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In this treatise I discuss the subject of congruence properties of coefficients of
modular forms from several points of view.
This subject has first emerged in the work of Ramanujan, who discovered the con-
gruence (proved in chapter 2)

o11(n) = 7(n) (mod 691)

which holds for all positive integers n, where o11(n) =3 d'! and 7(n) is defined by
dln

Y ornygt=q]] (0 - g™

n=1

It turns out that both oy,(n) and 7(n) are Fourier coefficients of complex functions
called modular forms, the 1;(n) being coefficients of a form called an Eisenstein
series and 7(n) being coeflicients of a form called a cusp form.

In chapter 1 an introduction to the subject of modular forms is presented.

In chapter 2, congruences between cusp forms and Eisenstein series are discussed,
following the presentation of a recent paper ([DG]).

In chapter 3, I discuss congruence properties of cusp forms, using the theory of i-
adic representations. This presentation follows an article of H.P.F Swinnerton-Dyer
(ISwD)).

It turns out that for certain cusp forms, one can attach for every prime number { a
2-dimensional l-adic representation of some galois group (that is, a homomorphism
from this group to GL;(Z,)), such that the p-th fourier coefficient of f is equal to the
trace of the value of this representation on an element determined by p (the Frobenius
automorphism attached to p). By studying the image of this representation one can
obtain information on the l-adic properties of the coefficients.

In chapter 4, I use the ideas in [SwD] to discuss congruence properties of pairs
of cusp forms. Here one is lead to the study of the direct product of the two attached
representations, most of the time using group-theoretic considerations. It is in this
chapter that most of my own work on the subject appears.

I am indebted to Prof. Ehud De-Shalit for having introduced to me many areas
of number theory over the last 11 years, and for his intensive and dedicated support
during this project.
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Chapter 1

Modular forms

In this chapter we give the fundamental definitions and theorems concerning modular
forms. Detailed proofs can be found in [Mi].

1.1 Action of GLJ(R) on points and functions

1.1.1 The projective line

For a field F we define the projective line P'(F) as the set of lines in /' passing
through the origin, namely

PY(F) = (F*\{(0,0)})/ ~

where ~ is the equivalence relation

(x1, 22) ~ A(z1,22) V(T1,20) # (0,0), A#£0
We identify the points of P!(#) with F U {oo} by

r € F— |[(z,1)] € P/(F)
00 «— [(1,0)]
1.1.2  Action of GLy(F) on points
We let GLy(F) act on P1(F) by
(22) [(=.9)] = [(az + by, ez + dy)]
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One sees immediately that this action is well defined, and that it is indeed an action.
Together with the identification of P1(#) and F U {co} we get an action of GLy(F)
on F U {co}: )
ab == az +
(¢a)z= cz+d
The last equality should be interpreted as follows: if cz + d = 0, the result is co. If
z = oo, the result is ¢, unless ¢ = 0 in which case the result is again oo.

1.1.3 Action of GLI(R) on the upper half-plane

Taking F* = C we get an action of GLy(C} on C U {oc}, and in particular an action
of GLy(R) on C'U {co}. Since (taking F = R) GLy(R) also acts on R U oo, it acts
separately on C\ R.

Let z€ C\R, v=(25%) € GLy(R), then we have vz € C\ R, and

az +b _im(az—i-b)(cE%-d,) _lad—be)imz  dety

im(vyz) =im = = = 7
(72) cz+d lcz + d)? ez + d)? ez + d|?

m z

In particular if det v > 0, then im z and 4m vz have the same sign.
Define H = {2 € C:4m z > 0} (the upper half-planc). Then we have an action of
GL3(R) on H and on HURU {cc}.

1.1.4 k- action of GLj(R) on functions

Let 7 be the set of functions H — C U {co}, and k an even integer. We define an
action of GLI(R) on F as follows:

[STE

flime(2) = f(v2)¥'(2)

az az ’g az & 5
for v = (¢ §) we have fli),(2) = F(255)(258)" = f(egh) e
By abuse of notation we shall often write f(z)|[y, for F i (2)-
This is an action since if @, 3 € GL3 (R),

FE el = f(a2)a! (2)%|18)e = Flafz)e/(82)85'(2)
We call it the k—action of GLT (R) on F.

k
Z

= f(aBz)((aB) ()% = £(2)|[eBl

Definition 1.1.1. let T € GL3 (R} be a subgroup. An element of F which is stable
under the k— action of T is called an automorphic form of weight k for T'.
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1.2 SLy(Z) and its congruence subgroups

Among the subgroups of SLy(Z), our interest will be in the group
SLy(Z)={(%5):a,b,c,d € Z, ad —bc =1}

and some of its subgroups. We will note I'(1) = SLy(Z), and call it the full modular
group. It is a group since if ad —be =1, (¢4)7" = (4, ) € SLy(Z).

Finite-index subgroups of I'(1) will be called modular groups.

Let NV be a positive integer, and SL,(Z/NZ) the finite group of matrices of deter-
minant 1 over Z/NZ. We have the homomorphism ¢ : SLy(Z) — SLy(Z/NZ) of
reduction modulo V.

We denote by I'(/V) the kernel of this homomorphism, namely

DN)={(¢5)€ SLy(Z):a=1,b=0, c=0, d =1 (modN)}
We call T(N) the principal congruence modular group mod N. Tt is indeed a modular
group since by the first isomorphism theorem, |I'(1)/I(N)| = |Im ¢| < co.

Definition 1.2.1. A subgroup of I'(1) is called a congruence modular group if it
contains I'(N) for some positive integer N. The minimal such N is called the level
of I.

Of course, if T'(1) 2 G 2 I'(N) then G = ¢~'(G) for some subgroup G C
SLy(Z/NZ).
The following are congruence subgroups:
To(N) = {(52)} = {(24) € SL(Z) : ¢ = 0 (mod N)}

LN) = {6 D)} ={(2]) €To(N) : a = d = 1 (mod N)}

1.2.1  PSLs(Z)

The following claims are easy to verify

1. The center of SLy(Z) is £1

2. +1 Are the only matrices in SL,(Z) which act on H as the identity.

We define PSLy(Z) = SLy(Z)/{£1}.

This group acts faithfully on . We can similarly define its k-action on functions. We
have a projection 7 : SLy(Z) — PSLy(Z). We shall also call subgroups of PSL,(Z)
of the form 7', I' C SL,(Z) congruence modular groups whenever I' is a congruence
modular group.



1.3 Modular forms

Let ' be a congruence modular group of level V.

Definition 1.3.1. Let f be a meromorphic function on H. We call f a meromor-
phic modular form of weight k for I if:

1. f is an automorphic function of weight k for I’

2. for all v € SLy(Z), one can expand

f|[’ﬂk = Z angn"

n=—00

where gn(2) = 7 and al = 0 for all sufficiently small n.

If f 15 also holomorphic and a] = 0 forn < 0 (for every v) then we call f a modular
form.
If additionally Vv, a) =0 we call f a cusp form.

We note
M (I') = The vector space over C of modular forms of weight & for T’
Si{I') = The vector space over C of cusp forms of weight &£ for I’
(The letter S in S(I") stands for the German term Spitzenform for cusp-form).
Note that since f is an automorphic function for I', one has to verify the conditions
for o} only for one representative of each coset in SLyo(Z)/T.
The restrictions on the coefficients {a]} might seem unnatural. They will become
more evident in the next section.
The following claim is very easy:

Claim 1.3.2. Let fy € My (D), fo € M, (T'). Then f1fs € My, 1,(U). If additionally
f1 S Skl (F) then flfz S Sk1+k2(r)

It turns out {[Mi], lemma 2.1.1.) that the infinite sum > M () is a direct sum,

even k

and hence it has a structure of a graded algebra over C.



1.4 The Riemann surface of a congruence subgroup

Let I' € PSLy(Z) be a congruence modular group. We will define a compact Riemann
surface Xr which will be intimately connected with modular forms for I': modular
forms for I" will turn out to be merely g-differentials on Xr.

We will first give a structure of Riemann surface to '\, and then add a finite num-
ber of points called cusps to make it compact.

1.4.1 T\H as a Riemann surface

We give H the Euclidian topology, and I'\'H the quotient topology. By [Mi] (theorem
1.5.2 and lemma 1.7.2), this is still a HausdorfT space.

Lemma 1.4.1. For any point z € H there exists a neighborhood U of z such that for
every vy €[,
FUNU#D & vz ==z

The lemma is obvious from the proof of [Mi], lemma 1.7.2.

Definition 1.4.2. Let z € H. We say that z is an elliptic point with respect to [ if
there exists 0 € I' such that 0z = z. Otherwise, we call z an ordinary point.

