indicates only a
partial understanding of the non-deterministic
mechanism.

FIGURE 7
REDUNDANT T RANSITIONS IN A NON-DETERMINISTIC AUTOMATON

• In some cases, we could identify traces of the solution
process in a student’s answer. Sometimes students
wrote a few preliminary versions which they chose not
to complete. In the few such cases we encountered in
this data, the process indicates a change from a non-
deterministic model to a deterministic one. That is, the
early versions are non-deterministic or almost non-
deterministic, but as the students “improve” the
solution they construct almost deterministic or fully
deterministic automata. In some of these cases, the
preliminary versions were indeed incorrect, but usually
only simple and local corrections were necessary. It
seems that after recognizing a problem in the
automaton, the students preferred to shift to the
deterministic, and perhaps more familiar, model,
instead of correcting the mistake within the non-
deterministic model.

• The fourth and last pattern was found among the fully
deterministic solutions, or the solutions in which some
or all of the automata for the sublanguages were
deterministic. In these cases, the students constructed
incorrect NCDFAs (incorrect in the sense that they
don’t accept the required language). The students
utilized the freedom of omitting necessary transitions,
which is characteristic of the non-deterministic model,
without introducing the non-deterministic transitions
that enable this. An example of such a solution is
shown in Figure 8, which presents an incorrect
automaton for condition 1. In this automaton, there are
no transitions with a and b in q1, and no transitions in
q2. These transitions cannot be omitted in any correct
automaton that accepts that language, unless it contains
non-deterministic behavior with b in the initial state.
So, even though the automata constructed in this
pattern were deterministic in nature, the error stemmed
from a partial understanding of the non-deterministic
mechanism.

FIGURE 8

INCORRECT NON-COMPLETE DETERMINISTIC AUTOMATON

We emphasize again that a solution that matches one of
these patterns may indicate a problem in the perception of
non-determinism, even when the solution is correct.

INTERVIEWS

In the beginning of 2003, we conducted four interviews with
students who had finished studying the fourth chapter of the
CM unit a few weeks before, and had been tested on the
material a week before. Through these interviews we hoped
to gain some insight into the solution process, and the
reasons for choosing one model over the other. Students
with various levels of achievement were chosen by the
teacher, who did not know in advance what question they
would be asked. The four students were asked to solve the
question discussed above. After completing their first
version of the solution, they were asked a few questions
regarding decisions they made when solving the problem.
Three of the students gave a non-determinis tic solution (two
of them performed a direct construction and one
decomposed the language into two sublanguages). One of
these students was not very cooperative and we were unable
to glean any information regarding his decision to use the
non-deterministic model. The other two students said that
they thought that it was not possible to construct a

q2

q0

q1

b

c

a, b, c

b

a b

a, c

q2

q0

q1

b

c

a, b, c
c

b

q2

q0

q1

b

c

a, c

Session F2C

0-7803-7961-6/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

F2C-23

deterministic automaton for this language. The fourth
student used a deterministic approach. He decomposed the
language into three sublanguages and constructed one DFA
and two NCDFAs. He said he always preferred the
deterministic model because it suits him. He described
himself as a person with a tendency toward the exact
sciences (physics) and in his opinion, non-deterministic
thinking is not consistent with that. However, he added that
he had no problem with the non-complete deterministic
model. This student’s explanation indicates a predetermined
preference for the deterministic model over the non-
deterministic one, irrespective of language. Such a
preference could perhaps be changed if the teacher
emphasized the non-deterministic model. In this specific
case, the teacher reported that she herself felt more
comfortable with the deterministic model. The answers
given by the two students who chose to use the non-
deterministic model show that technical knowledge of the
model does not necessarily reflect full understanding, and in
particular, a full perception of its computational capabilities.

DISCUSSION AND CONCLUSIONS
Our results show a significant tendency towards the
deterministic model. However, since we didn’t ask the
students specifically to construct a non-deterministic
automaton, they had the freedom of choice. It is possible that
if the question had been asked differently, the students might
have successfully constructed an NFA. However, we believe
that the fact that, given the choice, they preferred the
deterministic model is in itself an important indicator of their
level of understanding of the non-deterministic model. In
addition, the few patterns we found in the students answers
also indicate an only partial understanding of the non-
deterministic model.

