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ABSTRACT

Shocks are ubiquitous in astrophysical sources, many of which involve relativistic bulk motions, leading to the formation of relativistic
shocks. Such relativistic shocks have so far been studied mainly in one dimension, for simplicity, but the complex nature of the relevant
astrophysical flows often requires higher-dimensional studies. Here, we study the two-dimensional problem of the reflection of a planer shock
off of a wall for a general incidence angle and a cold unshocked medium. We use primarily relativistic hydrodynamic numerical simulations
and elaborately compare the results to an analytic treatment. The simulations are performed both in the rest frame S of the unshocked fluid,
where the dimensionless proper speed of the singly shocked fluid is u1 ¼ C1b1 and the shock incidence angle is a1, and in the rest frame S0 of
the point P of intersection of the incident shock and the wall for regular reflection (RR). Good agreement is obtained between the simulations
in these two frames and with the analytic solution. The establishment of a steady flow in frame S0 is explored, along with the transition
between the strong and weak shock RR solutions. The transition line between RR and Mach reflection is studied numerically in the u1 � a1
plane and found to coincide with the analytic detachment/sonic line. The flow properties along the sonic line are investigated in detail focus-
ing on how they vary between the Newtonian and relativistic limits.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0179729

I. INTRODUCTION

A steady single-phase subsonic inviscid flow maintains a smooth
variation over different locations, excluding interfaces or boundaries.
However, supersonic fluid velocities (with relative speeds between dif-
ferent parts of the fluid that exceed the sound speed) may form a dis-
continuity in matter density, pressure, and velocity, which is termed a
shock.

The location of the discontinuity (i.e., the shock) generally moves
in space. The fluid crosses the shock from the upstream region to the
downstream region, and in the process, its density, pressure, and spe-
cific entropy increase (see, e.g., Refs. 1 and 2). Rankine–Hugoniot con-
ditions specify the relationship between the fluid variables across the
discontinuity.3,4 In the rest frame of the upstream fluid, the shock front
moves supersonically, and the downstream shocked fluid carries non-
zero momentum, kinetic energy, and thermal energy. Shocks are very
abundant in terrestrial and astrophysical fluids in supersonic motion.

In terrestrial phenomenon, the motion of a fluid (e.g., air and
water) can attain a speed larger than the respective sound speed in the
medium and this can form a shock. The head-on interaction of this

discontinuity with a rigid wall produces a reflected shock with a sub-
sonic downstream region. In the case of an oblique incidence, the
strength of the incident shock and the angle of the incidence determine
the characteristics of the reflection. When the reflected shock and the
incident shock intersect at a reflection point P on the wall, it is said to
be regular reflection (RR). Otherwise, it is considered to be irregular
reflection (IR), the most common configuration of which is called a
Mach reflection (MR). In the case of MR, there exists a triple point
ahead of the wall, where three lines intersect: the incident shock, the
reflected shock, and a Mach stem.5–11 For large values of the shock
incidence angle (defined as the angle between the shock and the wall),
only IR/MR is possible, whereas for small incidence angle values, only
RR is possible.

Shock reflection of non-relativistic oblique shocks was investi-
gated in different experimental setups12–14 and numerical studies.15–17

One of the main purposes of these studies was to pursue the transition
criteria from RR to MR, and vice versa. Some theoretical criteria for
this transition are known in the literature (see, e.g., Refs. 5, 18, and 19)
Von Neumann5 described the transition criteria between RR and MR

Phys. Fluids 36, 016141 (2024); doi: 10.1063/5.0179729 36, 016141-1

Published under an exclusive license by AIP Publishing

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

 23 January 2024 18:26:55

https://doi.org/10.1063/5.0179729
https://doi.org/10.1063/5.0179729
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0179729
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0179729&domain=pdf&date_stamp=2024-01-23
https://orcid.org/0000-0003-1315-4984
https://orcid.org/0000-0001-8530-8941
https://orcid.org/0000-0002-6418-7025
https://orcid.org/0000-0001-7833-1043
mailto:pbera.phy@gmail.com
https://doi.org/10.1063/5.0179729
pubs.aip.org/aip/phf


for non-relativistic flow. Hornung et al.18 reported the consistency of
this transition criteria for a steady flow. The effects of boundary condi-
tions are considered by Ben-Dor (1987) to explain the analytical for-
mulation of pseudo-steady Mach reflection. For our purposes in this
paper, the important criterion is the sonic criterion, which is discussed
in detail below.

In an astrophysical environment, a fluid element can achieve a
speed close to the speed of light, c, and form relativistic shocks, capable of
generating significant radiation.20 The microscopic properties of the fluid
are affected by relativistic thermal particle motions as reflected in the
equation of state.21,22 Relativistic bulk motions have observational impli-
cations such as relativistic beaming effects.23,24 The strength (i.e., the
Lorentz factor) of relativistic shocks may be inferred from the modeling
of astrophysical objects, such as gamma-ray burst afterglows.25,26

Shocks play an important role in various astrophysical scenarios,
such as: (i) accretion by compact object,27 (ii) free-falling accretion
onto the surface of a star, (iii) interaction of stellar wind with the inter-
stellar medium, (iv) high-velocity ejecta from explosive transients, e.g.,
a nova, supernova or magnetar giant flare, and (v) in relativistic jets or
outflows, such as gamma-ray bursts (GRBs), micro-quasars, active
galactic nuclei (AGN), tidal disruption events, fast radio bursts, or pul-
sar wind nebulae (PWNe), where shocks can form either due to colli-
sions between different parts of the outflow (internal shocks) or due to
its interaction with the ambient medium (external shocks). These
astrophysical sources form some regions with very high internal energy
density, and the shocks accelerate both thermal and non-thermal elec-
trons that produce bright radiation.28–35 Therefore, the shock dynam-
ics play a significant role in generating the observable radiation from
many astrophysical sources.36–38

Such astrophysical shocks may experience reflection by an obsta-
cle. Some possible examples are: (i) reflection of a supernova shock by
the companion star in a binary stellar system,39 (ii) reflection of a GRB
afterglow shock,29 (iii) reflection of shock formed at the magneto-
sphere by the stellar surface of a neutron star or the Sun, and (iv)
reflection of a collimation shock at the jet-cocoon interface with a
cocoon in the cylindrical phase.40,41 To understand the underlying
physics, we can build a theoretical model relating the flow dynamics to
the expected observable emission signatures. We follow a simplified
approach to study the fluid dynamics of shock reflection in relativistic
and non-relativistic regimes. We consider a perfectly reflecting wall as
the reflector of the incident shocks.

In particular, in this work, we numerically study the reflection of
an incident oblique shock having Newtonian up to relativistic speeds, at
different incidence angles. From direct relativistic hydrodynamic numer-
ical simulation, we identify the characteristics of the reflected shock and
find the criteria of RR. We compare our numerical results to analytic
results derived in a companion paper (Ref. 42, hereafter GR23).