Denote by 7 the projection from H to I'\'H.
For a = m(z) € I'\'H, we wish to give a neighborhood and a local parameter (V,1,).
Assume first that 2p is an ordinary point {note that this does not depend on the
representative z; of a), and let U be a neighborhood as in lemma 1.4.1. Put V, = =(U),
then we have a bijection ¢, : V, — U given by

Vze U, t(n(z)) =2

If z is an elliptic point, we can not give the same parameter since it will not be
well-defined: It might happen that z and vz are in U for some v € I',,. (We denote
by I',, the stabilizer of z; in I').

For the definition we need the following lemma ([Mi], Theorem 1.5.4, art. 1)

Lemma 1.4.3. If zy 15 an elliptic point then I, is a finite cyclic group

Definition 1.4.4. For zg € H, e, = |I',,|. We call this number the order of 2y with
respect to T'.



Now there exists some p € SLy(R) such that pH = K = {z € C: |z| < 1}, and
pzg = 0.
(T';,)? is a finite cyelic group which acts faithfully on K and fixes 0, hence by
Schwarz’es theorem it is the group of rotations in angels {Qf—k  0<k<e,, — 1)
This gives an homeomorphism ’

(T AK =K

by z > xs.
We take U/ as before. Define K, = {z € C: |z] < r}. Pick r small enough such that
p 1K, C U and define U, = p'K,. Then as before we have homeomorphisms

M\m(U;) 2T, \Ue = (T)"\K, & K,
and we can define V, = (), and

ta(m(2)) = (pz)*™0 Yz € U,

1.4.2 Addition of cusps

I'\H is not compact. We compactify it by adding a finite number of points called
cusps. First let us define an extension of the upper half-plane

H = HUQU {0}

(note that all the added points are SLy(Z)-equivalent).

We define a topology on H* as follows: For z € H we take the fundamental neigh-
borhood system as in the topology of 7. For z € Q U {00} we take o € SL,(7Z)
such that oz = oo and take as the fundamental system of neighborhoods the sets
{s€H:im(os) > 1} U {z} for all real [ > 0.

We now consider the space '\H*. Since I' is a congruence modular group, it has a
finite index in SL,(Z) and hence I'\(Q U {oco}} is finite. Hence our new space I'\'H*
has only a finite number of points more than I'\'H.

Theorem 1.4.5. T\'H* is a compact hausdorff space

This space is hausdorff by Mi|,lemma 1.7.7, and it is compact since for I' = SLy(Z)
we know this by [Mi],theorem 4.1.2, and by [Mi], corollary 1.9.2 the property "'\ H*
is compact” carries over from I' to subgroups of I of finite index.
We now extend the Riemann surface structure of P\H to I'\H*.
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Lemma 1.4.6. Let T C SLy(Z) be a congruence modular group, z € QU {cc} and
0 € SLy(Z) such that oz = oc. Then there exists 0 < h € Z such that

oo {1} = {£ (37 m € Z)
moreover, if | > h and W = {s € H :im(os) > [} U {z}, then
yz=z e yWNW £0

(The first part of the lemma can be found in [Mi], theorem 1.5.4, art. 2 and the
second part follows from [Mil, corollary 1.7.5).

Let a = m(zp) be a cusp. we take 0 € SLy(Z) such that gzy = o0
We take A, [ and W as in the lemma. Then

D\m(W) Z T \W = 0T 07 \oW = {(§ ") Im € ZN\({z : im(2) > I} U {oo})
The last set is homeomorphic to the disc K, where r = e=5—, by %(z) = ™% (we

implicitly define (oo} = 0). We therefore define V, = z(W) and

2wifoz)

ta(w(z)) = ¥loz) =7

Definition 1.4.7. We denote the Riemann surface T\'H by Xy and call it the Rie-
mann surface of .

1.4.3 The connection between modular forms and differen-
tials

As promised, we give an interpretation of modular forms for I' as holomorphic differ-
entials on Xr. Let f be an automorphic modular form of weight k = 2m (m € Z).
We shall attach to it an m-differential wy on Xr.

We have defined in the previous section an atlas of local parameters {(U,,t,)}eex;
on Xr. Now we wish to add functions {¢,} such that

di,
dty,

da(T)(—=)"(2) = do(x) Yz €U,

Let a = w(z) € Xr.
Recall that the neighborhood V, of a is always of the form 7(U) where U is a neigh-
borhood of zy in H* satisfying

~NUNU #£B o ye=T,,
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note that we also have
yel,,=yU=U

(since if zp is ordinary, this is trivial, if it is elliptic then after a suitable conjugation T',,

acts as a group of rotations on some disc K, and if @ is a cusp then after conjugation

I';, acts as a group of integer translations (z — z+mn) on {z:im z > {} U {oo}).
We first assume that 2y € H, that is, a is not a cusp. we define (following [Mi]) a

function g(z) on U by
d(t, o m(2))

o) = fla) (T o
Then (since 7 oy = 7 and f is [-automorphic)
d{tqomoy(z)) d omlz
o2) = Flr) gy = 7 (&) U e Ty = o)
dz

Therefore there exists a function ¢, on V, satisfying ¢, o #(z) = g(z). By definition
¢, 1s meromorphic, since ¢ is.

Assume now that a is a cusp. We first define g(z) on U\ {z} (this set is in H) by the
same equation g{z) = f (z)(%)‘m we get again that ¢ is y-invariant and hence

defines a meromorphic function ¢, on V, \ {a}.

Claim 1.4.8. ¢, ts meromorphic at a.

2ri(oz)

Proof. Recall that £, o 7(z) = e™ %  where 0 € SLy(Z), o2y = 00, and
oo™t A1} ={£(§1")[m € Z}

hence d(t,0n(2))  2mi d(02)
com(z))  2m 0z
— = o)

put ¢ = {2mwi) ™, then

d(oz)
dz

o 0 7(z) = cf (2)( ) Mtaom(2))" = e(flp-n o)t o w(2)) 7"

It remains to prove that (f|e-1},)(¢2) is a holomorphic function of t, o 7(z) at z
Since f 1s a meromorphic modular form, we have a development

o0
2wigz

(Flo-1)(02) = 3 ane™

n=T

11



where IV is the level of I We have I'(V) € T, and since I'(V) < SLy(Z), I'(N) C
olo~!. In particular we have (}¥) € ol'o™!. On the other hand, (} ¥)oo = oo,

hence
(§V)e(oTo™ ) =0T ,07" C{£(} ") |m € Z}

We deduce that A | N. On the other hand we have o' (}4)}o € T' (for conve-
nience, we ignore the + sign by looking at (3 #) as an element of PSL,(Z)). Hence

fl[,,—l(% ’f)a]fc =f= f|[0-1]|((1) ?) = f|[g—1] If we put p= f|[a—1] we see that

plz) = pl1ny=olz +h)

Since
oD
2mwinz
= E a'ne N
n=T
we get
oo
nin{=th) 2minh 2winz
EaneN—Ean N _ganeNeN
n=T n=T
and hence, a,, must vanish Whenever N t nh. The result follows. LJ

Hence ¢, is a meromorphic function U.

We have thus defined an m-differential w; (the condition qba(a:)(%:)m(:r) = ¢p(x) can
be checked easily). It turns out (see [Mi|, p.49) that (f + wy) is an isomorphism
of vector spaces between meromorphic modular forms of weight k¥ = 2m for I' and
meromorphic m-differentials on Xr. Furthermore, it satisfies (for f, g meromorphic
modular forms of weights &y, k2) wyy, = wyw,.

By the above isomorphism we get that there always exist meromorphic modular forms

of any even weight. |

1.4.4 Calculation of dimensions

We now use Xp, the correspondence f — w; and the Riemann-Roch theorem to
calculate the dimensions of M (") and Sy (7).

Definition 1.4.9. Let f be a meromorphic modular form of weight k = 2m for T,
a=7(z) € Xr. We define v(f) as follows:
If a is not a cusp, we define

va(f) = —Osz w(f)

Cl
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If a is a cusp, we take o, h,t, as in the definition of wy, develop

(fl[a‘lh)(az) = Z aneh'f‘mz = Z an(ts 0 m(2))"
n="T n=T

and define v,(f) =T.
We define the divisor of f as

div(f) = Y va(f)a

aE X

Note that the sum in the definition of div(f) contains only a finite number of
summands. We regard div(f) as an element of the free Q-module generated by the
points of Xr, i.e, Div(Xr) @ Q.