No significant differences in the use of determinism was
found when the results were analyzed by grade level or level
of mathematics. Such differences were indeed found for the
correctness of solutions for this and other chapters of the
CM unit. This will be discussed elsewhere.

The fact that in some of the classes, the ratio of
deterministic to non-deterministic solutions was not the
same as that found for the entire research population,
suggests that the teaching process can affect the students’
tendency. Specifically, if the teacher emphasizes and
demonstrates the advantages of the non-deterministic model,
the students tend to use it more.

The unexpected answers given by two of the students
interviewed, that they didn’t think constructing a DFA was
possible, indicate a problem in understanding the theory
underlying the non-deterministic model. Even if students
construct non-deterministic automata freely and correctly,
the teacher cannot assume that they fully understand the
theoretical meaning of this model. Specifically, students may
not realize that the deterministic and non-deterministic
models are equivalent. Therefore, the teaching process
should emphasize the theoretical aspects and not only the

technical aspects. Indeed, studies dealing with the perception
of non-determinism that focus on the teaching process, using
classroom observations and interviews with teachers, might
be helpful.

Our results show that the concept of non-determinism is
a difficult one for students to understand. However, since it
is one of the basic topics of CM, it is important for students
to understand it properly. Full understanding of the non-
deterministic model can affect students’ comprehension of
other topics in CM, such as pushdown automata and context
free languages, since the pushdown automata model is also a
non-deterministic model. Thus, special effort should be
made to prepare teachers for this unit, to ensure that the
teaching process in class properly emphasizes the non-
deterministic model in its theoretical and technical aspects.

Even though non-determinism is a basic computational
and mathematical concept, the CM unit we developed is
currently the only part of the high school curriculum which
introduces the concept. The perception of non-determinism
has never previously been examined in a high school or an
academic context. We conducted this research with high
school students, but since the issues are relevant to college
and university students as well, we plan to conduct such a
study in the near future. We also intend to conduct more
interviews with high school students, to gain even more
insight into the process of choosing the model, while solving
questions dealing with finite automata.

REFERENCES

[1] Gal-Ezer, J., Beeri, C., Harel, D. and Yehudai, A. “A High School
Program in Computer Science”, Computer, Vol. 28, No. 10, 1995, pp.
73-80.

[2] Gal-Ezer, J. and Harel, D., “Curriculum and Course Syllabi for a
High-School Program in Computer Science", Computer Science
Education Vol. 9, No. 2, 1999, pp. 114-147.

[3] “Computational Models”, A Textbook and a Teacher’s Guide, The
Open University, Israel, 1998 (In Hebrew).

[4] Merritt, S. M. et al., “ACM Model High School Computer Science
Curriculum”, The Report of the Task Force of the Pre-College
Committee of the Education Board of the ACM, 1994, pp. 1-25.

[5] Atchison, W. F. et al., “Curriculum ’68, Recommendations for
Academic Programs in Computer Science”, Comm. of the ACM, Vol.
11, No. 3, 1968, pp. 151-197.

[6] Denning, P. J. et al., “Computing as a Discipline”, Comm. of the ACM,
Vol. 32, No. 1, 1989, pp. 9-23.

[7] Tucker, A. B. et al, “Computing curricula 1991, A summary of the
ACM/IEEE Joint Curriculum Task Force Report”, Comm. of the
ACM, Vol. 34, No. 6, 1991, pp. 69-84.

[8] IEEE Computer Society/ACM Task Force, “Year 2001 Model
Curricula for Computing (CC-2001)”, http://www.computer.org/
education/cc2001/report/, 2002.

[9] Hopcroft, J.E. and Ullman, J. D., “Introduction to Automata Theory,
Languages and Computations”, Addison-Wesley, Reading, Ma.. 1979.

[10] Gal-Ezer, J. and Zur, E., "The Concept of ‘Algorithm Efficiency’ in
the High School CS curriculum", FIE 2002, http://fie.engrng.pitt.edu/
fie2002/index.htm, 2001.

