
J. EDUCATIONAL COMPUTING RESEARCH, Vol. 32(2) 113-129, 2005

SOLVING PROBLEMS REDUCTIVELY

MICHAL ARMONI

The Open University of Israel and School of Education, Tel-Aviv University

JUDITH GAL-EZER

The Open University of Israel

DINA TIROSH

Tel-Aviv University

ABSTRACT

Solving problems by reduction is an important issue in mathematics and

science education in general (both in high school and in college or university)

and particularly in computer science education. Developing reductive think-

ing patterns is an important goal in any scientific discipline, yet reduction

is not an easy subject to cope with. Still, the use of reduction usually is

insufficiently reflected in high school mathematics and science programs.

Even in academic computer science programs the concept of reduction is

mentioned explicitly only in advanced academic courses such as com-

putability and complexity theory. However, reduction can be applied in

other courses as well, even on the high school level. Specifically, in the field

of computational models, reduction is an important method for solving design

and proof problems. This study focuses on high school students studying

the unit “computational models”—a unique unit, which is part of the new

Israeli computer science high school curriculum. We examined whether high

school students tend to solve problems dealing with computational models

reductively, and if they do, what is the nature of their reductive solutions. To

the best of our knowledge, the tendency to reductive thinking in theoretical

computer science has not been studied before. Our findings show that even

though many students use reduction, many others prefer non-reductive solu-

tions, even when reduction can significantly decrease the technical com-

plexity of the solution. We discuss these findings and suggest possible ways

to improve reductive thinking.

113

� 2005, Baywood Publishing Co., Inc.



INTRODUCTION

Reduction is an important method for solving problems in mathematics and other

scientific disciplines. Essentially, solving a problem by reduction means trans-

forming it into simpler problems (or problems for which the solution is already

known), and constructing or deducing the solution of the original problem from

the solution of the new problem.

For example, consider the Gauss method for solving linear equations. This

is actually a reductive method, in which the matrix defined by the given set of

linear equations is transformed into a triangular matrix, for which the solution is

relatively simple. However, when this method is taught, its reductive nature is

not usually emphasized. Consider another example, in which a student is asked to

calculate the sum of all numbers between 1 and 101, which are not divisible by 3.

A direct solution to this problem is very tedious and involves a large number of

calculations. The problem can also be solved reductively: The required sum is the

difference between the sum of all numbers between 1 and 101, and the sum of

all numbers between 3 and 99 which are divisible by 3. Both sums can be

calculated as arithmetic series. Thus the original problem can be reduced to two

separate problems of calculating an arithmetic series. Students who are not used

to reductive thinking may have difficulty reaching this solution, which has rela-

tively low technical complexity.

In computer science, reduction is usually explicitly mentioned in the context of

advanced topics traditionally taught in academic programs such as computability

theory and complexity theory (Davis, Sigal, & Weyuker, 1994; Garey & Johnson,

1979). However, reduction can also be used in other fields of computer science,

such as algorithmic design and computational models. It can also be used in high

school curricula thus directing students toward reductive thinking at a relatively

early stage of their scientific education.

In this article we discuss reduction in the context of the Israeli high school

computer science (CS) curriculum, and specifically in the context of the learning

process of computational models. The current high school CS program is based on

a relatively new curriculum (Gal-Ezer, Beeri, Harel, & Yehudai, 1995; Gal-Ezer &

Harel, 1999). One of the elective theoretical units of the curriculum is a unit on

computational models (CM), for which a textbook and a teachers’ guide were

written (Armoni, Kaufman, & Bargury, 1998). The unit was developed by a team

chaired by the first author, in consultation with the second. This unit addresses, in

a relatively deep manner, several topics that relate to the theoretical foundations

of computer science (e.g., computational limits, non-deterministic computational

models and closure properties). Thus, it is considered a unique unit, since these

topics are not usually included in computer science high school curricula.

The CM textbook presents reductive solutions to various problems in com-

putational models. The study presented in this article examines to what extent

high school students studying this unit use reductive solutions when solving

114 / ARMONI, GAL-EZER AND TIROSH



questions related to computational models, and the nature of the reductions they

use. We also discuss ways to improve reductive thinking. The issue of tendency to

reductive thinking in the context of computational models has not been studied

before, for high school, college and university students. This study is a part of a

wider research we conducted on students’ learning process when studying the

CM unit. The research examined two additional issues: 1) The students’ percep-

tion of non-determinism (Armoni & Gal-Ezer, 2003); 2) The general achieve-

ments of high school students studying the unit (Armoni & Gal-Ezer, 2004).