The relation between v.(f) and v,(wy) is summerized in the following theorem:

Theorem 1.4.10. (/Mi] theorem 2.8.3) we have

div(f) = div(wy) + g Z (1-— ei)a

. k 1
dwwwn%mw—n+§2;u—;)
where g is the genus of Xr, and we define i = 0 when a is a cusp.
For d =} coa € Div(Xp) ® Q we define

(d] =) [cala

(7]

Where [z] denotes the integral part of a real number z.

Lemma 1.4.11. Let fy be a meromorphic modular form of weight k = 2m for T (we
have seen that there always exists such a form ). then we have isomorphisms of vector
spaces

1. Mi(T) = L([div(£,)])
2&m%mwww—§m
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Where by, .., b, are the cusps of I.

Proof. Denote by .A;, the space of meromorphic modular forms of weight k for I and
by K(Xr) the field of meromorphic functions on Xr. then we have K(Xt) & A4y, and
wy € K(Xr), div(f) = div(wy) for f € A,.

Now
Mi(T') = {f|f € Aw, f = 0 or div(f) > 0}
={ffolf € Ao, f=00r div(f) + div(fo) > 0}
= {f|f € Ao, f=0o0r div(f)+div(fo) >0}
= {¢ € K(Xr)|¢ =0 of div(¢) + div(fo) > 0} = L([div(fo)])
The second part is proved similarly (see [Mi], p.58). O

Corollary 1.4.12. M ("} is always finite-dimensional.

We can now find the dimensions of M(I') and Sg(T"). we use the following corollary
of the Riemann-Roch theorem: If d is a divisor for which deg(d) > 2g — 2 then
dim L(d) = deg(d) — g + 1.

It turns out ([Mi], p.59) that for £ > 4 we always have

deg([div(fo)]) > deg([div(fo)] = D b)) > 29 —2

=]
and therefore, summing up all the facts, we get-

Theorem 1.4.13. For an even k > 4, let g be the genus of Xr, ey, .., e, the orders
of elliptic points on Xr, and t the number of cusps of I', then

k

dim(SyI)) = (k= D(g =)+ D[ — D)+ (5 — 1)

dim(Mp(T)) = dim(S(T)) + ¢

It can be shown by similar arguments that for & = 2, we have dim{M,([')) = ¢
and dim(Se(T')) =g+t — 1.

14




1.5 FEisenstein Series

In this section we construct modular forms for S L3(Z) called Eisenstein series. They
give us the first example of connection between modular forms and number theory,
since their g-expansion coefficients are values of arithmetic functions of elementary
number theory.

Eisenstein series are a particular case of a more general construction called Poincare®
series.
Let k£ > 4 be an even integer. We define for z € H

1
Gle)= 3 e
(0,0)#(m,n)eZ?2 (mz T TL)
Theorem 1.5.1. ([Ko],pp.109-111)

1. The series for Gy is absolutely convergent, uniformly on every compact subset

of H
2. Gy s a modular form for weight k for SL,(Z)

3. The g-expansion of Gy is

Grlz) = 2¢(k)(1 ~

2k -
Bs Z Ok-1(n)g")
n=1

where ((k} = 3> n*, By (the Bernoully numbers) are given by the Taylor

n=1

[o.9]
erpansion 2= = 5 Bk%, and og(n) = 5 d*.
k=0

es—1 —
din

We divide Gy, by 2¢(k) to get the so-called normalized Eisenstein series

The first examples are



Ey(z) =1+480)  o7(n)g"

Bi(z) =1-264 og(n)g"
65520

Elz(Z) =1+ ‘__691 Ull(n)q

Biy(z) =1-24) ous(n)q"

Using the LEisenstein series and claim 1.3.2 we can form many more modular forms.
For example, let us construct a cusp form of weight 12 for SL,(Z):

™

B E43 . E62

Aie) 1728

=q— 24¢* +252¢° & ...

As another application of Eisenstein series, we use the fact that dim Mg(SLy(Z)) =1
(which we get by using theorem 1.4.13 , see [Mi],p.99) and get by comparing the
constant summand in the g-expansion that E,* = Fjg, and hence by comparing the
coefficients of ¢ we get

This identity is quite striking, because it involves only elementary functions, but no
elementary proof of it is known.

1.6 Modular forms for ['y(2)

Using theorem 1.4.13 we get dim M»(I'o(2)) = 1, dim My(I'a(2)}) = 2, dim Ms(To(2)) =

2, and dim Mg(Fo(z)) = 3.

Hence, since X gomma,(2) has two cusps, 8 is the minimal weight & for which dim Si(T'p(2)) >
0. We first wish to describe this space.

We define on 'H

00

n(z) =g [ (1~ q")

n=1

where qg= 821”:2, q1/24 — 67”2/12.

Then ([Sh], pp.49-50) Sg({T'¢(2)) is one-dimensional and is generated by
fs = (n(2)n(22))°.

16



By an identity of Euler (see [HW],theorem 353),

e n n{3n+1)
n(z) = ¢'/* Z (D) 2 =gl —g-@ 4+ +¢ - — g%+
n——00
Whence
oo 8 o0 8
n ndntl) n _niidn
fa(z) =4q ( Z (-1)*q ) ( Z (=1)ng™3 +1)) = q—8¢°+28¢° —56¢* £ ...
n=—00 n=—00

We will now give a generator for M,(I'5(2)):
We use the construction of Eisenstein series of weight & = 2 described in ([Mi],7.2)
and get that the function

By2) = 14+24 (01(n) = 201(5))a”

where oy(n) = > d* and o1(%) is 0 when n is odd, is in Ma(Ty(2)).

d|n
We now use Fy and the ordinary Eisenstein series Ey, g, ... (which are in the corre-
sponding My (SLy(Z))) to give a basis to each M, (I'¢(2)):

o For My(To(2)): E»*, E4. We know that they are independent by inspection of
their g-expansions at infinity.

e For MG(F0(2)) EQB,E2E4.
We also have there the Eisenstein series £s. By comparison of q-expansions we
get the identity
4E,® — 3FE,E, = E

s For MS(FD(Z)) E42,E24, E22E4.
Here we can express fgz by

576f3 = 5E22E4 - 4E24 - E42

Theorem 1.6.1. For every even k > 2, Every form in My(To(2)) can be written
uniquely as a polynomaal in By and E4
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Proof. We argue by induction on k. We have already proved our claim for & =
2,4,6,8. Suppose that £ > 10, f € Mi(Ty(2)) and that the theorem is true for
smaller weights.

We look at the linear subspace fg - My_g(T'9(2)). Its elements are (by the induction
hypothesis) polynomials in E», E4, and its co-dimension is 2, by theorem 1.4.13

It remains to find two more forms fi, f, which are polynomials in E,, F,; and span
the quotient subspace.

For any form f in M,(I'¢(2)) we define f(oo) to be the constant element in the ¢ -

expansion of f and f(0) to be the constant element in the ¢ - expansion of f |[ 0 1]
- k

Since (f — (f(0), f(00))) is a linear transformation and fg - My_s(Te(2)) is in its
kernel, a sufficient condition for fi, f, to span the quotient space is that the matrix
(gg:g ﬁ Egg) is regular.

Such two forms are FyE; 2 and E,E, T . Since Ey(oc) = E4(0) =1 (Ey 15 a
modular form for S7y(7Z)), we have only to show that the above matrix is regular
for fi = E4Es”, f» = E,*. But we have seen that these two, together with fz span
M;s(I'o(2)), and if the above matrix were not regular, the dimension of the image
of Mg(Fo(2)) by (f — (f(0), f(o0))) would be smaller than two and hence, since
the kernel of this transformation is the one-dimensional S5(T'p(2)), we would get
dim Mg(To(2)) < 3, which is a contradiction.

Let us prove now that this representation is unique. If not, then we have

Z Gi,jE;Ei =0

1=

where not all the a;; are zero, and the number of nonzero summands in the sum is
finite.
Since the sum ) M,(T) is direct for any congruence modular group I', we get that

even k

for any positive integer m,

Z a;;E3E] =0

L2 4g=2mi

Upon dividing by ET* we get

E,
Z am—2j,J(E—22)J =0

23<m
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If not all the above a,; are 0 then for all z € H, ;7#(5)5 is a root of the polynomial
Eq

S, am_zj,j:cj. But as we have proved, T is a non-constant meromorphic function
27<m

on H and hence assumes an ifinite number of values when z € H, whereas a nonzero
polynomial has only a finite number of roots. O

1.7 Fundamental domains

Let I be a congruence modular group. Let F' be a closed subset of H and let U be
the interior of F.

