
Reductive Thinking in Undergraduate CS Courses
Michal Armoni

Computer Science Department
The Open University of Israel

and School of Education,
Tel-Aviv University
972-9-778-1217

michal@openu.ac.il

Judith Gal-Ezer
Computer Science Department,
The Open University of Israel

108 Ravutski St.
Raanana, 43107, Israel

972-9-778-1353

galezer@cs.openu.ac.il

Orit Hazzan
Department of Education in
Technology and Science

Technion
Haifa

972-4-829-3107

oritha@tx.technion.ac.il

ABSTRACT
This paper describes research on the perception of undergraduate
students of the concept of reduction. Specifically, based on an
analysis of students' answers to questions addressing different CS
topics, we present several findings regarding the ways in which
undergraduate students conceive of and apply reduction. In
addition to the research description and results, the paper
discusses the role of reduction in CS and suggests several
teaching applications.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer Science Education.

General Terms
Theory.

Keywords
Reduction, Reductive Thinking, Computational Models,
algorithms.

1. INTRODUCTION

Reduction is a problem-solving heuristic that characterizes both
the theoretical aspects of computer science (CS), such as
computability and algorithmics, as well as many other CS topics,
such as software design. Essentially, solving a problem by
reduction means transforming it into a simpler problem (or
problems) for which a solution is already known, and
constructing, or deducing, the solution to the original problem
based on the solutions to the reduced-to problems.

Since a reductive solution uses known building stones, reductive
strategy usually inspires less complicated solutions. For example,
if in order to develop a solution for an algorithmic problem A, we
can reduce problem A to another algorithmic problem B that has a
known solution, then we can use B's solution as a black box,
relying on the correctness of B's solution. In contrast, if we
construct a new algorithm for A, we will have to prove the

correctness of all its components (even when A's solution is based
largely on B's known solution and only slightly alters it).

Reductive thinking, as demonstrated by high school students'
solutions to questions dealing with computational models, was
discussed in [3]. The findings showed that many students
preferred direct, non-reductive solutions, even in cases in which
reductive solutions could have significantly decreased the
complexity of the solution. It was also found that most of the
students who constructed reductive solutions chose
straightforward reductions, for which a lower level of reductive
thinking is required, even if other, less straightforward, reductive
solutions could have been more rewarding in terms of design
complexity (the level of reductive thinking is defined as the
conceptual gap between the original problem and the problem to
which it is being reduced). These results motivated us to present a
didactic strategy for the teaching of reductive thinking [2]. We
demonstrated this strategy in [2] as applied to a course on
computational models; it should probably be possible, however,
to integrate it into the undergraduate CS curriculum in every
context that lends itself to its use.

In [1] we discussed reductive thinking among undergraduate CS
students in the context of a course on computational models. The
findings presented indicated difficulties students encountered in
applying reduction in the context of this course.

The research presented in the current paper continues the above-
mentioned research works. Specifically, in this paper we present
results of a research that addresses reductive thinking of
undergraduate CS students in various contexts. Our goal in this
research was twofold.

First, we examined the tendency of undergraduate CS students, at
different stages of their studies, to use reductive solutions when
solving problems taken from a variety of CS areas. The results of
this research can teach us about the development of a reductive
mode of thinking by undergraduate CS students. In addition, we
checked whether students transfer their reductive thinking from
the area of algorithmics, in which reduction is usually taught
explicitly, to the field of computational models and the formal
language theory, in which reduction is usually not taught
explicitly despite the fact that it is an effective problem-solving
heuristic in these areas. Studies in mathematics and in science
education have shown that transfer – both inter-disciplinary and
intra-disciplinary – is problematic (e.g., [11, 12]).

Second, since reductive thinking is a useful scientific problem-
solving heuristic, and it is used widely in CS in particular, we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE'06, June 26-28, 2006, Bologna, Italy.
Copyright 2006 ACM 1-59593-055-8/06/0006...$5.00.