The rest of this article is organized as follows: In the second section we give a

brief description of the CM unit and how reduction can be used to solve questions

dealing with computational models. The third section is the main one, describing

our study and its findings. Our conclusions and suggestions for further research

are given in the last section.

REDUCTION IN THE COMPUTATIONAL MODELS UNIT

The Computational Models (CM) unit is planned for 90 hours, and taught over

one school year. It is an elective unit and it is intended for students who have

a specific interest in computer science and choose to study computer science for

another year, beyond the basic courses. This unit covers both technical and

theoretical issues concerning computational models. It introduces finite automata

(deterministic and non-deterministic), pushdown automata and Turing machines.

The unit demonstrates and drills automata design, but it also discusses the

theoretical properties of each model: computational power (in relation to pre-

viously introduced models), computational limits and closure properties. The

topics in the CM unit are presented in a way that is suitable for high school

students (Armoni & Gal-Ezer, 2003, 2004).

Most of the topics introduced in the CM unit are not usually covered in high

school CS curricula; some of the technical issues that relate to constructing

automata are sometimes touched upon but without discussing any theoretical

aspects. For example, the high school computer science curriculum of ACM

(Association for Computing Machinery) includes very few references to some of

these, and then only as optional topics (Merritt et al., 1994). However, most

college and university CS curricula (Atchison et al., 1968; Denning et al., 1989;

Denning et al., 2002; Tucker et al., 1991) recognize these theoretical issues as

fundamental to computer science. Therefore, the Israeli CS curriculum committee

recommended exposing high school students to the topics included in the CM unit,

to enable them to become familiar with some of the theoretical aspects of computer

science, and to experience the kind of thinking that characterizes these aspects.

In the context of the CM unit, reduction can be used to solve design and proof

problems. In a design problem, an automaton accepting a given, usually complex,

language should be designed; while in a proof problem, a given language should

be proved to be regular or context free.

SOLVING PROBLEMS REDUCTIVELY / 115



When solving a design problem, the student can give a direct solution, in

which a direct automaton is designed for the given language. For complex

languages the design process may be complicated, and the student is likely to

make errors in the construction.

Reduction can be used in the following way: First, the given language can be

decomposed into simpler sublanguages, using operations such as union, inter-

section, concatenation, etc. Then the student should design an automaton for

accepting each of these sublanguages, and finally the student should use known

construction algorithms in order to combine the automata designed for the sub-

languages into an automaton accepting the original language. We call this solution

method constructive reduction. In constructive reduction, the designed automata

are usually simpler than an automaton for the original language, and since the

process of combining these automata into one automaton is algorithm-driven it

does not require independent thinking.

When solving a proof problem, each of the above mentioned methods can

be used: That is, a given language can be proved to be regular or context free

by designing an automaton accepting it (a finite or a pushdown automaton,

respectively), either directly, or by using constructive reduction. However, there

is a third option: The given language can be decomposed into simpler sub-

languages, as in constructive reduction, but then appropriate closure properties

can be used to deduce that the original language is regular, or context free,

without designing a specific automaton for it, but rather by proving its existence.

We call this solution method existential reduction. Existential reduction is more

abstract than constructive reduction, but it usually leads to shorter and less

tedious solutions, since it enables to omit the combination process.

Both kinds of reduction are demonstrated in the CM textbook, and their

advantages are discussed.

THE STUDY

This section consists of three subsections. The first describes the method and

population of the study. The second and the third describe our findings regarding

questions relating to regular languages and context free languages, respectively.

Method and Population

Developing the CM unit involved a three-year long experiment, during which

the unit was taught in selected schools under the close supervision of the develop-

ing team. The majority of the population in this study are students who studied

the CM unit in 1997-98, the third year of the experiment. The rest are students

who studied the unit in 2000-01.

The entire research population included about 540 students, studying in 24

classes, in 10 schools, and taught by 15 teachers. About 160 of them were 11th

graders, studying in 7 classes taught by 5 teachers, and 380 were 12th graders,

116 / ARMONI, GAL-EZER AND TIROSH



studying 17 classes taught by 11 teachers. About 340 students studied mathematics

on the highest level (5-point), about 170 studied mathematics on the 4-point level,

and about 20 studied mathematics on the 3-point level (the lowest level).