Definition 1.7.1. We call F' a fundamental domain for T -

1. F=U
2. H=|J~F
el

3 Forye\Z(I), vUNU =0
Theorem 1.7.2. ([Ko/,proposition II1.1.1) the region
1
F:{ZG'H:—% < Re(z) < - and |z| = 1}

15 a fundamental domain for SLy(Z)
Corollary 1.7.3. Any congruence modular group has o fundamental domain

Proof. Let T' be a congruence modular group, then since [SLy(Z) : I'] < oo, We can

take representatives o, ..., o, € SLy(Z) so that SLy(Z) = | Ty, Weset Fy = Uoii F,
i=1
then
H=] | yaF = JF
veT 1<i<n vel

For U, = int(Fy) we have

Ug = int(UaiU) = z'nt(Uo.qU) = UQ@'U

The last equality is true since the o,/ are open and do not intersect each other.
Hence
Fy=Ux; F = U, U = Ua,U = U, U
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The last equality is true by the same consideration.
For v € T\ Z(T") we have

’YU‘Z M Ug = U 'yoin M CEJU

1<i,j<n

and yo,U N ;U = B since if not, we would have a; lya;UNU = 0 = a; ya; €
Z(I') = yoya;7! € Z(T') = a7 € I, Contradicting the definition of the o, 7

1.8 The Petersson inner product

In this section we define a scalar product between elements of M(T') and elements of
Sk(T") which will be invariant under the &- action of T.

Let T be a congruence modular group. let F be a fundamental domain for I', and
f,9 € M(T') with at least one of f, g in Si(I'). We define

_ 1 —— dxdy
< $9>= g [ TR

L
(where z = z + iy).

Theorem 1.8.1. 1. The above integral is absolutely convergent and its value does
not depend on the choice of F.

2. IfT" is another congruence modular group such that f,g € My(T") and one of
f,g is in Sp(I") then the definition of < f,g > is independent of whether we
consider f, g in M(T) or in M (T").

3. <, > satisfies the following conditions

e <, > s linear {over C) in the first variable and anti-linear in the second
(< freg>=c< f,g>)
e <g, f>=<fyg>
o < f,f>>0 for0+# fe S(T)
4. for a € GLT(Q), putting T = a " 'TaNT we have:
(a) I" is a congruence modular group
(b) [ag takes Mi(I) to Mi(T"), Sk(T) to Si(TV).
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(C) < f:g >=< fl[a]k:gha]k >

For the proof see [Ko],chapter III, propositions 17,45,46,47.
The Petersson scalar product inspires an abstract definition of Eisenstein series for
congruence modular groups rather than SL,(Z).

Lemma 1.8.2. Let f € Si(SLa(Z)) for an even k > 4. Then < Gy, f >=10
The lemma results from [Mi], theorem 2.6.10 and equality 4.1.5.

Definition 1.8.3. For an arbitrary congruence modular group T' we call any form in
My (T') which is perpendicular to all the elements of Sy(T') an Eisenstein series.

We denote by Ni(I") the vector space of Eisenstein series of weight & for I'. Then
we have dim N([') = dim My(T') — dim Sk(['). For k > 4, by theorem 1.4.13, this
equals the number of cusps of I'.

1.9 Hecke operators

In this section we let I' = SLy(Z).
We shall define an infinite sequence of linear operators T(n) on M (T"). Our definition
will be specific for I", although there is a more general construction which is valid for

any congruence modular group.

Definition 1.9.1. (T(n)/)(z) = > d*f(*)= ¥ fluw (2)
a>l, ad=n a>l, ad=n 0 dlx
n<bcd 0<b<d

Claim 1.9.2. T(n)f € M (T'). If additionally f s a cusp form then s0 15 T(n)f.
Obviously T(n) is a linear operator.
Proposition 1.9.3. 1. All the T(n) commute.

2. T(m)T(n} = T{mn) whenever (m,n) =1
T(p)T(p™) = T{p~t) + p*F 1T (p" 1) for prime p and n > 1

The proofs can be found in [Se], section VII.5.3.
We shall now discuss cusp forms which are eigenvectors for all the T'(n)’s simultane-
ously.
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Definition 1.9.4. We say that f € M(T) is a Hecke eigenform if it is an eigenvector
for all the T(n)’s.

This phenomenon obviously happens when dimS,(I') = 1, but it can be also shown
that for all &, Si(I") has a basis of Hecke eigenforms.
Theorem 1.9.5. ([Se/, section 111.5.4) Let f € My(D') be a Hecke eigenform, f(z) =
2 c(r)g”™ and assume that c(1) = 1. then Yn > 1,T(n)f = ¢(n)- f.

n=0

Together with proposition 1.9.3 we get-

Corollary 1.9.6. Under the assumptions of the above theorem, we have
c(m)e(n) = c{mn) whenever (m,n) =1
c(p)e(p™) = c(p™*t) + p*~e(p™") for prime p and n > 1
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Chapter 2

Congruences between Eisenstein
series and cusp forms

Let B, be the k** Bernoulli number and g—: the reduced fraction of *2—‘3". In this
chapter we show (following [DG]) that certain congruences between the Eisenstein

series Fy and cusp forms hold mod. ;.

2.1 The case dim S,(SLy(Z)) = 1

Definition 2.1.1. Zeta,b € Q,1 < N € Z. We say that « = b(modN) ifa — b &

NZny, i.e, wn the reduced fraction a — b = %, we have (N,d) =1 and N I n

For k = 16, 18, 20, 22, 26 we have dim Sp(SLa(Z)) = 1.
We then have the following

Theorem 2.1.2. For the weights k listed above, let fi denote the unique cusp form
of weight k normalized so that its first Fourier coefficient is 1. Then

.y
fo = %‘“E,c mod N,

Proof. We have

We can find natural numbers ¢, s such that 4¢ + 6s = k. Define f = Fy — Ej'Eg®,
then f is a cusp form of weight k.
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Since Ejy, Eg have integer coefficients we have f = Fj, (mod 1) (by this we mean that
[ — Ej has integer coefficients). Since dim Sp(SLy(Z)) =1, f is a multiple of f,. by
comparing the coefficient of ¢ we get that f = (—% +a) fi. for some integer a. hence

f= (g—: + a) fe. Together we get

E, = (i—: + a) fi{mod 1)

N, N,
= D—;:Ek = (1+ aﬁi—)fk = fi(modNy)

Corollary 2.1.3. For k =12 we have the cusp form

A(z) =) " r(n)g"

n=0
and (since 7(1) = 1 and N1y = 691) we get the congruence
7(n) = o11(n) mod 691

first observed by Ramanujan.

2.2  Congruences for ['((2)
We wish to find a congruence which is similar to Ramanujan’s congruence

7(n) = o11(n) mod 691
but pertains to some M (I'y(2)), by a method similar to the one used in [DG].
Lemma 2.2.1. Ei(2) and Ey(2z) form a basis to the space of Eisenstein series in
Mi(To(2))

Proof. Ex(2z) is in My(T'9(2)) by [Ko],chapter 3,proposition 17.
Eyx(z}) and Ei(2z) are surely independent because the q-expansion coefficients of
Ly (22) at infinity vanish for odd powers of q. |
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We take for example £ = 12. Let f be an Eisenstein series in M;5(Ty(2))) with
rational coefficients such that the denominators of its g-expansion coeflicients are not
divisible by 619 (otherwise we can’t take f modulo 619).

Then f is a linear combination over Q of E15(z) and Ej5(22).

f(Z) = aEu(z) + bElg(QZ)

moreover, the denominators of a and b are either not divisible by 619.
We may write

Ey3(2) = A(z) (mod 619)

Meaning that the corresponding coefficients are congruent, and also
E15(22) = A(22) (mod 619)
(note that also A(2z) € §15(I'y(2))). Therefore:
f(2) = alA(2) + bA(22) (mod 619)

Thus we have found a congruence between each such Eisenstein series and a cusp
form in S15(I'9(2))). However, those congruences are not ‘new’ for us.
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Chapter 3

[-adic Representations

In the previous chapter we obtained congruences between coefficients of Eisenstein
series and those of cusp forms. In this chapter we find congruences among coefficients
of cusp forms. To this end we state some results of the theory of {-adic representations
which (in a sense) will enable us to find all such congruences.

3.1 l-adic representations for Hecke eigenvevtors
in S¢(SL2(2)) N Zq]

Let { be a prime number. Denote by K; the maximal algebraic extension of QQ ramified
only at [, and by K the maximal subfield of K; abelian over Q.
By class-field theory, there is a canonical isomorphism

Gal(K*/Q) = Z;

This induces a canonical isomorphism

xi 1 Gal(K /Q) — Gal(Ki*/Q) — Zj

For any prime p # I denote by Frob(p) any element of the conjugacy class of Frobenius
elements of p in Gal(K;/Q), then we have

xi(Frob(p)) = p

Theorem 3.1.1. Let f(z) = > anq™ be a modular form in Sy(SL.(Z)) N Z[[g]] such
n=1

thata; =1 and f is an eigenve—ctor of all the Hecke operators T,
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Then there is a continuous homomorphism
pr - Gal(K, /Q) — GLy(Zy)
such that for every p # { we have:
trace(pi(Frob(p))) = a,

and
det(pi(Frob(p))) = p*~!