133

suggest that CS students learn this heuristic during their
undergraduate studies. Accordingly, based on the results of this
research, we intend to start evaluating didactic approaches aimed
at developing reductive thinking. This stems from the fact that
undergraduate CS students are usually exposed explicitly to the
idea of reduction during their second year of study (in an
algorithms course), or at a later stage (in a course on
computability and complexity). However, as mentioned,
reduction, as a problem-solving heuristic, is useful, important and
effective for solving different kinds of problems (algorithmic
problems as well as proofs) with different levels of complexity,
starting from the CS1 course.

In Section 2 we elaborate on reductive thinking. In Section 3 we
present the research setting. Section 4 presents and discusses the
research results and based on these results, Section 5 suggests
teaching applications. In Section 6 we conclude.

2. REDUCTION AS A HABIT OF MIND IN
COMPUTER SCIENCE
Habits of mind are heuristics, problem-solving approaches [4]. In
the context of CS, we talk about abstraction, reduction, successive
refinements, etc., all of which are very helpful approaches in
many problem-solving situations, but at the same time, cannot be
conveyed by a rigorous set of rules that can be applied
automatically in different concrete problem-solving situations.
Rather, in order to apply them successfully, one must gain
experience in their application, be aware of their potential
contribution, and recognize which heuristic might be helpful in
different situations.
Reduction is one of the most broadly useful habits of mind used
to carry out arguments, mainly in computability theory. It seems
to be one of those habits of mind that, we suggest, should be
spanned over the entire undergraduate CS curriculum, as indeed is
done in several courses. Among other advantages of this habit of
mind, thinking in terms of reduction allows students to focus on
structures in terms of their properties rather than their actual
components. Not surprisingly, the centrality of reduction has been
recognized in areas other than CS, for example in mathematical
problem solving [13].
At the same time, however, it is all too common to find students
who do well in a particular CS course but cannot apply their skills
outside the narrow confines of the problems presented in that
course. Specifically, while specific course material may be
grasped and well-performed by students, if they fail to gain
general habits of mind needed for solving problems in other topics
of CS that require the same habits of mind, their performance may
be less successful. Accordingly, our aim in educating our
students, beyond teaching the actual CS material itself, is to
impart the ability to employ various habits of mind that
characterize one area of CS in more general contexts and, when
required, to synthesize several of these ways of thinking.
Although reduction is a core CS concept, it is not an easy concept
to teach. This fact can be explained mainly, but not only, by the
fact that reduction is a "soft" concept – a concept that cannot be
taught by rigorous formalism. In other words, unlike rigid
concepts that can be characterized by rigid, formal rules, and
similar to other soft concepts such as abstraction, recursion,
encapsulation and programming paradigms, it is not sufficient to
present a full, comprehensive and concrete definition of

reduction, nor is it sufficient to lay out specific rules related to
reduction. Furthermore, the difficulty in teaching soft concepts
may be rooted in their generality – the fact that they can be
applied in different domains with respect to different kinds of
problems; at the same time, however, in order to be explained,
they should also be illustrated by specific cases.

3. RESEARCH SETTING
Our research on reductive thinking among university students
consists so far of two phases. The preliminary phase [1], focused
on computational models with a population of 63 university
students studying the course “Automata and Formal Languages”.
Findings were as follows: Students tend to use reductive solutions
in the context of this course less than we had hoped they would.
Furthermore, a substantial tendency toward direct, non-reductive
solutions and solutions with a relatively low level of reductive
characterization was identified.
The second phase of the research, which is described in this
paper, focused on a variety of CS topics, starting from basic CS1
problems through algorithmic problems in different problem-
solving situations, to computational model problems. This phase
consisted of interviews with 19 students, in which students were
asked to solve questions in the context of the above topics. The
interviews enabled us to gain insights into the factors affecting
students’ choices of solutions and to establish connections
between students’ choices and the level of reductive thinking used
in the solution process.
All students were interviewed towards the end of the academic
year. Two groups of students were interviewed:
Group 1: Eleven of the students were freshmen. They were asked

to solve four CS1 algorithmic problems.
Group 2: Eight students were at the end of their second year of

study or in the middle of the third year and had all
studied (or were about to finish studying) a course on
algorithms as well as a course on computational models
and the theory of formal languages. They were asked to
solve five algorithmic problems at the algorithms course
level, three computational model problems, and the
same four CS1 problems given to the first group.