Teachers were asked to include a number of questions provided by the

developers on exams. Among these questions were one for each of the following

chapters: Chapter 2, which introduces deterministic finite automata (DFA),

Chapter 3, which discusses the properties of DFA, Chapter 4, which introduces

additional models of finite automata—non-complete deterministic finite automata

(NCDFA) and non-deterministic finite automata (NFA)—and discusses their

properties, and Chapter 7, which introduces Turing machines. Another question

related to Chapters 5 and 6, dealing with pushdown automata. The teachers

were asked to send the students’ full answers to these questions to the research

team. At the end of the year they were asked to send the developers the students’

answers on the final exam. Some of these questions were used to examine the

tendency of the students to use reductive solutions and the nature of the reduction

used in these solutions.

Reduction in Regular Languages

Eight questions were used to examine how the students use reduction for

solving questions relating to regular languages: Two are questions which the

teachers were asked to include in the exams given after the completion of the

learning process of Chapters 3 and 4, respectively. Therefore, in solving the first of

these two questions (Question 1), students could only use the DFA model, and

while solving the second question (Question 2) they could also use the NCDFA

and NFA models. We also used another question, given by one of the teachers

after the completion of the learning process of Chapter 4, and five questions

which were given in the final exams. Like in Question 2 above, in solving these

six questions, students could use any model of finite automata: DFA, NCDFA or

NFA. We shall first describe the students’ answers to Question 1 (these answers

were given after instruction that related only to the DFA model). Then we shall

present the students’ answers to Question 2 and 3 and to the other five questions

(answers that were given after instruction that related to different types of FA

models, including DFA, NCDFA and NFA).

The DFA Model

The below written question (Question 1) was included in the exam given after

the completion of the learning process of Chapter 3:

Question 1

Let L be the language over the alphabet {a, b, c} which contains all the words,

exactly, for which at least one of the following conditions holds:

SOLVING PROBLEMS REDUCTIVELY / 117



1. The number of a’s is equal to the number of b’s, and the sum of a’s and b’s

is bounded by 6.

2. The word includes the pattern abc and ends with the pattern bb. Is L regular?

Prove your claim.

This is a proof question, and can thus be solved either directly, or by using

constructive or existential reduction. It has many possible solutions. A similar

question was discussed in Armoni and Gal-Ezer (2005), as an example of a

complex question relating to finite automata. However, the question presented

there was a bit simpler, since the language presented there referred only to the

first condition, and the solution presented there was not limited to the deter-

ministic model, as is the case in this context. Here we will give only a short and

general description, and refer the reader to Armoni and Gal-Ezer (2005), for

detailed solutions. A direct automaton for this language is very large and com-

plicated (since it should be deterministic) and contains at least 61 states. The

students could not use regular expressions or the closure properties of regular

languages under homomorphism and under inverse homomorphism, since these

topics were not included in our high school computer science curriculum. Other

reductive solutions for this problem can range from a solution in which the original

language is decomposed into two sublanguages, one for each of the two conditions

given in the language definition, and combining them by one union operation, to

a solution in which the original language is decomposed into five very simple

sublanguages, combined by 150 union and concatenation operations. The finer

the decomposition, the simpler the technical complexity of the design process for

the automata accepting the sublanguages. In all possible decompositions, using

constructive reduction involves Cartesian-product construction algorithms and

thus leads to automata with many states and transitions. We see that for this

question neither a direct construction, nor a constructive reduction are reasonable

solution methods to be used in an exam, and therefore this question directs the

student to an existential reduction. Since almost all the students did indeed use

existential reduction, in our analysis of the students’ solutions to this question we

focus on the level of the decomposition in the reduction used by the students.

The number of students who took an exam which included this question, and

whose answer was sent to the research team is 394. These students studied in

21 different classes, in 9 schools, and were taught by 13 teachers; 266 of these

students were 12th graders, and 128 were 11th graders; 94.5% of these students

solved the question using reduction. The others gave direct (and incorrect) solu-

tions (3%), or incorrect “proofs” of the regularity of the language (2.5%) (or its

irregularity, in some cases).

If we analyze the solutions according to the level of decomposition, we get

the distribution presented in Figure 1.