Initially, in Sec. II, we describe the physical setup of the numerical
experiments. The underlying basic mathematical formulation is pre-
sented in Sec. III. Our results are presented in Sec. IV, and the conclu-
sions are discussed in Sec. V.

II. PHYSICAL SETUP
A. Laboratory frame S and steady-state frame S0

The shock reflection is studied in two different frames of refer-
ence: (i) the laboratory-frame S, where the unshocked region 0 is at

rest, and (ii) the moving frame S0, where the flow is steady for RR
(Fig. 1).

We consider a two-dimensional setup in which a semi-infinite
planar incident shock collides with a perfectly reflecting planar vertical
static wall, which is located at the right-hand side boundary of the
computational domain. The incident shock, reflected shock, and the
wall intersect (for regular reflection) at point P in 2D, which in 3D
would correspond to a line in the direction normal to the 2D simula-
tion plane, where nothing varies along that direction and all velocities
have no component in that direction. More realistic shock reflection
configurations may be intrinsically three-dimensional in nature,
requiring a 3D treatment, for example, if the incident shock or reflect-
ing object is not planar. However, in such a case, our planar approxi-
mation still reasonably holds over a region with a small size as
compared to the local radius of curvature of the incident shock and
reflecting wall. Here, we focus on studying shock reflection in two
dimensions, and the three-dimensional structure of shock reflection is
left for future work.

Initially, we setup the problem in the laboratory frame S. There
are two shocks labeled 1 (incident shock) and 2 (reflected shock),
which divide the flow into three regions, labeled 0, 1, and 2, corre-
sponding to the number of times the fluid in each region was shocked.
The unshocked region 0 is adjacent to a perfectly reflecting static wall
and considered to be at rest in frame S (velocity v0 ¼ 0) and cold

FIG. 1. Schematic diagram of our setup for the shock reflection problem for RR,
showing the location of the discontinuities. Left: in the laboratory frame S, the
unshocked cold fluid (region 0) is at rest and a piston moving at speed v1 at an
angle of a1 relative to a wall drives a shock (s1) into it (the shock front moving at
speed vs1) creating a singly shocked fluid region 1. The shock s1 hits the wall pro-
ducing a reflected shock (s2) with a shock front moving at speed vs2, and a doubly
shocked fluid region 2, whose velocity v2 is parallel to the wall. The point P where
the two shocks intersect at the wall moves along the wall at a speed
vp ¼ vs1= sin a1 ¼ vs2= sin a2. Right: in the rest frame S0 of point P, the flow is
steady, and the fluid velocity in regions 0 and 2 is parallel to the wall. This rest
frame exists only in the sub-luminal regime where vp < c () us1 < tan a1 (us1
being the proper speed of shock s1).
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[pressure p0=q0c
2 � minð1; u21Þ, where q0 is its proper rest-mass den-

sity, and u1 ¼ C1b1 is the dimensionless proper speed of region 1]. In
frame S, the incident shock (“shock 1”) moves with a velocity vs1 along
its normal and makes an angle a1 with respect to the wall. It can be
thought of as generated by a piston moving at velocity v1 < vs1 and
driving a shock with a velocity vs1 (see Fig. 1). The proper rest-mass
density q1 and pressure p1 in region 1 are determined by the jump con-
ditions of shock 1. The collision of the incident shock 1 with the wall
creates a reflected “shock 2,” with a velocity vs2 along its normal, and
making an angle a2 with respect to the wall. A post-shock region 2
forms between the wall and shock 2, with proper rest-mass density q2,
pressure p2 and velocity v2.

As the incident shock 1 is oblique, a1 > 0, it intersects the wall at
a point P, which moves along the wall at a velocity vp, whose magni-
tude is given by

vp ¼ vs1
sin a1

¼ vs2
sin a2

: (1)

In the case of a semi-infinite steady oblique incident shock, the inci-
dent and reflected shocks move in a self-similar pattern with respect to
point P. In the sub-luminal regime that corresponds to bp ¼ vp=c < 1,
one can transform (through a boost at �vp) to a rest frame S0, in
which for RR, point P is at rest and the flow is steady. In frame S0,
region 0 moves with a velocity v0

0 ¼ �vp. Similarly, the velocity of
region 1 and the incident shock are Lorentz-boosted by �vp from the
S-frame values. The proper rest-mass densities (q0; q1) and pressures
(p0, p1) are invariant. The angles formed by the incident and reflected
shocks with the wall in S0 are also Lorentz boosted, i.e.,

tan a0i ¼
tan ai
Cp

ði ¼ 1; 2Þ; (2)

where Cp ¼ ð1� b2pÞ�1=2.

B. The general structure of the parameter space

We study oblique reflected shocks with different incidence angles,
a1, and different proper velocities of the incident fluid, u1 ¼ C1b1.
Figure 2 shows the analytic expectation (as derived in GR23) for the
different regions in the u1–a1 parameter space and the critical lines
that separate between them. This is displayed by showing log 10ðu1Þ in
the y-axis vs log 10ðtan a1Þ in the x-axis. The luminal line (in black;
defined by the condition vp¼ c or, equivalently, us1 ¼ tan a1) separates
the superluminal region (in cyan shading) and the sub-luminal
regions. The sonic line for the weak shock RR solution (in dashed blue;
defined by b02;w ¼ bcs;2;w where the subscript “w” stands for the weak
shock RR solution) is found (GR23) to almost coincide with the
detachment line (in dashed red), which bounds the region with RR sol-
utions. We shall, therefore, not make the distinction between them
here and refer mainly to the sonic line. The sonic line always lies in the
sub-luminal region43 and separates between the sub-sonic (or detach-
ment) region (in white), where there is no RR solution (but instead,
there is IR—a more complicated type of shock reflection, such as MR),
and the supersonic (or attachment) regions. The region between these
two critical lines—the sub-luminal supersonic (or attachment)
region—is marked in green shading.

In the following, we find numerically that, as expected analyti-
cally, the sonic line bounds the region of RR. There can in principle
also be a dual region where both MR and RR are possible for the same

ðu1; a1Þ values. Such a dual region borders the sonic line on the super-
sonic side but is located well within the sub-luminal region. The fact
that we do not find such a dual region might be since the RR weak
shock solution is a more stable attractor solution, such that the MR
solution is not found in the simulations, similar to the RR strong shock
solution that is discussed in Sec. IVA1.

Therefore, the sonic line is of particular physical importance.
While it was extensively studied in the Newtonian regime, it was not
studied before in the relativistic regime. We study it here in detail,
stressing the differences between the Newtonian and relativistic
regimes, and how the system transitions between these two limits.

We study shock reflection in the (u1 � a1) parameter space. We
use the above-mentioned reference frames S and S0. Figure 3 shows the
points for which we performed special relativistic hydrodynamic
numerical simulations (Sec. III) to obtain the outcome of the shock
reflection by a wall.