For the proof, see [De].
The above two equalities can be taken mod. [, and then the theorem relates to the

induced map
pr: Gal(IK, /Q) — GLy(Z)) — GLy ()

which satisfies the above equalities mod. [.

Since Frobenius elements are dense in Gal(KK;/Q) it is clear that the relation between
a, mod | and p* ! mod [ is determined by the image of g in GLy(F,).

The programme (of Serre and Swinnerton-Dyer) is as follows: First we obtain infor-
mation on the subgroups of the finite group G L,(F;), and find which of them can be
a continuous image of Gal(K, /Q) satisfving det(5(Frob{p))) = p*~! mod [. Then for
each such subgroup we find the congruences it induces on ¢, and p mod. {. And last,
we develop a theory of modular forms mod | which enables us to eliminate most of
the congruences, and have only a finite list of possible ones.

Definition 3.1.2, We sey that [ is exceptional for f if the image of p does not
contain S Ly (1)

This definition is slightly different from the one used in [SwD]|, but the two defi-
nitions coincide for [ > 3.

3.2 The possible images of g

First we classify the subgroups of GL.(F}).

Definition 3.2.1. 1. A Borel subgroup of GL:(F,) is any subgroup conjugate to
the group of non-singular upper triangular matrices
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2. A split Cartan subgroup is any subgroup of GLy(I,) conjugate to the group of
non-singular diagonal matrices

3. A non-split Cartan subgroup is any subgroup of GLy(I) conjugate in GLy(By2)
(but ot in GLy(I,)) to a cyclic group of order 12 — 1 of diagonal elements.

Lemma 3.2.2. ([SwD], p.12). Let G be a subgroup of GLy(,). If the order of G is
divisible by [, then either G is contained in a Borel subgroup of GLy(F;) or G contains
SLy(F).

If the order of G is prime to l, let H be the image of G in PGL,(W,), then

1. H 1s cyclic and G is contained in a Cartan subgroup, or

2. H is dihedral and G is contained in the normalizer of a Cartan subgroup but
not in the Cartan subgroup itself (and the index of the Cartan subgroup in this
normalizer is 2), or

3. H is isomorphic to Ay, Sq or A;
In case 2, | must be > 2; in case 3, | must be >3, >3 or > 5 respectively.

Corollary 3.2.3. ([SwD/, p.15). Suppose that I is exceptional for f.
For the image G of py in GLy(IF,), only the following cases among the cases from the
preceding lemma are possible:

1. G 15 contained in a Borel subgroup

2. G 1s contained in the normalizer of a Cartan subgroup, but not in the Cartan
subgroup itself

3. H=5,

For demonstration of the proof of the corollary, let us prove for example that the
case where (7 is contained in a Cartan subgroup can be neglected.
If G is contained in a split Cartan subgroup then it is contained in a Borel subgroup.
If it is contained in a noun-split Cartan subgroup, say G C €. Since C is commutative,
pr: Gal(K;/Q) — C factors through Gal(K !(@ >~ Zf (see lemma 4.3.6). Denote
the map from Z} to C by 7, then ker 7 D (Z* . But (Z*) =1 = 141Z; (C is clear,
and if z € 1+1Z; then there is a solution in Z; to the equation y ~1 =z, by Hensel’s
lemma). Hence

Imp =Imt2L/Kerm C(Z})/(1+Z) 2T
Hence I f; is cyclic of order dividing { — 1, and hence it is contained in a split

Cartan subgroup, and we are back in the previous case.
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3.3 Classification of the possible congruences

Theorem 3.3.1. Suppose that | is exceptional for f. then the three cases listed in
corollary 3.2.8 imply respectively the following congruences:

1. There exists an integer m such that

k—1—m

ap =p" +p mod [

for all the primes p # 1
2. ap = 0 mod | whenever p is a quadratic non-residue mod |
3. p'*a,? = 0,1,2 or 4 mod | for all primes p # I

Proof. The full proof is given is [SwD],p.17. We cite here the proof of case 1 in order
to demonstrate the connection between I'm j; and the congruences.

In case 1, G is contained in a Borel subgroup of GLy(F;). We may assume without
loss of generality that the elements of G are upper triangular matrices. We write

plo)=("05))
Now « is a continuous homomorphism and must therefore (see lemma 4.3.6) be equal

to ;" for some integer m. Moreover aé = ﬁ“_l by theorem 3.1.1, so that § = )Ef_l‘m.
Taking ¢ = Frob(p) we obtain

ap = trace(p(Frob(p))) = alc) + 6{c) = p™ + p*1"™ (mod 1)

3.4 Modular forms mod |/
We denote by Zy the local ring of Q at I, that is
Zgy = {% cm,n €%, Lfn}

We can reduce elements of Zy modulo I (we denote this by ~).
We set My, = My(SLy(Z)) N Zyy[[g]], and

20 o0
M, = {Z dng™ : Zanq" € My}
n=0

=0
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We define M = the sum of all the M, for even k. This sum (as we shall see) is not
direct.
We write

o0
P=1- 24201(n)q”
n=l

Q=FE;=1+240) o3(n)q"

n=1

oo
R=Fs=1-504> o5(n)q"
n=1
P is not a modular form.
We define operators

df
Qf = qd_q:

where f is a modular form of weight k.

Of =120f — kPf

Lemma 3.4.1. ([SwD/,p.19-20)
1. Let f be a modular form of weight k. then 3f is a modular form of weight k + 2.

2. 0 s o dertvation on the graded algebra of modular forms such that 0Q = —4R
and OR = — 60,

For a modular form f = > a,¢", let A be the additive group generated by the a,,
then f has a unique expression as an isobaric element of A(Q, Al & RA[Q, A] (An iso-
baric polynomial is a polynomial whose monomials are all of the same weight, where
the weight of @ is 4, of A is 12 etc.). This can be easily seen because SLy(Z) has only
one cusp (hence f — AR includes a cusp form) and Sg(SL2(Z)) = AM_12(SL2(Z))
for k£ > 16.

Since 2% - 32 - A = @3 — R?, the above f can be uniquely expressed as an isobaric
element of A3, $](Q, R].

We need the following lemma on the [-adic nature of Bernoulli numbers
Lemma 3.4.2. (von Staudt-Kummer) let k be an even positive integer.

1 IF(L=1) | k then Ib, = —1 (mod I)
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2. Ifl—1)1tk then %f is [-integral and its residue class modulo I only depends on
kmod (I —1)

A proof can be found in [BS].

This lemma implies that for even £k =+ 1 and [ > 3, the coefficients of

2k —
FEulz)=1- = or—1(n)q"
k

n=1

are in Z(;).
We denote by A and B the two isobaric polynomials in Z)[Q, R] such that

A(Q1 R) = Elﬁla B(Q) R) = El+1
Theorem 3.4.3. ([SwD/ p.23).Suppose that | > 3. then
1. A(Q,R)=1 and B(Q,R) = P;

2. The homomorphism F,[Q,R] — M given by C(Q,R) — C(Q, R) induces an
isomorphism M = F[Q, R]/(A —1).

Corollary 3.4.4. 1. P& M.,
2. 8 is a derivation on M

3. For 0 <i<1[- 2 we have a filtration

M; C© Miygoy) C© Miyagon) C ...
and if we define N; = o) Mi+k(;_1) then
k=0

-~ l_
M=

[+

1
-~

-,
Il
o

18 a direct sum.

Proof. (1) is clear since P = B(Q, R) and B is isobaric of weight [ + 1.
(2) results from (1) and the definition of 8.
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The first part of (3) is because A(Q, R) =1 and A is isobaric of weight [ — 1

Finally, suppose that
—

(o~

f':O'» fiENi

=

T

Choose isobaric polynomials F; such that P,;(Q, R) = ﬁ

Il
=

-2 .
Then by the last theorem there exists a polynomial C' such that > P, = C(A —1).
=0
-2
We write C = 3 C; where C; includes only monomials whose weight equals ¢ modulo

=0
! — 1. Then by comparing weights we get I; = (A~ 1)C;. Hence f; = (A(Q,R) —
DNC(Q,R)=0. O

Definition 3.4.5. An element of one the N; is called a graded element.

For a graded element f e N; we define w(f) = min{k : f e M} It is clear by the

last corollary that w(f) =1 (mod { —1).