Fifty-four and eight-tenths percent of the students decomposed L into two sub-

languages, corresponding to the two conditions in the definition of L, and using

118 / ARMONI, GAL-EZER AND TIROSH



one union operation. Twenty-one and six-tenths percent decomposed the language

corresponding to the second condition into two sublanguages, thus using three

sublanguages, one union operation and one concatenation operation. Fourteen

and a half percent of students decomposed the language corresponding to the first

condition into two sublanguages (using one intersection operation): one that

contains all the words in which the sum of a’s and b’s is bounded by 6, and another

which contains all the words in which the number of a’s is equal to the number of

b’s. Since the second one is an irregular language, these solutions were either

incorrect or inaccurate (explaining informally why in spite of the irregularity of

the second language, intersecting it with the first one yields a regular language).

Five students (1.3%) used more than three regular operations while decom-

posing the language. These decomposed the sublanguage corresponding to the

first condition into four sublanguages: One that contains all the words which

include no a’s and no b’s, one that contains all the words which include one a and

one b, one that contains all the words which include two a’s and two b’s, and one

that contains all the words which include three a’s and three b’s. Even though

the decomposition in this solution is finer than those of the previous solutions,

its technical complexity is essentially the same. The other solutions are either

non-reductive solutions or non-complete reductive solutions for which the level

of decomposition is not clear. None of the students solved the problem using

the decomposition described in Armoni and Gal-Ezer (2005), in which the lan-

guage corresponding to the first condition is decomposed into seven simple

sublanguages, using three intersections and three unions, although the technical

complexity of the solution induced by this decomposition is minor. The extreme

solution described in Armoni and Gal-Ezer (2005) is not relevant in our case

SOLVING PROBLEMS REDUCTIVELY / 119

Figure 1. Solutions in the DFA model, analyzed by

level of decomposition.



since it uses concatenation, an operation that was not taught in the third chapter

of the CM unit.

To conclude, more than half of the students used the most simple and obvious

decomposition, induced directly by the phrasing of the question, in which the

language was defined using two numbered sub-conditions. About 36% of the

students used a somewhat less simple decomposition, but one which is also almost

directly induced by the phrasing of the question, using an intersection operation

induced by the word “and” in sub-condition 1 or in sub-condition 2. Very few

students went beyond the obvious decompositions and chose one which is

not directly induced by the phrasing of the question, and none went far from

this. No significant differences are found if the data is analyzed by mathematics

level or grade.

Driven by our wish to develop reductive thinking, thinking which by nature

should seek solutions in non-obvious places, we would like to see more students

choosing decompositions which are not as obvious and directly induced by the

phrasing of the question. The bright side of the coin is that a significant number

of students chose a decomposition which was not the simplest possible.

If the data is analyzed by teachers, we can see that for some teachers, the

distribution is significantly different. For example, one of the teachers emphasized

reductive solutions as part of the teaching process, much more than other teachers.

The distribution for this teacher is given in Figure 2, and it demonstrates better

results, in the sense of reductive thinking, compared to the distribution of the

entire population (Figure 1). Fewer students chose the obvious decomposition

using one regular operation, and many more students chose decompositions

using two and three regular operations. No students used more than three regular

operations, or other solutions.

120 / ARMONI, GAL-EZER AND TIROSH

Figure 2. Solutions in the DFA model, Teacher 1.



The FA Model

Chapter 4 of the CM textbook introduces the NCDFA and the NFA models.

After learning that these three models are equivalent, the student can use any of

them to prove that a given language is regular, or to design an automaton for a

given language.

In the context of reductive solutions, introducing the new models has a number

of effects: On one hand, designing automata using the new models usually

results in simpler automata, thus decreasing the advantage of reductive solutions.

On the other hand, together with the new models, the student studied new

regular operations (reverse and concatenation) with quite simple construction

algorithms, and a simpler construction algorithm for the union operation. This

enables more possibilities for reductive solutions, and decreases the technical

complexity of reductive solutions which use constructive reduction with the

new algorithms.

Seven questions were used to examine the tendency of students to use reduc-

tion when they are not limited to the deterministic model. Some were included

in exams given immediately after the completion of the learning process of

Chapter 4, and some were included in the final exams. We will focus here on

two of these questions and describe our findings regarding the other ques-

tions briefly.

The teachers were asked to include the following question (Question 2) in

the exam they gave on Chapter 4:

Question 2

Design an automaton that accepts the language over the alphabet {a, b, c}, that

contains exactly the words for which at least one of the following conditions hold:

1. The word ends with the string bc.

2. The word consists of two parts: The first part contains the string ba, and

the second part contains the string ab.

This is a design question, and can thus be solved using direct construction or

by using constructive reduction. The number of students who took an exam

which included this question and whose answer was sent to the research

team is 339. These students studied in 17 classes, in 9 schools, taught by 11

teachers. Two hundred forty-four of these students were 12th graders, and 95

were 11th graders.