III. NUMERICAL METHOD

The conservation equations for total mass, momentum, and
energy in the special theory of relativity may be written as

@lðqulÞ ¼ @ðqCÞ
@t

þr � ðquÞ ¼ 0; (3)

@�T
i� ¼ @ðwCuÞ

@t
þr � ðwuuþ pIÞ ¼ 0; (4)

@�T
0� ¼ @ðwC2 � pÞ

@t
þr � ðwCuÞ ¼ 0; (5)

where Tl� ¼ wulu� þ pgl� is the stress-energy tensor, gl� is the
Minkowski metric, ul is the 4-velocity, u ¼ Cb ¼ uû is the proper
velocity of the fluid, b ¼ v=c ¼ bb̂; C ¼ ð1� b2Þ�1=2 is the Lorentz
factor, q is the proper rest mass density, p is the pressure, w ¼ eþ p
¼ qc2 þ eint þ p is the proper enthalpy density, and e (eint) is the
proper (internal) energy density. Here, @

@t ; r, and I are the time deriv-
ative, spatial derivative, and the unit 3� 3 matrix, respectively.

FIG. 2. The different regions and critical lines in the u1–a1 parameter space, shown
in terms of log 10ðu1Þ vs log 10ðtan a1Þ. The luminal line (in black; bp ¼ 1 () us1
¼ tan a1) separates the superluminal region (cyan shading) and the sub-luminal
attachment region (green shading), which is in turn separated from the detached
region (in white, where there is no regular reflection—RR) by the detachment line
(in dashed red), which almost coincides with the sonic line for the weak RR solution
(in dashed blue; b02;w ¼ bcs ;2;w , see GR23 for details).
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In the presence of a 1D shock, the fluid variables on its two sides
(0,1: pre- and post-shock regions) satisfy the following
(Rankine–Hugoniot) jump conditions:

q0C0;s1b0;s1 ¼ q1C1;s1b1;s1; (6)

w0C
2
0;s1b

2
0;s1 þ p0 ¼ w1C

2
1;s1b

2
1;s1 þ p1; (7)

w0C
2
0;s1b0;s1 ¼ w1C

2
1;s1b1;s1; (8)

where quantities relating to the upstream (pre-shock) region and the
downstream (post-shock) region are denoted by subscripts 0 and 1,
respectively. These jump conditions may be obtained by equating the
fluxes of matter, momentum, and energy on the two sides of the shock,
in the frame where the shock front is at rest and the fluid velocities are
normal to it. The velocities b0;s1 and b1;s1 are those of regions 0 and 1
in the shock 1 rest-frame, while Ci;s1 ¼ ð1� b2i;s1Þ�1=2 are the corre-
sponding Lorentz factors. The pressure, density, and normal compo-
nent of velocity are discontinuous across the shock.

To solve the above-mentioned set of fluid equations and to obtain
the values of downstream fluid for the given upstream values, we need
to provide the equation of state (EoS). To capture the relativistic and
non-relativistic regimes, we consider the following equation:44

h�Hð Þ h� 4Hð Þ ¼ 1; (9)

where H ¼ p=qc2, and the enthalpy per unit rest energy h and the
effective adiabatic index ĉ are given by

h ¼ 1þ ĉH
ĉ � 1

¼ 5
2
Hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9

4
H2

r
; (10)

ĉ ¼
@h
@H

@h
@H

� 1
¼ 1

6
8� 3Hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 9H2

p� �
: (11)

This EoS satisfies the Taub21 inequality of relativistic matter. The cor-
responding dimensionless sound speed, bcs ¼ cs=c, is given by Ryu
et al.45

b2cs ¼
@p
@e

¼ H
h

@h
@H

@h
@H

� 1
¼ 3H2 þ 5H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ 4=9

p
12H2 þ 2þ 12H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ 4=9

p : (12)

Here, we aim to find the values of the downstream quantities from the
direct hydrodynamic simulations. To this end, we study the shock
reflection in frames S and S0 described above.

A. Numerical setup in frame S

In order to study the shock reflection problem described in Sec. II
in frame S, we setup the incident shock s1 in this frame by prescribing
regions 0 and 1 in the computation domain. We then numerically
solve the time evolution of the computation domain, identifying the
different regions and the critical lines that separate them. In particular,
we track the formation of the reflected shock s2 and the doubly
shocked region 2 as it is described in Sec. IIA. To reduce the artifacts
from the numerical scheme, we avoid ultra-low values of pressure in
region 0 and choose a moderately low value of H0 ¼ p0=q0c

2 � 10�9

to represent a cold medium of region 0. The fluid is at rest in region 0
(v0 ¼ 0), while the velocity of region 1 is v1. The pressure (p1) and
proper rest-mass density (q1) in region 1, as well as the velocity of
shock s1 along its normal in frame S (vs1) are obtained by solving the
shock jump conditions [Eqs. (6)–(8)].

As we are interested in the bulk flow structure in the case of shock
reflection, we use a semi-infinite incident shock in a two-dimensional
computational domain. To have a simplified structure of the computa-
tional process, we opt for a static grid. We use the PLUTO code15 to solve
the hydrodynamic equations (3)–(5) in a fixed linear spaced grid. We
use the piece-wise parabolic reconstruction scheme, with the second-
order Runge–Kutta time integration and HLLC Reimann solver. This
scheme and solver structure are suitable to capture the evolution of
shock with minimum dissipation. To have a causal connection in each
numerical time step, the CFL condition is maintained. We choose the
initial shock location along the diagonal of the computational domain
connecting the top-left and the bottom-right. This ensures fixed
boundary condition at the left-hand side. We consider a few hundreds
to thousands of grid points in each side of the two-dimensional com-
putational domain maintaining near near-equal aspect ratio of grid-
spacing. The presence of the wall at the r.h.s. boundary is obtained by
implementing reflecting boundary conditions. The region 1 inflow
boundary conditions are implemented at the left and at the bottom of
the computation domain. The top of the computation domain is main-
tained with a free outflow condition.

In the laboratory frame S, region 1 increases its area as the point
of contact P moves along the wall. The shape of the post-shock region,
i.e., the angle a2, is not known a priori. To start the simulation, we use
the inflow condition from the left and lower boundaries. As the doubly
shocked region 2 develops and it interferes with this fixed inflow

FIG. 3. Scatter marks represent the parameter space coverage of the numerical
calculations presented in Sec. IV. The blue, magenta, and red circles correspond to
the snapshots of RR in S and S0 and MR in S0 (Sec. IVA), respectively. For a small
inclination angle, the S-frame captures RR effectively. The frame S0 is applicable for
the incident angle higher than the luminal boundary.
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condition along the lower boundary. To prevent the impact of the
boundary conditions on the results, we focus our analysis on a region
sufficiently close to the point of contact P, such that it is not affected
by the lower boundary condition.

