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A B S T R A C T 

Future detection of high-redshift gamma-ray bursts (GRBs) will be an important tool for studying the early Univ erse. F ast and 

accurate redshift estimation for detected GRBs is key for encouraging rapid follow-up observations by ground- and space-based 

telescopes. Low-redshift dusty interlopers pose the biggest challenge for GRB redshift estimation using broad photometric bands, 
as their high extinction can mimic a high-redshift GRB. To assess false alarms of high-redshift GRB photometric measurements, 
we simulate and fit a variety of GRBs using PHOZZY , a simulation code developed to estimate GRB photometric redshifts, and 

test the ability to distinguish between high- and low-redshift GRBs when using simultaneously observed photometric bands. We 
run the code with the wavelength bands and instrument parameters for the Photo-z Infrared Telescope (PIRT), an instrument 
designed for the Gamow mission concept. We explore various distributions of host galaxy extinction as a function of redshift, and 

their effect on the completeness and purity of a high-redshift GRB search with the PIRT. We find that for assumptions based on 

current observations, the completeness and purity range from ∼82 to 88 per cent and from ∼84 to > 99 per cent , respectively. 
For the priors optimized to reduce false positives, only ∼ 0 . 6 per cent of low-redshift GRBs will be mistaken as a high-redshift 
one, corresponding to ∼1 false alarm per 500 detected GRBs. 

Key words: methods: statistical – techniques: photometric – software: simulations – gamma-ray bursts. 
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 I N T RO D U C T I O N  

amma-ray bursts (GRBs) are the most electromagnetically lumi- 
ous events in the Univ erse. The y are divided into two classes
Mazets et al. 1981 ; Kouveliotou et al. 1993 ): short GRBs are
hought to arise from compact object mergers (Eichler et al. 1989 ;
arayan, Paczynski & Piran 1992 ), while long GRBs result from

he core collapse of massive stars (Woosley 1993 ). While both types
f GRB are exceedingly bright, long GRBs are the most luminous 
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Hjorth et al. 2003 ), with the brightest having isotropic-equi v alent
uminosities in excess of 10 54 ergs s −1 (Frederiks et al. 2013 ),
llowing them to potentially be detected out to redshifts as high as
20 (Lamb & Reichart 2000 ). Given their simple power-law spectra

nd extreme luminosities, long GRBs are ideal probes of the high-
edshift Univ erse. The y can be used to trace the chemical evolution
f the Uni verse (Sav aglio 2006 ; Th ̈one et al. 2013 ; Sparre et al.
014 ; Saccardi et al. 2023 ), study early star formation in the initial
ass function (Lloyd-Ronning, Fryer & Ramirez-Ruiz 2002 ; Fryer 

t al. 2022 ), Population III stars (Lloyd-Ronning et al. 2002 ; Campisi
t al. 2011 ), and constrain the Epoch of Reionization by examining
ydrogen in the high-redshift intergalactic medium (IGM; Miralda- 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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scud ́e 1998 ; Totani et al. 2006 ; Hartoog et al. 2015 ; Lidz et al.
021 ). For recent re vie ws of GRBs, see Salv aterra ( 2015 ), Le v an
t al. ( 2016 ), Schady ( 2017 ), van Eerten ( 2018 ), and Luongo &
uccino ( 2021 ). 
The Epoch of Reionization is theorized to have ended around

edshift z ∼ 6, or 1 billion yr after the big bang (Totani et al. 2006 ).
RBs at redshifts higher than z ∼ 6 will facilitate the study of star

ormation and chemical evolution at earlier stages in the evolution of
he Uni verse. Fe wer than 10 GRBs with z > 6 have been found to date
Tanvir et al. 2009 ; Cucchiara et al. 2011 ; Salvaterra 2015 ; Tanvir
t al. 2018 ). While there are multiple missions dedicated to GRB
etection and science, such as the Neil Gehrels Swift Observatory
 Swift ; Gehrels et al. 2004 ), the Fermi Gamma-ray Space Telescope
 Fermi ; Atwood et al. 2009 ), and KONUS- Wind (Aptekar et al.
995 ), these missions are not optimized for detecting high-redshift
RBs. The community has clearly recognized this absence, as a