In Armoni and Gal-Ezer (2003), we analyzed the students’ solutions to this

question, but focused on the level of non-determinism. If we perform the analysis

according to the reductive nature of the solutions we get the following results,

presented in Figure 3.

Twenty-five and four-tenths percent of the students gave a direct solution; 41%

used the obvious decomposition of two sublanguages, induced directly by the

SOLVING PROBLEMS REDUCTIVELY / 121



phrasing of the question, in which the language was defined using two numbered

sub-conditions; 33.3% decomposed the original language into three sublanguages,

a decomposition induced by the word “and” in the second sub-condition. The fact

that many students preferred a direct solution over a reductive one, even though

the learning process of Chapter 4 reemphasized the advantages of reductive

solutions, suggests that the tendency of students to use reduction depends on the

complexity of the given language, which in this case is much simpler than L of

the previous subsection. Again, the bright side of the coin is that a third of the

students used the optimal decomposition for this question (which is much easier to

find than the optimal decomposition for the previous question). For this question

also, we seem to find evidence of teacher and teaching-process effect. Figure 4

presents the distribution for the students of the teacher mentioned above. Again,

the results for these students seem much better than those of the whole population,

and the fact that this teacher had strongly emphasized reductive solutions in

the teaching process probably had a lot to do with it.

In the beginning of 2003, we conducted interviews with students regarding

Question 2. The interviews strengthen the two assumptions mentioned above: that

the tendency to use reduction depends on the complexity of the given language,

and that the phrasing of the question affects the level of decomposition.

We interviewed four students who had finished studying Chapter 4 of the CM

unit a few weeks before, and had been tested on the material a week before.

Students on different levels of achievement were chosen by the teacher, who did

not know in advance what question the students would be asked. The four students

were asked to solve the question above. After completing their first version of the

solution, they were asked a few questions regarding decisions they made when

solving the problem.

122 / ARMONI, GAL-EZER AND TIROSH

Figure 3. Solutions in the FA model.



One of the students gave a reductive solution using two sublanguages, one gave

a reductive solution using three sublanguages, one gave a direct solution, and

another gave an allegedly direct solution, but which was induced by an implicit

decomposition into two sublanguages (expressed in the design process of the

automaton). All the students chose the solution method immediately after they

finished reading the question, or even before. They devoted no time to considering

the alternatives and weighing their advantages and disadvantages.

The second student was the only one who claimed to be driven by the desire to

decompose the language as much as possible, though we cannot know what would

be the result of this attitude when coping with a language for which the finer

decompositions are not as explicit.

The first student said that he decomposed the language since this is the way

they learned to solve such questions, in which a language is defined using a

few conditions—defining a sublanguage for each explicit condition. Indeed, the

decomposition used by this student corresponds directly to the definition of the

language, which used two numbered sub-conditions. The other two students said

that if the language had been more complicated they might have considered

decomposition. These two students also referred to the phrasing of a given

question as a factor which affects their choice of strategy:

• The phrase “design an automaton” (as opposed to a possible alternative

phrasing such as “prove regularity of”) motivates a direct solution, even

though a constructive reduction can also be used to produce correct solutions

corresponding such phrasing.

• If the definition of the language uses many explicit sub-conditions (three

or more), it motivates a reductive solution.

SOLVING PROBLEMS REDUCTIVELY / 123

Figure 4. Solutions in the FA model, Teacher 1.



The possible effect of the complexity of the given language on the tendency to

use reduction is demonstrated again for the following question (Question 3),

which was written by one of the teachers who participated in this research, and

was included in an exam given after the completion of the learning process of

Chapter 4.

Question 3

Let L1 and L2 be the following languages over the alphabet {a, b}: L1 is

the language of all the words which contain only an even number of b’s.

L2 is {ba n | n � 0}. What are L1
2, L1�L2 ? Are they regular? Prove your claim.

This is an interesting question since, unlike in the previous problems, the

decomposition and the operation it uses are already given, thus making a reductive

solution much easier. One would expect that even though L1
2 and L1�L2 are not very

complicated, the students would use the decomposition handed to them, at least for

L1�L2 (since L1
2 = L1). And yet, all nine students who solved this question ignored

this information and none of them used a reductive solution. All of them designed

direct automata for L1
2 and L1�L2. Again, this suggests that the complexity of the

given languages is a major factor in choosing the solution method. When the

students feel they can cope with a direct solution, they prefer it to a reductive one.