B. Numerical setup in frame S0

By construction, the shock s1 remains static in frame S0 and the
region 0 is confined between the shock s1 and the wall, which makes an
angle a01 at P, given by tan a01 ¼ C�1

p tan a1. Region 0 has proper rest
mass density q0, pressure p0, and velocity v0

0 ¼ �vp. Region 1 has
proper rest mass density q1, pressure p1, and the velocity given by a
Lorentz boost by �vp from the frame S value
v1 ¼ b1cð�cos a1; sin a1Þ,

v0
1 ¼

½�v1 cos a1; Cpðv1 sin a1 � vpÞ�
Cpð1� bpb1 sin a1Þ

: (13)

In the PLUTO setup, we start the numerical simulation with the flu-
ids in regions 0 and 1. The top and left edges of the computational
domain maintain inflow boundary conditions of regions 0 and 1,
respectively, while the bottom edge maintains a free outflow boundary
condition. As the incident shock s1 impacts the wall, it forms the
reflected shock s2 and the doubly shocked region 2 develops.

We also test the dynamical stability of the RR strong shock solu-
tion, by adding the corresponding algebraic solution for region 2 to the
initial conditions of the simulation (as this solution is unstable and
does not otherwise develop naturally in the numerical simulation). In
this case, the point of transition between the inflow boundary condi-
tions of regions 0 and 1 is no longer at the top left corner, but is instead
located at a fixed point along the top edge of the computational
domain.

We consider the evolution in frame S0 in the vicinity of point P,
as much as possible. The advantage of this frame is that the incident
and reflected shocks are static, and the flow is steady for RR. However,
since bp ¼ b1s= sin a1, for high incident shock speeds b1s and/or small
incidence angles a1, the velocity of point P might rise above the speed
of light, and in this superluminal regime, frame S0 does not exist. We
start a numerical evolution of fluid in region 1 and gradually it devel-
ops the region 2. As the post-shock region (region 2) develops, we
select a region away from the boundary and find the location of the
discontinuity.

When performing simulations in frame S0, we inject fluid into
regions 0 and 1 with velocities v0

0 and v01, from the upper and left
boundaries of the simulation box, respectively.

We have the freedom to choose arbitrary time units, tunit in S and
t0unit in S0 (corresponding to length units lunit ¼ ctunit and l0unit ¼ ct0unit),
to design the frame for the direct numerical study. In frame S, we mea-
sure the simulation time in units of shock crossing time, tp ¼ Ly=vp,
where Ly is the simulation box size along the wall. In frame S0, we use
as our time unit the sound crossing time of the doubly shocked region
2, t0sc ¼ L0=cs;2, where L0 is its length along the wall, and cs;2 is the
sound speed in region 2.

IV. RESULTS
A. The u1–a1 parameter space

Here, we summarize the results obtained from our numerical
simulations of shock reflection for different proper speeds u1 of the

singly shocked region 1 and different incidence angles a1. For a given
u1, RR is expected for small enough values a1 (see Fig. 2).

1. Regular Reflection (RR)

We have captured the time evolution of incident shock s1 and
the development of reflected shock s2 by performing numerical simu-
lations in two different rest frames. In the laboratory frame S, both the
incident and the reflected shocks move (left panel of Fig. 1 and snap-
shots from the numerical study in Fig. 4). The same incident and
reflected shocks remain steady at the moving frame S0 (right panel of
Fig. 1 and snapshots from the numerical study in Fig. 5).

In frame S, we start the numerical simulation of an incident shock
s1 with u1 ¼ 1; b1 ¼ 1=

ffiffiffi
2

p � 0:7071; b1s ¼ 4
ffiffiffi
2

p
=7 � 0:8081, q1=q0

¼ 4
ffiffiffi
2

p � 5:657, and p1 ¼ 4=3) and an incidence angle a1
¼ 0:3 relative to the reflecting wall [at the bottom right corner of
Fig. 4(a)]. Therefore, initially there is no doubly shocked region 2. The
intersection point P of the incident shock s1 and the wall moves along
the wall at a speed vp ¼ b1s= sin a1. We consider a computation box
(a 568� 918 grid in the x-y plane) with its vertical length (Ly) along
the wall being 3.23 times larger than the horizontal length (Lx). We
measure the time in units of the shock crossing time i.e., tp ¼ Ly=vp.
As time evolves, a high-density doubly shocked region 2 develops,
between the wall and the reflected shock s2, which makes an angle
a2 ¼ 0:137 relative to the wall [Figs. 4(b) and 4(c)]. The similarity

FIG. 4. Snapshots from a numerical simulation of shock reflection in the laboratory
frame S for RR, at different times: (a) t=tp ¼ 0:0, (b) t=tp ¼ 0:57, and (c)
t=tp ¼ 0:86, where tp ¼ Ly=vp is the box crossing time of point P (using equal
aspect ratio). The computation domain of lengths ratio Ly : Lx ¼ 3:23 : 1, where
the reflecting wall is along its right boundary, while the incident shock s1 is initially
along its top-left to bottom-right diagonal. The unit of length is arbitrary. The incident
shock s1 leaves the computation domain at t¼ tp. The color scale indicates the flu-
id’s proper rest-mass density, while the red arrows show its velocity vector. This
simulation is initialized with a1 ¼ 0:3 and u1 ¼ 1, where the latter implies u1s
¼ 1:37 and q1=q0 ¼ 4C1 ¼ 4

ffiffiffi
2

p
for p0 � q0c

2u21. Panel (a) shows the initial
conditions. Other snapshots [panels (b) and (c)] indicate the gradual growth of the
doubly shocked region 2 with a higher density. The reflected shock forms an angle
a2 ¼ 0:137 with the wall. Region 2 remains uniform unless it is affected by the
lower boundary condition.
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between Figs. 4(b) and 4(c) indicates the self-similar nature of the flow
with respect to the point P. The fluid in region 2 moves along the wall,
relatively slowly, at a proper speed u2 ¼ 0:247 for ðu1; a1Þ ¼ ð1; 0:3Þ.
The inflow boundary condition at the lower boundary is unphysical
within region 2, and its effects become more significant for a higher
value of a1.

In frame S0, we initialized the numerical simulations as described in
Sec. IIIB. Figure 5 shows snapshots from such a simulation with ðu1; a1Þ
¼ ð1; 1Þ (or tan a1 ¼ 1:557), such that (q0 ¼ 1; p0 ¼ 10�9q0c

2) imply
(b00y ¼ �bp ¼ �0:907; q1 ¼ 5:657; p1 ¼ 1:333; tan a01 ¼ 0:434).
We start the numerical simulation with regions 0 and 1 [Fig. 5(a)] in
the computational box (of 252� 1038 grid points) with its vertical
length along the wall (L0y) being 4.13 times the horizontal length

(L0x). The doubly shocked region 2 develops with time [Figs. 5(b)
and 5(c)] as the incident shock s1 remains static in this frame. The
reflected shock s2 settles down at an angle a02 (with tan a02 ¼ 0:33)
relative to the wall. The matter in region 2 (q2=q0 ¼ 16:171;
p2=q0c

2 ¼ 7:039) moves along the wall with a proper speed
u02 ¼ 1:207.