Lemma 3.4.6. ([SwD[p.25) let F be a graded element, then w(8f) < w(f) +1+ 1,
with equality only of [+ w(f)

Corollary 3.4.7. Ifltw(f) and t 1s a positive integer such that (w{{f)) mod )+t <
[, then

S(OF) = w(f) + L+ 1)

Proof. Clear by consequent applications of the lemma. U

3.5 Extensive elimination of congruences

Using the theory of modular forms mod. {, we can now eliminate most of the possible
congruences which have appeared in theorem 3.3.1, and in particular to prove that
the number of exceptional primes for a modular form (satisfying the conditions of
theorem 3.1.1) is finite.

Lemma 3.5.1. case (1) of theorem 8.3.1 can happen only of either 2m < < k+1
or m = 0 and [ divides the numerator of %.
case (2) can happen only iof I < 2k.
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Proof. We will show here the first part. The full proof can be found in [SwD],Jemma
8. For the proof we define

B o0
Gilz) = —2—; + 3 ora(n)g
n=1

This definition is not the same as in chapter 1 - The normalization is different. By
lemma 3.4.2, Gy, is in M, whenever (I - 1)t k.
We have an identity of the form

ap = p™ +p™ (mod 1)

We can assume without loss of generality that 0 < m < m' <l —1and m+m' =
k—1(modl—1) (m # m’ since their sum is odd).
We conclude that

n =" O—m(n) (mod 1} V1| n

This is proved using the recursion formulae of corollary 1.9.6: First for n = p* (for a
prime p) by induction on u and then using @nm = @nay for (n,m) = 1.
Hence

Qf - 9m+1ém1“m+1

We need the extra ¢ on each side to annihilate the coefficients of ¢™ for [ | n.

(This is illegitimate only when m = 0,m' = [ — 2 for then the constant term in
G —m1 18 not [-integral. But then we have a, = 1+ p'~? and we can write instead
pa, = p+ 1, obtain as usual na, = o1(n) and deduce that §f = ' *G, = 0'-1G1.
We will not give the details of this case (see [SwD]) since it is similar to the general
case.)

We now look at the filtration w of both sides. Assume that { > £+ 1. On one hand,

since w(f) = k we have
wlf)=w(fy+1+1=k+1+1
on the other hand, by corollary 3.4.7 we have
Wl Gy —g1) = —m A+ 1+ (m+ 1)1 + 1)
By comparing we get

O=ml+[+24+m' —k—I—-1=ml+1+m'—k

33



Since { > k, we must have m =0, m' =1 — 1. Hence
0f = 6G,

We deduce that f = G, since if { k then by lemma 3.4.6 # is injective on M.
Now by examining the constant term we get that [ divides the numerator of the
—By

constant term of Gy, which is =>*. 1

Corollary 3.5.2. For the 6 hecke eigenforms A, QA, RA, Q*A, QRA, Q*RA (of weights
12,16, 18,20, 22, 26 respectively):

1. All the exceptional primes of the first case of theorem 3.3.1 are < 23 or prime
divisors of the numerator of the corresponding EB;?

2. The only exceptional primes of the second case are 23 for A and 31 for QA

3. With the possible exception of | = 59 for QA, there are no exceptional primes
of the third case.

Proof. We have seen in the previous lemma how the range for the exceptional primes
of the first and the second case is reduced. It is further reduced to the above range
by numerical checking.

o0
For the third case, for a given function f(z) = >_ a.g¢", if [ is exceptional for f then
n=0

k 2

we have for any prime p, p = [ or [ divides one of a2, a2 —p*~", a2 —2p*~1, a2 —4p*~" and
this gives a finite list of primes. Varying the prime p we can sieve out non-exceptional
primes, and calculation shows that we are only left with p = 59 for QA. O

k—1
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Chapter 4

Congruence properties of pairs of
forms

For each of the six Hecke eigenforms A, QA, RA, Q*A, QRA, Q*RA we know by the
previous chapter (up to one uncertainty) which are the exceptional primes, and what
are the congruence relations for them.

It is natural to ask, what are the relations for fwo such forms.

As before, this will depend on the image of some [-adic representation modulo . Now
we have two representations, one for each form, and we are interested in their joint
image in G Ly(IF;) x GLo(If;) {see below).

A basic tool in this analysis will be the following elementary group-theoretic lemma.:

Lemma 4.0.3. (Gouwrsat’s lemma) Let Gy and G4 be groups, and let H be a subgroup
of Gy x Gy.

Then there exist subgroups A; < Gy, Ay < Gy normal subgroups B, <1 A, By < A,
and an isomorphism ¢ : A;/B; — Ay/ By such that H = UaeA1/31 a x ¢la).

Proof. Denote by 7, and m; the projections from G; x G5 on G and Gs.
set Al = TI']_(H), AQ = ’JTQ(H)

Blz{IEAIZ (m,l)EH}

and
By={ye Ay: (1,y) € H}

Then for x € By, s € Ay, we have (s,t) € H for some ¢t € A,, and hence
(z°,1) = (z°, 1) = (z, )Y e H = z° € B,
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Therefore B; <1 A; , and similarly By < As.
Now, for every 2 € A; there exists y € A4 such that (z,y) € H.
We define f(z) = yBs, this is a legal definition since if ' € A satisfies (z,4') € H
then by division
Ly YY)eH=y'yeb

One sees immediately that f : A, — Ay/Bs is a surjective homomorphism. we also
have Ker f = {z: (z,1) € H} = B;. By the first isomorphism theorem, f induces
an isomorphism ¢ : A;/B; — As/ B,y and by the definitions we have

=[] ax¢a)

ac Ay /Bl

4.1 Definitions

Let fi, .., f» be n distinct forms of our sextet A, QA, RA, Q*A, QRA, Q°RA (we are
going to study the case n = 2), and let [ > 3 be a prime.

Define

R(l; fi, ., fr) = {(a;, mod 1, ... ,ay mod l,pmodl): p#lisprime} C {0,1, L=t

S(; f1, oy o) = {{ay mod 1, ... ,ay mod 1) - p # L is prime} C{0,1,..,1 - 1}"

Where fi(z) = > a'g¢", and k; is the weight of f;.
n=0

Let
pi + Gal(K,/Q) — GLy(F)

be the associated Serre-Deligne representations of f;, already taken modulo /.
Define p : Gal(K; /Q) — GL2(T;) x ... x GLo(F;) by

p(CL‘) = (pl(I)1 s pﬂ(m))
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Define also
A={(01,..,04) € GLy(F;) x ... x GLy(F,) : 3z € Fy, det(o;) = 2% L V1 <i < n}

We have, by the properties of the associated representation, Im p C A.

Definition 4.1.1. Assume that | is non-exceptional for each f;.
We say that [ is exceptional for (fi, .., f.) if Im p # A
Equivalenily, | is non-exceptional for (fi, .., f,) if SLy(F,) x .. x SLy(Fy) C Im p.

Lemma 4.1.2. If 1 is non-exceptional for (fi, .., fn) then
R fr, .0 fa) ={0,1, 1 =1 x {1,..,1 — 1}
Proof. We look at the image of
pX X Gal(K/Q) — GLy(Fy) x ... x GLy(Fy) x Ty

For [ > 3, the commutator of SL,(F;) is SLy{F,), hence the image of the commutator
of Gal(K;/Q) in GLy(F;) x ... x GLy(F,) x F; contains SLy(Fy) x ... x SLy(F,) x {1}.
Since X; is onto Fy , we get that the image of px %; contains SLy(IF, ) x ... x S Ly (I, ) < Fy .
Now for (@), ..., an, any1) € {0,1,..,0 =1} x {1,..,1 — 1} define

p= ) () )
Since Frobenius elements are dense in Gal{K,;/Q) and there exists a prime p # [ such
that p x \u(Frob(p)) = p. Hence a = trace pi{Frob{p)) = trace (% ') = a; and
p = Xi(Frob(p)} = anyr {(modl), as required. O

4.2 Division into cases

From now on we focus on the case n = 2.