The final exams also included questions relating to finite automata. We will

give only a general description of our findings regarding the questions from the

final exams: Four questions were proof problems, in which a complex language,

usually defined by a number of conditions, was given, and the student was asked to

determine if it is a regular language and to prove the claim. About 20% of 79

solutions were direct, (even though the given languages were quite complex), and

almost all the reductive solutions used existential reductions. The fifth question

was a proof problem, dealing with a simply-defined language, with no explicit

sub-conditions. Almost 70% of the 136 students who solved this question used

a direct solution, even though the technical complexity of a reductive solution

for this question is significantly smaller. Again, it seems that the major factor

affecting the tendency to use reduction is the complexity of the language defini-

tion: If the language’s definition is long, and uses a few explicit sub-conditions,

students tend more to solve it reductively (and usually define a sublanguage

for each explicit sub-condition), while if the language’s definition is relatively

short and simple, students prefer direct solutions, although reductive solutions

can significantly decrease the technical complexity even for simply-defined

languages.

Reduction in Context Free Languages

Proof and design questions relating to context free languages usually also have

a few possible solutions, induced by the kind of reduction used and the level of

decomposition. Designing PDAs is usually more complicated than designing FAs,

124 / ARMONI, GAL-EZER AND TIROSH



since the transition function ranges over triplets and not couples, and therefore

decreasing the technical complexity using reduction may be significant.

After completing the teaching process of Chapters 5 and 6, dealing with PDAs

and context free languages, the teachers were asked to include the following

question (Question 4), consisting of two sub-problems, on the exam they gave

on these chapters:

Question 4

1. Design a PDA accepting the language {anbmcman�n,m � 0} over the alpha-

bet {a, b, c}.

2. Is the language {anbmcmak�n,m � 0,k > n} over the alphabet {a, b, c} context

free? Prove your claim.

The first sub-problem is a design problem. The language’s definition is relatively

short and simple, but in a direct solution, the corresponding PDA is non-trivial

and must be non-deterministic. There are also two possible reductive solutions,

using one and two union operations, respectively. The decompositions used in

these solutions are not directly induced by the phrasing of the question. They

define sublanguages which handle special cases, such as m = 0 or n = 0, and a

sublanguage for the non-special cases. The technical complexity of these solu-

tions is much less than that of the direct one. However, all 309 students who solved

this question and whose answers were sent to the research team, gave direct

solutions to this sub-problem.

The second sub-problem is a proof problem, and again, the language is defined

in a relatively short and simple manner. This sub-problem has a few possible

solutions:

• A direct solution. The corresponding PDA is not based on the same algo-

rithmic idea as the one corresponding to the first sub-problem. Thus, a student

using the direct strategy starts almost from scratch, and does not use the

automaton designed for the first sub-problem.

• A reductive solution which uses existential reduction. The original language

is decomposed into two sublanguages, using one concatenation. The first

sublanguage is the one from sub-problem 1, and the second is a simple regular

language. The additional technical effort involved in this solution to sub-

problem 2 is almost nil.

• A reductive solution which uses algorithm-driven constructive reduction.

The decomposition is the same as that described in the previous solution.

However, since this solution uses a construction algorithm which accepts as

input two PDAs, a PDA must be designed for the second, regular, sublanguage

(while in the previous solution it was enough to design an FA, thus proving

that the sublanguage is regular and to deduce that it is context free due to

the fact that regular languages are a subset of context free languages). This

SOLVING PROBLEMS REDUCTIVELY / 125



solution was not really an option for the students studying the CM unit,

since while the closure property of context free languages for concatena-

tion is mentioned in the CM textbook, there is no complete proof, only an

informal explanation describing the corresponding construction algorithm

without fully presenting it.

• There is another reductive solution, which uses a free constructive reduction,

rather than an algorithm-driven constructive reduction. The students can use

the automaton designed for sub-problem 1, and transform it into an automaton

for sub-problem 2, by making a few local changes. Since for context free

languages only the closure property for union is fully proved in the CM

textbook, while the other two properties discussed are either explained

informally (for concatenation) or only mentioned with no explanation (for

reverse, since the proof uses context free grammars which are not part of the

CM syllabus), a free constructive reduction is sometimes the only construc-

tive reduction possible.