In addition, nine prospective CS high school teachers were asked
to complete a questionnaire that presented the same four questions
given to the first group of students.

For reasons of space limitations, we will not include here the
interviews and questionnaire. They will be presented in a
comprehensive paper on the topic. Interested readers are welcome
to contact the authors and receive them by email.

4. RESULTS: STUDENTS' CONCEPTION
OF REDUCTION
As mentioned before, reduction is a soft concept and therefore it
cannot be presented by a set of rigid rules to be applied
automatically in different problem-solving situations. In other
words, is not always clear to students when and how to use
reduction. In this spirit, the following research results are
presented using a game metaphor, i.e., the game of applying
reduction, addressing three main topics.
First, in Section 4.1, we address the very basic recognition of
whether (or not) it is at all possible to play the game, i.e., we

134

describe situations in which reduction is recognized. Second, in
Section 4.2, we discuss students' conceptions and beliefs
regarding the legitimacy of playing the game, when conditions
permit; specifically, how students conceive the actual use of
reduction. Third, in Section 4.3 we address the actual play of the
game, that is, the actual performance of reduction.
For reasons of space limitations:
- We will illustrate only some of the phenomena presented.

Further illustrations will be presented in our talk.
- We will restrict the findings only to cases in which students

either used (or even just considered using) reduction intuitively
(first or second semester students) or were familiar with the
concept. In the comprehensive paper mentioned above,
currently in preparation, we present a full and comprehensive
picture of students' conception of reduction, which also
addresses other students' perceptions of the concept.

4.1. Recognizing reduction: Is reduction
identified at all?
A necessary prerequisite for using reduction is the ability to
identify relations and connections between different entities
(problems, situations, conditions, etc.). This section addresses the
tendency to recognize these events.
Our data analysis indicates that there is an evolving development
of reductive thinking. Specifically, the research results indicate
that first year students barely ever used reductive solutions, while
the more mature students exhibited higher levels of awareness to
the concept of reduction as well as to its potential use in different
problem-solving situations.
Indeed, it is reasonable to assume that second semester students
did not use reduction as a problem-solving heuristic simply
because they had not yet been exposed to this approach explicitly,
although indirect reference to reduction was made during their
first year of study. Reduction is exhibited, for example, when
concepts such as encapsulation and top-down design
(demonstrated by procedures), and library units are taught, and at
a later stage, through object-oriented principles.
Students' neglecting of reduction can be illustrated by their
solution to the first of the four CS1 questions, in which they were
asked to design an efficient algorithm that calculates the sum of
all integer numbers between 1 and 100 that are indivisible by 3.
Many students (not all of which were first year students) failed to
recognize the connection between this problem and arithmetic
series, even when it was clear that the resource of arithmetic
series was available to them, since they had used it in solving
other questions.
At the same time, some students recognized the option of using
reduction, but in many cases did not exhaust its potential. With
respect to the above-mentioned question, some did reduce this
problem to the problem of calculating the difference between two
series – that of all integer numbers between 1 and 100 and that of
all numbers between 1 and 100 that are divisible by 3, recognized
that the first series is an arithmetic series but failed to recognize
that the second one is an arithmetic series as well.
As it turns out, the ability to identify such relations in which it is
appropriate to use reduction, may depend on the problems and on
the topics to which the problems refer. For example, all of the

Group 2 students who used reduction tended to use it to solve
problems that deal with shortest paths in graphs; but none of them
used reduction to solve the following algorithmic problem:

The input consists of a set of lists of various lengths. The
lists should be merged into one list using a black-box merge
algorithm that merges two lists and its cost is the sum of the
lengths of the two merged lists. Design an efficient
algorithm that determines the sequence of calls to the black-
box merge algorithm such that the total cost of all merge
operations is minimized.