First we need a lemma on matrices:

Lemma 4.2.1. Let F be a finite field, char F # 2. Then SL,{F) does not have a
subgroup of index 2
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Proof. Tt suffices to show that 5 = {g?: g € SLy(F)} generates SLy(F) as a group.
For every € F we have (since char F #2)(3%),(13) € S. Now

GG =161 = (7 )

Since more than half of the elements of SLy(F) are of this form, we are done. U

Throughout this section, we assume that ! is non-exceptional for fi .
By Goursat’s lemma, since Im p C GL(Fy) G Ly(F,), We have

Imp= U a X ¢la)
QEA]/B]
where A, = I'm p;, Bi 9 A, and @ : A1/By — Ag/By s an isomorphism.
By assumption, we have

AL = Im p1 = {0 € GLy(T1)|det(o) € (F)"}

In particular, SLy(I) < I'm py = Ay

We define PBy = (£B1)/{£1}.
By simplicity of PSLa(i;) for ! > 3 ([Di]), and since PB, N PSLy(F} < PSLy ()

we may distinguish two cages:

- e Case 1: £B, = SLy(F;) . In this case, by lemma 4.2.1, we have By 2 SLy{lF,)
and hence SLo{F) x {{§9)} € Im p.

e Case 2: BN SLy(F) C {(%?)’(—01 —01)} .

-

Definition 4.2.2. In case I we say that fi and fy are independent modulo !
In case 2 we call them dependent.

We note that although the notion of dependence (or independence) of two objects
in mathematics is usually symmetric, here there is an asymmetry because we require
for the definition that [ 1s non-exceptional for fi. However, it will turn out from
the following lemma that if [ 18 also non-exceptional for f» then this definition is

symmetric (i.e, fi, f2 (in)dependent < fa, f1 (in)dependent).

Lemma 4.2.3. 1. If fi and [ are independent modulo [ then
([I) R(fl,fg,l) = S(fl,l) X R(fg,l) = {0,1, ..,Z — 1} X R(fg,l)
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(6) If additionally | is non-exceptional for f2 too, then I is non-exceptional for

(f11 fQ)
2. If fi and fy are dependent modulo [ then
(a) PBy is cyclic of order dividing |F* Y|
(b) By is composed of scalar matrices only.

(c) 1 is non-exceptional for fy, too.

Proof. {1a) We have SL,(F;) x {(19)} C Im p.
We look at the image of

p X )Zt ; Gal(Kl/Q) — GLQ(]F;}) X GLQ(]F,!) x IFT

For [ > 3, the commutator of SLy(F,) is SL,(F,), hence the image of the commutator
of Gal(K;/Q) in GLy{F,) x GLy(F,) x F* contains SLy(F) < {(§9)} x {1}

If (z,y) € R(f,,1),and z € F; then there exists p such that a?) =z and p = y. Denote
d = Frob(p). We have

(01{0), p2(0), 4} € Im (p x x)
we can find 7 € GLy(IF,} such that

tr(7) = z, det(r) = det{p,(c))
We also have
(T: PQ(U):y) €Im (p x JT(.!)
Since Frobenius elements are dense in Gal(K,/Q), we can find a prime p, for which
(0 X X0)(Frob(ps)) = (1, p2(0), )
Then modulo [, for p = p, we have
(ap. a3, p) = (tr(7), tr(p2(0)), y) = (2,2, )

this proves (la).
If [ is non-exceptional for f, then we also have SLy(F;) C By (i.e fo and fy are
independent), since 4;/B) = A, /B, and the other possibility for B; is too small, by

part (2a) of this lemma.
Therefore we also have
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{(39)} x SLo(F) C Imp= SLy(TF,) x SLy () € I p.

For (2a), det is an embedding PBy = Ikt

Let us show that SL,(F) < Ay = I'm py. We have Ay/By = Ay/ By, Ay 2 S Ly (T}
and By C Fr/. Hence, since |SLy(Fy)| = I - [ we get that 11+ 1) | (|A/Bu]). If
SL,(F,) is not contained in Im p, then by corollary 3.2.3, I'm p is either contained
in a Borel subgroup, in the normalizer of a Cartan subgroup or ig isomorphic to Ss.
If it is contained in a Borel subgroup, then its size divides /(I — 1)? (number of regular
upper triangular matrices over IF;), hence

(1 +1) | (|A/Bi) | (142/Bal) | (1)) | 2= 1)°

This can not be for p > 3 since it implies { + 1| (1 — 1)* and hence [ +1 | 4l.

if Im p, is contained in the normalizer of a cartan subgroup then its size divides
2(1* — 1) and similarly we get a contradiction. The remaining case is obvious. This
proves (2c).

It remains to prove (2b). We pick a generator o of PB;. Since B, <1 A, for each
z € A, there exists an integer n for which 0% = o"
We define f(z) = n, and note that fisa homomorphism from A; to the multiplicative
group of Z/rZ, where v = |PBy|. now

(A, (Ker fNSLy(I))] < [Ay : Ker f][AL - SLo(F)] < HZ/rZ) |l <rl < /2

14 1S Lo () - 2
z?-l| > ; Ol s _ iy >0

and hence (by simplicity of PSLy(F;)- see [Dil, and lemma, 42.1), SLy(F) C Ker f.
Hence o commutes with all the elements of PSLy(F) and 1s therefore scalar.

= |[Ner f N SLy(F)| >

O

Corollary 4.2.4. If [ is non-exceptional for f1 but is exceptional for fy then fi and
f, are independent modulo 1.

4.3 Calculation of R(l; f1, fa)

We have 3 possibilities:

e [ is exceptional for exactly one of fi, f2: In this case they are independent
modulo [, and we can calculate R([; f1, f2) by lemma 4.2.3 - if (without loss of
generality) ! is non-exceptional for fi then R(; f1, f2) = 40,1, ... 1= 1} x R(f2,1)
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o [ is exceptional for both: This happens in what is called in [SwD] the first case.
We can immediately obtain the set R(I; f1, f,) since a, mod | and a’ mod | are
determined by p mod [.

¢ [ is non-exceptional for both: We shall prove the following theorem
Theorem 4.3.1. Suppose that | is non-ezceptional for f, and for fa. then

L IfU> ki + ko + 1 then | is non-exceptional for (f1, f2) (and hence R(I; fi, o) =
0,1, 1 —1}2 5 {1,.,1 -1}

2. IF R fu, fo) = {0,1, ., 1=1}2x{1,..,1--1} then [ is non-exceptional for (f1, f2)

3. If l is exceptional for (fy, fy) then either

or

1 .
i=

We shall prove the theorem in the following pages.

Lemma 4.3.2. If 1 > 2 and R(l; f1, f>) = {0,1,..,1 — 1}? x {1,.,0—1} then [ is
non-exceptional for (fi, f2)

Proof. We have R(l; f;) = {0,1, .1 -1} x {1,..,{ — 1} and hence by [SwD] [ is non-
exceptional for f; and for f,.

By lemma 4.2.3 it suffices to show that f; and f, are independent mod .

As before we have the decomposition

Imp= U a x ¢la)

OEA1/31

By hypothesis, We can pick an element of I'm p, with any trace in F,, and deter-
minant in IE‘l*kr"_l. We will now pick such an element whose characteristic polynomial
factors over I, into two distinct linear factors.

To this end let us prove first that there exist « & Fy such that 22 — 4 € F;%. This is
trivial since
' —d=y e (t-y)(z+y) =4

and we can take for example z = 5/2,y = 3/2
Take 09 = pa(dy) € Im p; for which detoy = 1, traceoy = x. Now every o = py (¢) €
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Im p, with the same characteristic polynomial is conjugate in G'Ly(F;) to this oy, say
o = oy. Hence

G={8:0; =0}

is a coset of
ng{ﬂigoﬁzgo}

We will now show that this coset intersects I'm ps:
We have
GNlm py = aGeNIm py = a{GyNaIm py)

Now our claim follows since G includes all the scalar matrices, m py contains SLy(F;)
and also includes an element whose determinant is a quadratic non-residue mod. |/
(since ky — 1 is odd and det(Im py) = (Fy)=1).

Hence we can assume o € Im py, say @ = po(Q).

We get: ] )
02(5) = 0 = 0§ = pa2(60)™ ) = pa(Go%)
= 5(6*)7" € ker p

Suppose now that f; and f, are dependent mod [. We know that p{ker p2) = By,
and by lemma 2.3 we get that p,(5(5p%)7!) is a nonzero scalar matrix.

e IET . ,01(5') =bh ‘,01(5[)G)
= trace(p:(d)) = b - trace(p:(dy))
Surely there are at most [ — 1 possibilities for trace(pl{&)}, hence
I{S : (3,1', 1) C R('l?flan)}| < Z
Contradicting our assumption. |

Theorem 4.3.3. Suppose thatl is non-exceptional for each of f1, f2 but is exceptional
for (f1, f2). Then in the decomposition

Imp= U o X p{a)

a€A /B
there exists o € GLy(T)) and a homomorphism v : (F})* — (Fy )1 /By such that

d(zBy) = 7 - ¥(det x)
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Proof. For each i = 1,2 we have two possibilities: either —1 ¢ B; and then we have
a natural embedding as a normal subgroup SL,(F,) — A;/B;, or —1 € By, and then
PSLy(I;) — A;/B,.