The number of students who took an exam which included this question,

and whose answers were sent to the research team is 309. These students studied

in 17 classes, in 7 schools, taught by 9 teachers; 205 of these students were

12th graders, and 104 were 11th graders. Almost a quarter of them gave a direct

solution. Almost half used constructive reduction, and only a third used existen-

tial reduction, for almost a quarter of the students with incorrect decompo-

sition (this comes to more than 100% since some students gave more than

one solution).

Similar, and even more obvious, are the findings for the questions relating to

context-free languages in the final exams. These included 6 proof problems, all

had reductive solutions with technical complexity significantly lower than that of

the direct solutions, and for some there were a few relevant decompositions, for

which the principle mentioned above usually held: The finer the decomposition,

the smaller the technical complexity. About 40% of the students gave direct

solutions; many of the students that used reduction, used constructive reductions

even when existential reductions were sufficient; and most of the students did

not use fine decompositions for questions which had more than one possible

decomposition.

SUMMARY, CONCLUSIONS, AND

FURTHER RESEARCH

Using reduction when solving design and proof problems relating to com-

putational models simplifies the technical complexity of the solutions. Reductions

which use finer decompositions induce even more technically simple solutions,

especially if existential reduction is used instead of constructive reduction for

solving proof problems.

126 / ARMONI, GAL-EZER AND TIROSH



Reductive solutions are demonstrated in the CM textbook, and their advan-

tages are discussed. Indeed, we found that a substantial number of students used

reductive solutions. However, many other students tended to give direct solutions,

especially if the phrasing of the question led them to think that the given language

is not complicated, and can be reasonably coped with using a direct strategy.

When using reduction, many students tended to use obvious decompositions,

usually induced directly by the phrasing of the question, and not significantly

decreasing the technical complexity. Our findings also showed that many students

used constructive reduction even if existential reduction would have been suffi-

cient, especially for questions relating to context free languages.

These tendencies may result from the relatively abstract nature of reductive

solutions, as compared to direct solutions. That is, in a way, reductive thinking

patterns require abandoning the regular, linear path that usually leads to a solution

and viewing the problem in a different way, through a prism. Existential reduction

is also more abstract in nature, as compared to constructive reduction, since it

involves proving the existence of a solution without actually pointing at it. The

effect of the abstract nature of reduction on the tendency to use it should be

further studied.

For some of the questions, we also noticed a difference in the data, when

analyzed by classes or by teachers. In some of the classes, students used reduction

more, while other classes tended more to direct solutions. It seems that in classes

where the teacher demonstrated and emphasized reduction, the students used

reduction more. Our study did not focus on the teachers, and therefore this

impression should be investigated in future studies. If this impression is verified, it

suggests that emphasizing reduction during the teaching process may encourage

students to use it more. Reduction can be emphasized in class by presenting

questions together with a variety of possible solutions—direct solutions and

reductive solutions with various levels of decomposition—thus demonstrating the

advantages of reduction. We suggested a number of such questions in Armoni

and Gal-Ezer (2005). Clearly, the effect of such teaching methods on the ten-

dency of students to use reduction should be further studied.

Another interesting issue is that of transfer in the context of reduction, both

within computer science and to other scientific disciplines. Within the discipline,

it is interesting to examine whether students who were exposed to reductions in

one field, such as computational models, tend to use reduction more often than

students who were not exposed to reductive thinking, when solving questions

in other areas of computer science. For example, do students who used reduction

when studying computational models cope better with computational or poly-

nomial reductions, when they later take a course in computability and com-

plexity theory? A positive answer to this question would lead to the conclusion

that in order to develop reductive thinking it is important to introduce reduction

everywhere it fits in the CS curriculum (high school or academic curriculum), such

as in a course about computational models.

SOLVING PROBLEMS REDUCTIVELY / 127



In a broader, inter-disciplinary context, we might ask whether a student who

was exposed to reductions in one scientific field, such as computational models

in computer science, would tend to use reductive thinking patterns when coping

with various issues in other scientific disciplines.

Studies in mathematics and in science education have shown that transfer—

both inter-disciplinary and intra-disciplinary—is problematic (e.g., Glynn, 1991;

Noss & Hoyles, 1996; Nunes, Schliemann & Carraher, 1993; Stavy & Tirosh,

1993). Do these findings hold for reduction as well? If transfer is prob-

lematic in the context of reduction, then including references to reduction is

essential in every context that lends itself to its use. However, if students

who acquired the type of thinking that characterizes the use of reduction in one

domain tend to use it in other domains, then developing an inter-disciplinary

unit which deals with reduction as a general scientific concept providing

examples from various domains seems appropriate. All in all, it seems that

encouraging students to apply reduction in solving and proving problems in

various scientific domains is an important, non-trivial task. Thus, the impact

of including references to reduction in various components of the scientific

curriculum of various disciplines that lend themselves to using reduction, and

the effect of including an interdisciplinary unit dealing with reduction in the

high school curriculum on the development of reductive activities, need to be

further explored.