Figure 6 shows that the doubly shocked region 2 forms and settles
down over a timescale close to its sound crossing time, t0sc ¼ L0=cs;2,
where L0 is its length along the wall. We identify region 2 through its
higher density relative to region 1. Region 2 contains proper-density
fluctuations of a few percent (�5%) relative to the mean value. The
non-uniformity in region 2 is due to the gradual transition at the
boundary and the fluctuations.

Figure 7 shows the snapshots displaying the density and velocity
of the doubly shocked region 2 at different times. Frame S0 is suitable
to study the shock interaction for high enough a1 values, correspond-
ing to the sub-luminal region.

For RR, our simulations (in frame S0) that initially did not contain
the doubly shocked region 2, evolved to and settled at the “weak”
shock RR solution. From the algebraic solution, one may also obtain a

FIG. 5. Snapshots from a numerical simulation of shock reflection in the frame S0
for RR, at different times: (a) t0=t0sc ¼ 0, (b) t0=t0sc ¼ 0:72, and (c) t0=t0sc ¼ 1:43
(where t0sc is defined in Sec. II A). The height-to-width ratio of the computation
domain is L0y=L

0
x ¼ 4:13. The doubly shocked region 2 develops between the wall

and the reflected shock s2, which forms an angle a02 (with tan a
0
2 ¼ 0:33) relative to

the wall. Figure 7 shows zoomed-in snapshots [of the region below the dashed
white line in panel (b)], more densely sampled in time to better illustrate the forma-
tion of region 2.

FIG. 6. Average density (q2), pressure (p2), and velocity component along the wall
(b2y ) of the doubly shocked region 2, as it forms and settles down (to q2;set; p2;set,
and b2y;set, respectively) over about a sound crossing time (t

0
sc). The vertical dotted

lines indicate the time stamps of the snapshots shown in Fig. 7.

FIG. 7. The gradual development of the doubly shocked region 2 is shown in this sequence of snapshots in frame S0 , depicting the lower half of the computational domain from
Fig. 5 at the times indicated by the vertical dotted line in Fig. 6.
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“strong” shock RR solution (in the supersonic sub-luminal region—see
GR23), corresponding to higher values of a02 (and therefore a2), q2,
and p2. To study the stability of this strong shock solution, we numeri-
cally evolve the fluid variables starting from an initial configuration
that also includes region 2 with properties corresponding to the alge-
braic strong shock solution (see Table I, Figs. 8 and 9).

Figure 8 shows the resulting evolution of the mean density and
pressure of the doubly shocked region, in terms of its fractional devia-
tion from the weak and strong shock solutions. The system quickly
transitions from the algebraic strong shock RR solution to its numeri-
cal counterpart, in which the density and pressure in region 2 differ by
� 1:5–2%. The system then starts to linearly deviate from this solution
with a growth rate of about 0:5 t0 �1

sc or e-folding time about 2t0sc (two
sound crossing times). Subsequently, the transition between the strong
and weak shock solutions enters a non-linear phase. Finally, the weak
shock RR solution is approached at about 10 sound crossing time (t0sc),
and the deviation from this solution appears to decrease exponentially
with time.

Figure 9 shows snapshots from the corresponding simulation (in
frame S0) in Fig. 9 displaying the fluid variables at different times (indi-
cated by the dashed vertical lines in Fig. 8). Panels (b) and (�b) show a
small (linear order) change in density, pressure, and shape of the dou-
bly shocked region 2 from its initial state [which is shown in panels (a)
and (�a)]. Panels c and �c indicate the significant (non-linear) changes
with the transient appearance of a new (third) shock and a contact dis-
continuity, which bound a triply shocked region at the bottom-right
corner of the snapshot. Panels (d) and (~d) show the system reached
the weak shock solution, and it stays there.

2. Irregular reflection (IR) or Mach reflection (MR)

In the sub-sonic region, if there was RR, then the dense, high-
pressure fluid in the doubly shocked region 2 would be in causal con-
tact with point P and cause it to detach from the wall, thereby leading
to IR. For this reason, there is no RR in the sub-sonic region, and
instead only IR types of shock reflection such as MR. As mentioned in
Sec. II B, there may be a dual region within the supersonic region
where both RR and IR/MR are possible, but the weak shock RR

solution appears to be the most stable attractor solution that generi-
cally appears in our simulations.

Therefore, we generally expect the formation of IR/MR in our
simulations in the sub-sonic regime. For a given u1, this corresponds to
sufficiently large incidence angles a1. For such incidence angles, the
post-shock region develops multiple zones separated by discontinuities.

Figure 10 shows an example of a simulation for such a case,
where MR develops. For this numerical simulation, we considered an
incident shock characterized by ða1; u1Þ ¼ ð1:1; 1:0Þ, with an
unshocked region 0 of (q0 ¼ 1; p0=q0c

2 ¼ 10�9; u0 ¼ 0). To calcu-
late the fluid variables in frame S0, we consider the corresponding
boost of bp ¼ 0:906 772 2, which implies an S0 frame incidence angle
of tan a01 ¼ 0:828 383 8. We evolve the fluid maintaining the boundary
conditions mentioned in Sec. III B.

Figure 10 shows snapshots from this simulation. The meeting
point of the incident and the reflected shocks, P, detaches from the
reflecting wall [panels (b) and (c)], and a Mach stem develops behind,

TABLE I. Weak and strong solutions of a shock collision.

Frame S Frame S0

q0 1 q0 1
b0y 0 b00y �vp¼�0.955 536 3
a1 1.007 924 5 a01 0.437 18
u1 1 u01 1.795 769
q1 5.6568 q1 5.6568
p1 1.333 33 p1 1.333 33

Weak Strong Weak Strong

a2 0.8942 1.403 31 a02 0.351 91 1.050 19
b2 0.737 0.9033 b02 �0.738 87 �0.381 51
p2
q0c2

7.127 18.8817
p2
q0c2

7.127 18.8817

q2=q0 16.3425 27.6949 q2=q0 16.3425 27.6949

FIG. 8. The evolution of the mean proper rest-mass density (q2) and pressure (p2)
in the doubly shocked region 2, shown in terms of their fractional deviations from
their values for the “strong” (qstrong; pstrong) and “weak” (qweak; pweak) shock RR sol-
utions. The simulation starts from the algebraic strong shock solution, and the sys-
tem moves to the weak shock solution within several sound-crossing times of
region 2 (t0sc). The vertical dashed lines denote the times of the snapshots shown in
Fig. 9.
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where there is singly shocked fluid at pressure equilibrium across a
contact discontinuity with doubly shocked fluid behind the reflected
shock s2. One can clearly see the development of Kelvin–Helmholtz
instability along this contact discontinuity due to the velocity shear
(discontinuous parallel velocity component) across it. The reflected
shock assumes an irregular non-triangular shape. The Mach stem
slowly moves upward in frame S0 where this simulation is performed,
at a constant speed, such that its length (or the distance of point P
from the wall) increases linearly with time. In this paper, we do not
explore in detail the characteristics of this IR/MR and instead leave
this for a future work.