Even though the algorithm designed for this problem by most
students interviewed was essentially the same as the algorithm for
constructing a Huffman tree for a given alphabet and its
corresponding frequency list, none of the students identified a
connection between this problem and Huffman code, not even at
the reflection phase, after they finished designing the algorithm.
In another question, students were asked to design an efficient
algorithm that constructs a minimal-weighted set of edges that
contains at least one edge out of every circle in a given non-
directed weighted graph. Most of the students who naturally used
reduction for shortest-path problems could not identify the
connection between this problem and spanning trees.
The effect of the topics to which the problems relate on students'
ability to identify relations and on their tendency to use reduction
in solving these problems leads to the issue of transfer [11, 12].
Reduction is mentioned explicitly in the teaching process of the
algorithms course (usually in the tutorial sessions, in which
reductive solutions were often demonstrated). At the same time,
reduction is not usually mentioned in the teaching process of the
course on automata and formal languages, although it is a
powerful tool for solving problems related to formal language
theory. The exposure to reduction in the algorithms course could
have resulted in the development of a general tendency to
reduction, a tendency that could be applied in other contexts as
well. Our findings, however, indicate that there was no transfer of
the tendency to use reduction, from the area of algorithmic
problems to the area of computational models problems: All
Group 2 students, even those who used reduction as a primary
strategy for solving algorithmic problems, demonstrated a low
level of reductive thinking when solving questions dealing with
computational models.

4.2. Rules of the game: When is it legitimate to
use reduction?
This section presents students' conceptions with respect to when
reduction should be applied. In several cases and situations, for
instance, students expressed a notion of illegitimacy with respect
to the use of reduction. Since most of these students did indeed
use reduction in some situations, this feeling of illegitimacy was
found to depend on several factors:
A. Course framework: Some students considered reduction

legitimate only if it was leaned in the same course; in other
words, it bridges problems taught in the same course.

B. Question framework: Several first year students felt
uncomfortable using reductions that span between different
problems presented in different questions. They felt that the
problems cannot be connected if they appear in different
questions.

135

C. Black-box effect: Some students said that a black-box
reduction solution is “cheating” or “stupid”. This feeling also
seemed to depend on some subjective factors. For some, it was
not legitimate to use reduction to simple problems (such as
maximum or sorting), whereas it was legitimate to use
reduction to more complex problems, for which it seemed
reasonable not to remember the detailed solution. Contrary to
that, others felt that it was illegitimate to use reduction to
previously-solved complex problems, if they did not
remember exactly how these complex problems are solved.
Such use of reduction was referred to as “cheating”, since the
main part of the solution was left hidden.

D. Setting: One student referred to the situation (interview, exam,
homework, etc.) in which the question is solved: “It is OK to
use reduction when solving home assignments, but in an
interview, such as a job interview, it is illegitimate, since they
probably want to know that I really know how to solve it”.

The different factors that influence students' beliefs about the
legitimacy of using reduction can be explained by the fact that
they do not conceive of it as a rewarding problem-solving
heuristic the use of which in fact reflects high problem-solving
skills.

4.3. Playing reduction
We now present four phenomena that show how students apply
reduction in different problem-solving situations. These
phenomena suggest that students do not fully acknowledge the
power of reduction.
A. Not exhausting the power of reduction when it is observed:
Some students who used reduction for some problems did not
exploit it in other cases, although they were already “half way
there”. For example, when asked to design an algorithm that finds
the most frequent element in a given list of numbers, one of the
students said that it is difficult since the list was not sorted, but he
did not follow this flow of thoughts using reduction to sorting. In
a few cases, when solving computational models problems,
students identified a certain decomposition of a given language to
sublanguages, but their solution eventually used either a less
refined decomposition, or used no decomposition at all.
B. Preferring a lower-level rather than a higher-level reductive
solution: In some cases, students considered a reductive solution
but applied a direct solution or a solution leaning on a lower level
of reductive thinking. Here are several examples:
1. Students sometimes felt that direct solutions were more

efficient since they are tailored to the problem at hand, even
when they knew that the two solutions – the direct and the
reductive – have the same time complexity (and sometimes
even the same actual time cost). For example, in one of the
four CS1 questions, the students were asked to design an
algorithm that finds the maximum element in a given list of
numbers. In another question, they were asked to design an
algorithm that finds the second maximum element in a given
list of numbers. One of the students in Group 1 considered a
reductive solution for the second question, in which the
problem was reduced to the problem of finding the maximum
element (in the original list, and then in the list obtained after
deleting the maximum element). Then he claimed this solution
to be non-efficient compared with the direct solution, in which
two variables are used in one traversal of the list. He realized

that the two solutions share the same time complexity, but was
bothered by the existence of two loops in the reductive solution
versus the one (more complex) loop in the direct solution.