Our findings show that, for many students, reductive thinking does not come

naturally. However, it seems that students can be directed toward it. There-

fore, when teaching mathematics and other scientific disciplines, teachers also

should try to propose reductive solutions and discuss their advantages. When the

syllabus includes solutions which are reductive (such as the Gauss method for

solving linear equations), their reductive nature should be emphasized. Again,

this attitude is even more important if transfer is found not to be achievable for

reduction. In this case, a teacher cannot rely on the exposure to reduction in one

field to promote reductive thinking in another, and must relate to reduction in

every relevant field.

REFERENCES

Armoni, M., Kaufman, Y., & Bargury, I. (1998). Computational models, a textbook and

a teacher’s guide. Tel-Aviv: The Open University of Israel (in Hebrew).

Armoni, M., & Gal-Ezer, J. (2003). Non-determinism in CS high-school curricula.

Proceedings of the 33rd ASEE/IEEE Frontiers in Education Conference (FIE03),

F2C-18-23.

Armoni, M., & Gal-Ezer, J. (2004). On the achievements of high school students study-

ing computational models. Proceedings of the 9th Annual SIGCSE conference on

Innovation and Technology in Computer Science Education (ITiCSE04), 12-16.

Armoni, M., & Gal-Ezer, J. (2005). Teaching reductive thinking. Mathematics and

Computer Education, in press.

128 / ARMONI, GAL-EZER AND TIROSH



Atchison, W. F., Schweppe, E. J., Viavant, W., Young, D. M. Jr., Conte, S. D., Hamblen,

J. W., Hull, T. E., Keenan, T. A., Kehl, W. B., McCluskey, E. J., Navarro, S. O., &

Rheinboldt, W. C. (1968). Curriculum ’68, recommendations for academic programs

in computer science, Communication of the ACM, 11, 151-197.

Davis, M. D., Sigal, R., & Weyuker, E. J. (1994). Computability, complexity and languages,

fundamentals of theoretical computer science. New York: Academic Press.

Denning, P. J. (Chair). (2002). IEEE Computer Society/ACM Task Force, Year 2001 model

curricula for computing (CC2001). Available on line at:

http://www.computer.org/education/cc2001/report/

Denning, P. J., Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., & Young,

P. R. (1989) Computing as a Discipline. Communication of the ACM, 32, 9-23.

Gal-Ezer, J., Beeri, C., Harel, D., & Yehudai, A. (1995). A high school program in

computer science. Computer, 28, 73-80.

Gal-Ezer, J., & Harel, D. (1999). Curriculum and course syllabi for a high-school program

in computer science. Computer Science Education, 9, 114-147.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to

NP-completeness. San Francisco: W. H. Freeman & Co.

Glynn, S. M. (1991). Explaining science concepts: A teaching-with-analogies model. In

S. M. Glynn, R. H. Yeanny, & B. K. Britton (Eds.), The psychology of learning science

(pp. 219-240). Hillsdale, NJ: Lawrence Erlbaum.

Merritt, S. M., Bruen, C. J., East, J. P., Grantham, D., Rice, C., Proulx, V. K., Segal, G.,

& Wolf, C. E. (1994). ACM model high school computer science curriculum.

The report of the task force of the pre-college committee of the Education Board of

the ACM (pp. 1-25).

Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings. Dordrecht, The

Netherlands: Kluwer.

Nunes, T., Schliemann, A. D., & Carraher, D. W. (1993). Street mathematics and school

mathematics. Cambridge, UK: Cambridge University Press.

Stavy, R., & Tirosh, D. (1993). When analogy is perceived as such. Journal of Research

in Science Teaching, 30, 1229-1239.

Tucker, A. B. (Ed.). (1991). Computing curricula 1991, A summary of the ACM/IEEE

Joint Curriculum Task Force Report. Communication of the ACM, 34, 69-84.

Direct reprint requests to:

Michal Armoni

Computer Science Department

The Open University of Israel

108 Ravutski St., POB 808

Raanana 43107, Israel

e-mail: michal@openu.ac.il

SOLVING PROBLEMS REDUCTIVELY / 129