By lemma 4.2.1 and a counting argument, SL, and PSL, can not be both embedded
in the same A;/B; (il they were both embedded, then since the product of their sizes is
bigger than the size of GL,(IF;), the intersection of their images would be non-trivial,
hence it would be the image of the simple group PSL,, contradicting lemma 4.2.1)
whence (since A,/B; ~ Ay/B;) we have -1 € B, ¢ —1 ¢ B,.

Let G; be the image of SL, (resp. PSLy) in A;/B;. By lemma 4.2.1 and simplicity
of PSLy, we have ¢(G) = G,.

Suppose first that —1 ¢ B;. Since every automorphism of SL,(F,) is induced by an
inner automorphism of GLy(I;) (see [Di]), there exists o € GL,(F) so that

Ya e SLQ(]FI), qﬁ(aBl) = CLUBQ.

If =1 € By, then again (Since every automorphism of PSLy(F) is induced by an
lnner automorphism of PGLy(TF), and since —1 € By), we get a o with exactly the
same property.

Now look at a general x € A4,.

For each ¢ € SL,, on one hand

$(a”By) = ¢(aBy)? %) = (a7)?B By = g¢lebiio g,
and on the other hand since a® € SL,,
¢(aIBl) = (ax)ng = G,(HBQ

By comparing, we get 1
a:crrqg,(xBﬂ_ € 32

Since det a = 1 we get that
o -1
a® PRI 4

thus, the image of 27¢(zB;)~! in PG L, commutes with all the elements of PSLy and
hence 1s scalar.
So there exists a function v : A;/B; — (F})I/B; such that

dlz) = z7¢{z).

Moreover, % is an homomorphism and Y|, is constantly 1, and from here we deduce
the theorem. O
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We can assume ¢ = 1, possibly after replacing p; by ops0?

Corollary 4.3.4. Under the above assumptions (th. 4.5.3),
ImpC{(AzA): Ac GLy(F), z € F"}

Corollary 4.3.5. Under the above assumptions (th. 4.3.3) only the two following
congruences are possible (for all the primes p #1):

ky—k
1oy =p z a,modl

1 { ki—ky o
2. a,= 2P a, mod |

moreover, p 1s determined accordingly,

k] —k2
piloc)=x, * plo)
or
kymkptol
01(0) = Xi : 92(0)

where \; 18 the canonical character
\: Gal(Ki/Q) — Gal(K*/Q) = I
taken modulo 1.

Proof. Define w : Gal{h;/Q) — F™ by pi{c) = w(o)ps(o). Then w is a homo-
morphism: w{cy02)pa(0109) = pi{o102) = pr{o1)p1(02) = wlor)pz(or)w(o2)pa(o2) =
w(o)w(az)p2(0102).

We now need the following standard lemma:

Lemma 4.3.6. Let C' be a commutatwe group, and ¢ : Gal(K;/Q) — C a homo-
morphism. Then ¢ factors through Gal(K*/Q)

(i.e., if T denotes the restriction map from Gal(K,/Q) to Gal(K®/Q), there ezists
a homomorphism ¥ : Gal(KP/Q) — C such that ¢ = ¥ o w. moreover, if ¢ 15
continuous then so 15 ).

Proof. Denote A = ker o, L = K;*. Since
Gal{L/Q) = Gal{K;/Q) /A2 Im¢$CC

L/Q is an abelian extension, and by definition, L C K, hence by Galois theory
ker ¢ = A D Gal(K;/K*), therefore ¢ factors through Gal(K,/Q)/Gal(K,/K®) =
Gal(K/Q). [
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Remark 4.3.7. This lemma immediately implies that Gel(KP*/Q) is the abelianisa-
tion of Gal(K,/Q).

We get back to the proof of corollary 4.3.4.
Using the lemma, we can view w as a continuous homomorphism from Gal(K*/Q) =
Z; to Fy. Hence there exists some integer m such that w = X7'. substitution gives
PL=X{" P2
For a prime p # [ and ¢ = Frob(p) we have:

* Xi(o) =p (mod )

o det pi(o) = p*

o det p1(0) = (o)™ det py(o)
From here we deduce that p** = p*™ . p*2 for all the primes p % I. Hence modulo ,
m = E%kl or 1 = El;&%j.'_l.__l_
Since a,, = trace p;(Frob(p)), the results follow. O

Lemma 4.3.8. If a congruence of the form
a, = p"a’ (mod l)
holds for any prime p # | and 2r = (ky — k3) (mod I — 1), then we have

a, = n"a? (modl)

for all ptn.

Proof. By corollary 1.9.6 we have a’a’ = o}, whenever (u,v) =1
oy ek, = hasr + p’“*"la;;,,_1 for prime p and s > 1 we first prove the assertion for n = p*
by induction on s. For s = 1 we have it by assumption. assume the assertion true for
1,2,..5 then

a;,m = a;,azl,, — pkl_la},,_l =

— ar 2 T 2 k1—1, r(s—1) 2 _
=papan —p pt Q-1 =

petaZaZ, — pk”"(s_l)“kzpkz_laﬁs_l (mod 1)
we have r(s + 1) = (k1 — k2 +7(s — 1)) (mod [ — 1) and hence

1 —_ 781 2.2 ka—1 2 _ (s +1)12
Gpots = P ( )(a’pap" —p™ U’p"-l)) =Pr ( )bP“"H

as desired. o
Now the general conclusion follows easily from the fact that ala® = af, whenever
(u,v)=1 O



Corollary 4.3.9. Ifl > k; + ky + 1 and [ is non-ezceptional for f; and for fi then
it is non-ezceptional for (f1, f2).

Proof. By the previous corollary we have

ky kpte(i=1)
a; =p 2 af, (mod 1)

where e = 0 or 1. By 4.3.8 this gives

1 kimkgtelt=1) 4
a, =n 2 a; (mod 1), Yi{n
Therefore,
- by —ka4e(i=1) o ~
0fy = 2 +1f2
Since

N _k _ _
w(f2)+k1 2+€(l 1)+1<k1+k2+6(z ].)

1<
2 - 2 ths

- [—2+¢l—-1)

+1 <
we get by corollary 3.4.7 that

k’l—k2+ﬁ(l-—1)

uj(gﬂzit“;l“)+1f2):k2+(l+l)( 2

+1)
on the other hand, by the same lemma, w{ff} = k1 + ({ + 1). therefore

kl—kg—i‘f(l—l)
5 )

(b~ k)l =) +el+1)(I—1)=0
by — ki =e(l+1)

which is impossible since [ > &y + k2. O

kv —ky=(+1)(

4.4 Examples

For ! = 11, by the table in [SwD], the only two forms for which ! is non- exceptional
are A and QRA. By [SwD], p.24, we have

QR =1 (mod 11}
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(by this we mean that the corresponding coefficients are congruent mod. 11)
and hence

A = QRA (mod 11)

the weights of those forms are 12 and 22, and so (by Fermat’s small theorem) this is
an example of the second case in corollary 4.3.4:

22-12411-1
e, =p * a (mod1l).

The only other examples are:
o [ =13 ;—p-af, where fi = QA, fo = Q*RA
o [ =13, =p* al where fi =QA, f, =
o | =13:a, = p-a} where i = Q’RA, f, =
o | =1T:ap = p? -a2 where f1 = Q’A, f, = QA
e [ =19 a; = p? },23 where fi = QRA, f, = RA
o [ =23, =p* o where fi = Q*RA, fo = QRA

We know that there are no other examples since a computer check for all the pairs
of forms and all I < k; +ky+1 vealded that R(I; f1, f2) = {0,1,.,1—1}2x {1,..,1— 1}.
Let us now prove the above identities. We use the following easy lemma-

Lemma 4.4.1. ([SwD], lemma 6) suppose that fi and f, are both in My. then they
are equal if and only of their first [%] + 1 coefficients coincide.

Now suppose that we want to prove an identity of the form ay, = p-a; (mod 1} Vp #
! where r = 8122 op Biheslol (4his s the case in all the a,bove 1de11t1t1es). Assume
(for convenience) that k, > k1. In view of lemma 4.3.8 we should try to prove that
an =n" - a2 (mod ) for all {{n. That is, f; = 67! f, by lemmas 3.4.1 and 3.4.6 we
have:

W) <o+ (r+ 1)1+ 1)
w(bfr) <k +(I+1)
w(@f1) = w@ ' f) (mod 1 — 1)
Hence it suffices to check that the identity holds for
< (b + (r+ 1)L+ 1))
- 12
This has been verified for the above identities using a computer.
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