FIG. 9. Snapshots of proper rest-mass density [top panels (a)–(d)] and pressure [bottom panels (�a)–(�d)] from a simulation in frame S0 starting from the algebraic strong shock
RR solution [panels (a) and (�a)]. The red arrows are velocity vectors, whose size indicates the fluid speed at their starting point. This time sequence captures the evolution
between the strong and weak shock solutions, in the initial linear phase [panels (b) and (�b)] and subsequent non-linear phase [panels (c) and (�c)]. The system finally settles in
the weak shock solution [panels (d) and (�d)].

FIG. 10. Snapshots from a simulation with ða1; u1Þ ¼ ð1:1; 1:0Þ in which Mach
reflection (MR) develops, at times t0=t0sc ¼ 0; t0=t0sc ¼ 0:2, and t0=t0sc ¼ 0:4. Each
panel shows a colormap of the proper rest-mass density and red velocity vectors.
The side ratio of the computation domain is L0y=L

0
x ¼ 2:46.

FIG. 11. Snapshots (proper rest-mass density colormap and red velocity vectors)
from simulations of RR for ða1; u1Þ ¼ ð0:465; 0:316Þ performed in: (a) the labo-
ratory frame S (tan a2 ¼ 0:281) at t=tp ¼ 0:65 and (b) the moving frame S0
(tan a01 ¼ 0:246; tan a02 ¼ 0:139) at t0=t0sc ¼ 1:91.
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3. Consistency of numerical results in frames S and S0

Here, we show the consistency of the numerical results obtained
through relativistic hydrodynamic simulations performed in rest frames
S and S0. Figure 11 shows the snapshots from frames S and S0 for the
same physical shock reflection case of ða1; u1Þ ¼ ð0:465; 0:316Þ. In
the laboratory frame S, the frame S0 moves with velocity vp ¼ 0:87c
upward along the wall, such that the incidence angle tan a1 ¼ 0:501 in S
transforms to tan a01 ¼ 0:246 in S0. From the numerical evolution stud-
ies, we obtain the development of the doubly shocked region 2. In frame
S, we derive a value of tan a2 ¼ 0:281 for the angle of the reflected shock
s2 relative to the wall, and in frame S0, we derive a corresponding value
of tan a02 ¼ 0:139. Using a Lorentz boost from frame S0 to S, we obtain
tan a2 ¼ 0:284 from the evolution in frame S0. The algebraic solution
corresponding to the same input parameters gives tan a2 ¼ 0:282 355.
Therefore, the angle of reflection is consistent in both frames S and S0 to
within 1%, and both are consistent with the analytic value.

4. Consistency of the numerical and analytic results

We compare the results of our numerical simulations with the
exact algebraic solution for the relatively simpler case of RR, for which

such an analytic solution can be obtained (GR23). The critical inci-
dence angle along the sonic line, a1;sonicðu1Þ, below which RR is possi-
ble, increases as the incident shock velocity bs1 increases. A detailed
comparison is shown for the proper rest-mass density q2 (Fig. 12) and
pressure p2 (Fig. 13) of the doubly shocked region 2, as well as the ratio
of the tangents of the angles relative to the wall of the reflected and
incident shock fronts, tan a2= tan a1 (Fig. 14).

We note that laboratory frame S simulation is more accurate for
a smaller incidence angle a1. As the value of a1 increases, the doubly
shocked region 2 in frame S is more strongly affected by the imposed
inflow lower boundary condition. Hence, the numerical results deviate
from the expected value as a1 approaches the critical value for a RR
(i.e., the sonic line). Frame S0 is more suitable for simulations in this
regime and can follow the shock reflection for longer times, as the flow
becomes steady in S0 for RR.

B. The sonic line

1. The significance of the sonic line

The sonic line corresponds to the following condition:

b02;w ¼ bcs ;2;w () bp ¼
b2;w þ bcs;2;w
1þ b2;wbcs;2;w

: (14)

The first condition is that in the rest frame S0 where the flow is steady
the velocity in region 2 (of the doubly shocked fluid) for the weak

FIG. 12. Comparing the matter proper rest-mass density in the doubly shocked
region 2 (q2, normalized by q0) from the analytic algebraic solution (solid green
lines) to our hydrodynamic simulation results, in the laboratory frame S (blue x sym-
bols) and in the moving frame S0 (red þ symbols), for u1 ¼ 10; 1; 0:1 (from top to
bottom). The vertical dotted black line (dashed cyan line) corresponds to the luminal
(sonic) line. Frame S is well suited for low a1 values, while frame S0 is a favorable
option near the sonic line. FIG. 13. Similar to Fig. 12 but comparing the region 2 pressure.
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shock RR solution, b02;w, is equal to its sound speed, bcs;2;w. Once b
0
2;w

drops below bcs;2;w, i.e., in the subsonic regime, region 2 comes into
causal contact with point P and can then potentially cause it to sepa-
rate from the wall resulting in MR. On the other hand, in the super-
sonic regime (b02 > bcs;2), region 2 is not in causal contact with point P
(for an initial unperturbed weak shock RR solution) so it cannot affect
it, and therefore, point P cannot separate from the wall and allow a
transition to IR/MR. This may potentially suppress a transition
between the weak shock RR solution and MR (in the dual region
between the sonic line and the mechanical equilibrium line; see, e.g.,
GR23) and require a sufficiently large perturbation for it to occur. The
fact that the strong shock RR solution is always subsonic
(b02;s < bcs ;2;s) may potentially account for its instability, e.g., as
found in Sec. IVA1. Since the sonic condition is that for causality
between region 2 and point P, it can also be expressed in the laboratory
frame S such that the speed of a sound wave propagating in region 2
along the wall toward point P, ðb2 þ bcs;2Þ=ð1þ b2bcs;2Þ, equals that
of point P, bp.

2. The flow properties along the sonic line

The sonic line’s physical significance makes it interesting to study
in detail the flow properties along it. The analytic solution for the flow
properties along the sonic line is derived in the Appendix, along with
analytic expressions for all of the flow quantities in the Newtonian and
relativistic limits.

Figure 15 shows the values of different hydrodynamic varia-
bles along the sonic line (b02;w ¼ bcs;2;w), conveniently parameter-
ized according to the value of u1 along this line. These values are
found by numerically solving the set of algebraic equations for RR,
together with the sonic condition, in the frame S0 (Appendix) or
equivalently in the laboratory frame S (as is done in GR23). The
weak and strong shock RR solutions exactly coincide at the detach-
ment line, which almost coincides with the sonic line, such that
both solutions are extremely close along the sonic line. There is
excellent agreement with both the Newtonian and the relativistic
limits that are found analytically in the Appendix. Moreover, it can
be seen from Fig. 15 that in the relativistic limit up > u2 > u1 	 1,
while u12 is of order unity, such that the first (incident) shock s1 is
ultra-relativistic, while the second (reflected) shock s2 is mildly
relativistic.