2. For computational model problems, solutions based on
constructive reduction were favored over solutions based on
existential reduction (in which no automaton is constructed for
the given language, but rather its existence is shown using
closure properties). It seems that the constructive solution is
perceived to be more complete, and was therefore favored,
although the students were aware of the existential solution
and of its validity.

3. In the course on algorithms, students learned that a maximum
matching problem can be solved using reduction to a
maximum flow problem. One of the home assignments
included problems that could be solved using reduction to
maximum matching. The teaching assistant reported that many
students reduced the given problems to maximum flow
problems, thus making it more concrete, by going deeper into
the black box, and ending up with a more “complete”
algorithm.

In several cases, students tended to underrate the difficulties they
encountered while trying to solve a problem directly or using low-
level reduction. After encountering significant difficulties along
the solution process, and being confronted with the possibility of
a reductive strategy which might have induced an easier solution,
some students tend to state: “It was not as complicated”, ”I could
have done it my way if I had worked on it a little longer”, “I know
how to do it”, or “It could not made much of a difference”. Such
statements might reflect the conflict the students face between not
acknowledging reduction as a rewarding problem-solving
technique on the one hand, and the difficulties to handle details
when reduction is not applied, on the other.

C. Reduction to a solution (rather than to a problem): This
phenomenon addresses situations in which students explicitly say
that they reduced the problem they were solving to a specific
solution of another problem. One of the students said explicitly: “I
am trying to think of relevant algorithms that I already know that
can do something similar”, rather than thinking of similar
problems, as suggested by Polya [13].

Here are several examples:
1. Reducing the problem of finding the most frequent element in

a given list of numbers to quicksort (or mergesort, or
bubblesort in the case of other students), rather than to sorting.

2. Reducing the problem of finding a shortest s-t path in a {1, 2}-
weighted undirected graph to BFS (rather than to the problem
of finding a shortest path in a non-weighted graph).

3. Reducing the problem of finding the most frequent element in
a given list of numbers to AVL-tree. (In fact, what this student
was looking for in the AVL-tree data structure was the ability
to extract a minimal element in O(logn) time, thus obtaining a
sorted list in O(nlogn) time, what could obviously be achieved
by reduction to sorting if only he had allowed himself to break
free of the implementation details).

D. Reduction only when the details are known: In some cases,
students used reduction to a problem only after they verified that
they fully remembered the algorithm that solves that problem.
The reduction was then formulated correctly as a reduction to a

136

problem. However, they could not establish the connection
between the problems before they made sure they knew how the
reduced-to problem is solved.

The essence of a black-box reduction is ignoring the solution of
the problem to which the given problem is reduced and relying
only on the knowledge that such a solution exists and can be
obtained if necessary. However, we often saw difficulties relating
to the black-box concept. Specifically, those difficulties described
in paragraphs B, C and D regarding the black-box concept,
indicate a tendency to reduce the level of abstraction, a behavior
reported on in various contexts of mathematics and computer
science [7, 8, 9]. This behavior is probably induced by the
difficulty to handle abstractions meaningfully. The mental process
of reducing abstraction makes the solution more concrete and thus
more mentally accessible to these students.

5. TEACHING APPLICATIONS
Based on the above research findings, and based on our belief that
reduction is an important problem-solving heuristic, we now
present several teaching applications that may promote reductive
thinking.
A. Start reductive thinking as early as possible in CS1: This
recommendation is not limited, of course, only to reduction, but
also to other heuristics and soft ideas such as abstraction, as well
as to concepts such as efficiency [5, 6].
B. Demonstrate reduction in different situations and in various
contexts: Instructors can relate explicitly to the reductive nature
of solutions presented and to the advantages of these solutions
over direct or lower-level reductive solutions. In this context, the
didactic strategy for a course on computational models described
in [2] might be helpful for other courses as well. We plan to adapt
this strategy to other CS courses and to verify the effectiveness of
this strategy in terms of developing reductive thinking.
C. Control the use of reduction: As suggested by Schoenfeld [14],
control mechanism is an important ability in problem-solving
situations. With respect to reduction, we should educate our
students to be aware of how they actually use reduction. For
example, on what assumptions they base their reductive solution,
do they properly validate the correctness of the reduction, etc.
D. Course objectives: In general, although each course in the CS
curriculum has a significant role and place, we suggest that, when
appropriate, in addition to the course material, habits of mind will
be highlighted as well. This perspective complements very well
the idea that CS is in fact a unique problem-solving field.