Figure 16 shows the flow configurations for the asymptotic
Newtonian and relativistic limits along the sonic line, in the rest frame
S0, where the flow is steady and point P is at rest. These limits are par-
ticularly simple and can be fully solved analytically (Appendix). In
frame S0, the angles a01; a

0
2, and v0 do not vary that drastically between

these two limits (see also Fig. 15).
Figure 17 shows the location of the transition from RR to MR

(redþ symbols). For each u1 values, the incidence angle a1 is gradually
increased between different simulations until we find the critical value
a1;critðu1Þ at which point P detaches from the wall, signaling the

FIG. 14. Similar to Fig. 12 but comparing tan a2= tan a1.

FIG. 15. The values of different hydrodynamic variables along the sonic line
(b02 ¼ bcs ;2) are shown as a function of the value of u1 along this line (thick solid
lines). The Newtonian and relativistic limits from Eqs. (A6) and (A9), respectively,
are indicated by thin dashed lines (which fall on top of the thick solid lines).
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transition from RR to MR. It is determined more accurately by per-
forming several iterations for each u1 value. These numerical values
are in excellent agreement with the analytically calculated location of
the sonic line (solid cyan line in Fig. 17), a1;critðu1Þ ¼ a1;sonicðu1Þ.

These simulations clearly show that (i) there is indeed no RR in the
sub-sonic region and (ii) in the supersonic region, the simulations
reach the weak shock RR solution and not the strong shock RR solu-
tion (in the sub-luminal region) or MR (in the dual region).

Figure 18 shows the critical transition angle in frame
S0; tan a01;critðu1Þ, from our numerical simulations (red þ symbols),
compared to the analytically derived corresponding angle for the sonic
line, tan a01;sonicðu1Þ, whose asymptotic Newtonian and relativistic lim-
its are shown by horizontal black dotted lines. They agree to within
about 1%. This critical angle in frame S0 decreases by about 10%
between the Newtonian and relativistic limits (see also Fig. 15).

V. CONCLUSIONS

We have studied relativistic shock reflection, mainly numerically
using two-dimensional relativistic hydrodynamic simulations, and
with detailed comparisons to analytic results. Our simulations were
performed in two different rest frames: the laboratory frame S, where
the cold unshocked fluid (region 0) is at rest, and the rest frame S0,
where for RR the point P of intersection of the incident and reflected
shocks with the reflecting wall is at rest, and the flow is in a steady
state.

Our numerical simulations have validated the analytic results
(derived mainly in GR23, but also in the Appendix for the sonic line).
We have also pointed out the importance of using a suitable reference
frame in different simulations of shock interactions. In particular, for
small incidence angles a1, the laboratory frame S is more suitable,
while the frame S0 that exists only in the sub-luminal region is more
suitable closer to the sonic line.

We have also studied the transition between RR and IR
(namely MR). The transition from RR to IR/MR maintains similar
characteristics in the Newtonian and relativistic regimes. In our
numerical study, this transition occurred exactly at the sonic/
detachment line.

Moreover, in the supersonic region, the simulations always
reached the weak shock RR solution. We have found the alternative

FIG. 16. The asymptotic Newtonian (right panel) and relativistic (left panel) flow
configurations along the sonic lines, for which the flow parameters are given in Eqs.
(A6) and (A9), respectively.

FIG. 17. The location of the transition from RR to MR [red þ symbols; a1;critðu1Þ]
found from our numerical simulations in frame S0, match the analytically calculated
location of the sonic line [solid cyan line; a1;sonicðu1Þ]. The dotted black line indi-
cates the luminal line, which is shown for reference.

FIG. 18. The critical transition angle in frame S0; tan a01;critðu1Þ, from our numerical
simulations (red þ symbols), compared to the analytically derived corresponding
angle for the sonic line, tan a01;sonicðu1Þ, whose asymptotic Newtonian and relativistic
limits are shown by horizontal black dotted lines.
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strong shock RR solution, which exists in the supersonic sub-luminal
region, to be unstable. Moreover, we numerically studied how it transi-
tions to the weak shock RR solution, which appears to be a stable
attractor solution. While a dual region where either RR or MR are pos-
sible should exist from analytic considerations (on the supersonic side
of the sonic line but well within the sub-luminal region), it was never
reached in our simulations, suggesting that it is not an attractor solu-
tion (and may also be unstable).
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APPENDIX: THE SOLUTION ALONG THE SONIC LINE

Here, we derive an analytic solution for RR along the sonic
line. The conditions in region 1, for a cold region 0 (p0 ¼ 0; e0
¼ w0 ¼ q0c

2, and h0 ¼ 1), can be conveniently calculated in the
laboratory frame S and are given by

q1 ¼ 4C1q0 ; p1 ¼ 4
3
u21q0c

2 ; e1 ¼ 4C2
1q0c

2 ;

eint;1 ¼ 4C1u21
C1 þ 1

q0c
2 ; w1 ¼ 4C2

1 1þ b21
3

� �
q0c

2; (A1)

bs1 ¼
4C1u1
4C2

1 � 1
; u1 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2s1 � 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 5u2s1 þ u4s1

qr
;

b1;s1 ¼
bs1 � b1
1� b1bs1

¼ b1
3
:

(GR23) where the last equation means that for our equation of state, in
the rest frame of the downstream fluid (region 1), the speed at which
the shock is receding is a third of the incoming upstream speed.

Since the sonic line is always in the sub-luminal regime, it can
conveniently be analyzed in frame S0. In this frame, the flow is
steady and there are two oblique shocks: s1 and s2, at angles a01 and
a02, respectively, relative to the wall. The velocity of region 1 in frame
S0 can be expressed through

u01 ¼ ½�u1 cos a1; CpC1ðb1 sin a1 � bpÞ� ;
C0
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u021

p
¼ C1Cpð1� b1bp sin a1Þ

¼ 3C1 sin a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4C2

1 � 1Þ2 sin 2a1 � 16C2
1u

2
1

q ; (A2)

tan v0 ¼ u01x
u01y

¼ b1 cos a1
Cpðbp � b1 sin a1Þ

;

tan a01 ¼
tan a1
Cp

; tan a02 ¼
tan a2
Cp

:

The remaining conditions are the oblique shock jump conditions in
frame S0 and the sonic condition, which read

q1u
0
1 sin a

0
þ ¼ q2u

0
2 sin a

0
2 ;

w1u021 sin2a0þ þ p1 ¼ w2u022 sin2a02 þ p2 ;

w1C0
1u

0
1 sin a

0
þ ¼ w2C0

2u
0
2 sin a

0
2 ;

b01 cos a
0
þ ¼ b02 cos a

0
2 ;

b02 ¼ bcs;2;

(A3)

where we denote a0þ ¼ v0 þ a02 and

b2cs;2 ¼
3H2

2 þ 5H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

2 þ 4=9
q

12H2
2 þ 2þ 12H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

2 þ 4=9
q ; H2 ¼ p2

q2c2
: (A4)

In the Newtonian limit (b1 < bp � 1), the adiabatic index is
ĉ ¼ 5=3 and the equations reduce to

q1
q0

¼ 4 ;
p1
q0

¼ 4
3
v21 ;

eint;1
q0

¼ 2v21 ; bs1 ¼
4
3
b1 ;

v01 ¼ v1 �cos a1; sin a1 � 4
3 sin a1

� �
;

tan v0 ¼ v01x
v01y

¼ 3 cos a1 sin a1
1þ 3 cos 2a1

;

q1v
0
1 sin a

0
þ ¼ q2v

0
2 sin a

0
2 ;

q1v
02
1 sin2a0þ þ p1 ¼ q2v

02
2 sin2a02 þ p2 ;

5
p1
q1

þ v021 sin2a0þ ¼ 5
p2
q2

þ v022 sin2a02 ;

v01 cos a
0
þ ¼ v02 cos a

0
2 ;

v022 ¼ 5
3
p2
q2

;

(A5)
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which have the following simple solution:

vp ¼ v00 ¼
4ffiffiffi
3

p v1 ¼
ffiffiffi
3

p
vs1 ¼ 4ffiffiffiffiffi

11
p v01 ¼ 2v02 ¼ 2v2 ;

q2 ¼
5
2
q1 ¼ 10q0 ; p2 ¼ 6p1 ¼ 8q0v

2
1 ;

u2
u1

! b2
b1

¼ 2ffiffiffi
3

p ;
u02
u01

! b02
b01

¼ 2ffiffiffiffiffi
11

p ;

u12
u1

! b12
b1

¼ 1 ;
up
u1

! bp
b1

¼ 4ffiffiffi
3

p ;

tan a01 ¼ tan a1 ¼ tan a02 ¼ tan a2 ¼ 1ffiffiffi
2

p ;

sin a01 ¼ sin a1 ¼ sin a02 ¼ sin a2 ¼ 1ffiffiffi
3

p ;

cos a01 ¼ cos a1 ¼ cos a02 ¼ cos a2 ¼
ffiffiffi
2
3

r
;

tan v0 ¼
ffiffiffi
2

p

3
; sin v0 ¼

ffiffiffiffiffi
2
11

r
; cos v0 ¼ 3ffiffiffiffiffi

11
p :

(A6)

From Fig. 15, it can be seen that in the relativistic limit
(up > u2 > u1 	 1), u12 is of order unity, such that while the first
(incident) shock s1 is ultra-relativistic (with a relative upstream to
downstream proper speed of u1 	 1), the second (reflected)
shock s2 is only mildly relativistic. Therefore, while region 0 is
cold, both regions 1 and 2 are relativistically hot, with an adiabatic
index of ĉ ¼ 4=3 and p ¼ eint=3 	 qc2, while w � 4p and
bcs;2 ¼ 1=

ffiffiffi
3

p
, such that the sonic condition implies b02 ¼ 1=

ffiffiffi
3

p
;

u02 ¼ 1=
ffiffiffi
2

p
; C0

2 ¼
ffiffiffiffiffiffiffi
3=2

p
. This also implies p2

p1
� e2;int

e1;int
� e2

e1
� w2

w1
.

Therefore, in the relativistic limit along the sonic line, the equa-
tions reduce to

q1
q0

¼ 4C1 ;
4w

3q0c2
� e1;int

q0c2
� e1

q0c2
¼ 4C2

1 ;

p1
q0c2

¼ 4
3
u21 �

4
3
C2
1 ; us1 �

ffiffiffi
2

p
u1 ; b1;s1 ¼

b1
3
� 1

3
;

q1u
0
1 sin a

0
þ ¼ q2

1ffiffiffi
2

p sin a02 ;

4p1u021 sin2a0þ þ p1 ¼ 2p2 sin2a02 þ p2 ;

4p1C0
1u

0
1 sin a

0
þ ¼ 2

ffiffiffi
3

p
p2 sin a02 ;

b01 cos a
0
þ ¼ 1ffiffiffi

3
p cos a02:

(A7)

In the relativistic limit a1; a2 � p
2 along the sonic line, so it is con-

venient to use the angle �a1 ¼ p
2 � a1 to express the solution to the

above equations in terms of

a 
 C1�a1 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49

ffiffiffi
3

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6195� 3576

ffiffiffi
3

p � 84
p
16 9� 5

ffiffiffi
3

p� �
vuut

� 0:600 418 732 719 8; (A8)

where a ¼ C1�a1 � u1�a1 � u1 cos a1 � u1= tan a1 approaches a con-
stant values in this relativistic limit,

Cp

C1
! up

u1
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1� 2a2

r
� 2:677 423 238 004 ;

Cp

C2
! up

u2
!

ffiffiffi
2

pffiffiffi
3

p � 1
� 1:931 851 652 578 ;

C2

C1
! u2

u1
!

ffiffiffi
3

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p � 1:385 936 251 591 ;

C12 ! 3
ffiffiffi
3

p � 1� 4a2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p � 1:303 551 928 752 944 ;

b01 !
1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16a2

p
� 0:867 182 056 601 ;

u01 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16a2

8ð1� 2a2Þ

s
� 1:741 360 042 442 ;

C0
1 ! 3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð1� 2a2Þp � 2:008 067 428 503 ;

sin a01 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p
� 0:528 199 480 119 ;

cos a01 !
ffiffiffi
2

p
a � 0:849 120 314 915 ;

tan a01 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p
=

ffiffiffi
2

p
a � 0:622 054 932 430;

(A9)

sin a02 !
1� ffiffiffi

3
p þ 4a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 2� ffiffiffi
3

p� �
ð1þ 4a2Þ

q � 0:620 609 996 819 ;

cos a02 !
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð1� 2a2Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2� ffiffiffi

3
p� �

ð1þ 4a2Þ
q � 0:784 119 398 975 ;

tan a02 !
1� ffiffiffi

3
p þ 4a2

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð1� 2a2Þp � 0:791 473 846 497 ;

sin v0 ! a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð1� 2a2Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16a2

p � 0:344 798 730 926 ;

cos v0 ! 1þ 4a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16a2

p � 0:938 676 640 357 ;

tan v0 ! a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð1� 2a2Þp
1þ 4a2

� 0:367 324 290 498 ;

q2
q1

! 1� ffiffiffi
3

p þ 4 4� ffiffiffi
3

p� �
a2

2 1� ffiffiffi
3

p þ 4a2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2a2
p � 3:384 471 042 815 ;

p2
p1

!
ffiffiffi
3

p � 3þ 4 4
ffiffiffi
3

p � 3
� �

a2

4 1� ffiffiffi
3

p þ 4a2
� �

ð1� 2a2Þ � 5:549 111 674 227:
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