6. CONCLUSION
Since CS is about transfer in the sense of building abstractions, it
seems reasonable to look for ways that might help students
develop modes of thought that are essential for doing CS. As far
as we know, these skills, which computer scientists take for
granted, are hardly ever discussed explicitly in CS courses.
Reduction might be one of these habits of mind that lead us to
think about a problem in terms of bigger chunks. Such a
perspective offers the thinker a more global view of the problem
scene, and enhances the possibility for strategic planning and an
intuitive feel for the problem. The reason for the difference
between the two ways of thinking is, as usual, our limited
capacity to simultaneously access large amounts of information

from our short-term memory [10]. When dealing with a problem
at the lowest level of detail (such as connections between arcs and
nodes), we have no free space left for the broader picture, hence
we tend to "lose the forest for the trees". In contrast, when we
think in larger chunks, we might be temporarily relinquishing
some of the precision, but in exchange gain on the global and
intuitive side.

Acknowledgments
We would like to thank Yechiel Kimchi, Yuval Ishai and Dudu
Amzallag from the Department of Computer Science of the
Technion for their cooperation in the different stages of this
research.
We would like also to express our thanks to the Technion's Fund
for the Promotion of Research for its support of this research.

7. REFERENCES
[1] Armoni. M. and Gal-Ezer, J. (2006). Reduction – an abstract

thinking pattern: The case of the computational models
course. Proc. of the 37th SIGCSE Technical Symposium on
Computer Science Education, pp. 389-393.

[2] Armoni, M. and Gal-Ezer, J. (2005). Teaching reductive
thinking. Mathematics and Computer Education, 39(2), pp.
131-142.

[3] Armoni, M., Gal-Ezer, J. and Tirosh, D. (2005). Solving
problems reductively. Journal of Educational Computing
Research, 32(2), pp. 113-129.

[4] Cuoco, A., Goldenberg, E. P. and Mark, J. (1997). Habits of
mind: An organizing principle for mathematics curriculum,
Journal of Mathematical Behavior, 15(4), 375-402.

[5] Ginat, D. (1996). Efficiency of algorithms for programming
beginners, Proc. of the 27th ACM Computer Science
Education Symposium. New York, ACM Press, pp. 256-260.

[6] Ginat, D. (2001). Early algorithm efficiency with design
patterns, Computer Science Education 11(2), pp. 89-109.

[7] Hazzan, O. (1999). Reducing abstraction level when learning
abstract algebra concepts, Educational Studies in
Mathematics 40(1), pp. 71-90.

[8] Hazzan, O. (2003). How students attempt to reduce
abstraction in the learning of mathematics and in the learning
of computer science, Computer Science Education 13(2), pp.
95-122.

[9] Hazzan, O. (2003). Reducing abstraction when learning
computability theory, Journal of Computers in Mathematics
and Science Teaching (JCMST) 22(2), pp. 95-117.

[10] Miller, G. A. (1956). The magical number seven plus or
minus two: Some limits on our capacity for processing
information, Psychological Review 63, pp. 81-97.

[11] Noss, R., and Hoyles, C. (1996). Windows on mathematical
meanings. Dordrecht, The Netherlands: Kluwer.

[12] Nunes, T., Schliemann, A.D., & Carraher, D.W. (1993).
Street mathematics and school mathematics. Cambridge,
UK: Cambridge University Press.

[13] Polya G. (1957). How to solve it, 2nd Ed., Princeton
University Press.

[14] Schoenfeld, A. H. (1985). Mathematical problem solving.
Orlando, FL: Academic Press.

137