egion of high- z GRB missions have been proposed over more than
 decade: Xenia (Kouveliotou, Piro & Xenia Collaboration 2008 ),
oint Astrophysics Nascent Universe Survey (Burrows et al. 2010 ),
nerg etic X-ray Ima ging Survey Telescope (Grindlay et al. 2010 ),
rigin (Piro et al. 2011 ), High-z gamma-ray bursts for unraveling the
ark a g es mission (Yonetoku et al. 2014 ), Gamow Explorer ( Gamow ;
hite et al. 2021 ), Transient High-Energy Sky and Early Universe

urveyor (Amati et al. 2021 ), and Space Variable Objects Monitor
 SVOM ; Atteia, Cordier & Wei 2022 ). So far, only SVOM has been
elected to become a mission, but it will be crucial to launch missions
nd instruments designed to detect high- z GRBs if we are to fully
tudy the environments and evolution of the early Universe using
RBs as probes. 
A major component of any future high- z GRB mission will be to

lert the community for rapid follow-up observations of high- z GRBs.
ast and accurate onboard redshift estimation will be vital to their
uccess. There are two ways to estimate redshift, using photometry
nd spectroscopy. Photometric redshift estimation relies on Lyman-

(Ly α) blanketing, a sharp loss of flux due to a multitude of
bsorption lines from neutral hydrogen throughout the IGM (Madau
995 ; Madau et al. 1996 ). Spectroscopic redshift estimates are more
ccurate but require a significantly longer observing time, as they
ely on measuring the flux through many small wavelength bins.
hotometry uses broad-bands, so it is faster than spectroscopy but less
ccurate for redshift estimation. Because of its speed and technical
onstraints, photometry is more practical for rapidly alerting the
ommunity to potential high- z GRBs. Ho we ver, photometry is
usceptible to misidentifying a high-extinction GRB as a high-
edshift one (Curran et al. 2008 ). Extinction can cause a seemingly
teep loss in flux when using broad photometric bands, as it has
 larger effect at shorter, bluer wavelengths (Cardelli, Clayton &
athis 1989 ; Fitzpatrick 1989 ; Pei 1992 ; Schady et al. 2012 ). For

igh-extinction GRBs where this effect is more pronounced, it can
e difficult to distinguish it from a high- z GRB. Finding as large
 number of true high- z GRBs as possible (completeness), while
inimizing the number of low- z high-extinction GRBs causing false

larms (purity), will establish the potential success of a high- z GRB
ission. 
Here we present an in-depth examination into our ability to

orrectly identify high- z GRBs using PHOZZY , a photometric redshift
stimation code capable of simulating and fitting photometric mea-
urements, and estimating instrument performance for future high- z
RB missions. The code can be applied to any instrument that makes
se of any number of simultaneously observed photometric bands for
edshift estimation. As an example, we use the channels proposed
or the Photo-z Infrared Telescope (PIRT; Seiffert et al. 2021 ; White
NRAS 526, 4599–4612 (2023) 
t al. 2021 ) onboard Gamow , a high- z GRB mission proposed to the
021 NASA Medium-Class Explorers (MIDEX) call (White et al.
021 ). The PIRT is an instrument designed to identify high- z GRBs
ithin 100 s and send an alert within 1000 s of a GRB trigger (White

t al. 2021 ). We use the PIRT to estimate how accurately we can
ifferentiate between true high- z GRBs, and low- z high-extinction
RBs. 
In Section 2 , we will discuss details about the code, including

he models, simulated GRB generation, and fitting used for the
imulations. We present the results of the simulations in Section 3 , in-
luding the key metrics used for estimating instrument performance.
n Sections 4 and 5 , we consider the implications of the results for
uture GRB missions and summarize our findings. 

 M E T H O D O L O G Y  A N D  M O D E L L I N G  C O D E  

n this section, we discuss the moti v ation and details behind our
pectral model and the fitting method. We then explain the choices
f distributions for both the input parameters of the simulated GRBs
nd priors for the fitting. Finally, we describe the structure of the
ode and how it functions. 

.1 Model 

e assume that the optical to near-infrared (NIR) regime of a GRB
fterglow spectrum can be modelled by a single power-law function
f flux versus frequency or wavelength (Sari, Piran & Narayan 1998 ).
wo major effects are applied to the spectrum: host galaxy extinction
nd intergalactic attenuation. 

Host galaxy extinction is the absorption and scattering of light
ue to gas and dust along the line of sight in the GRB host galaxy
Pei 1992 ; Klose et al. 2000 ; Greiner et al. 2011 ; Zafar et al. 2011 ;
ovino et al. 2013 ; Bolmer et al. 2018 ). Extinction is most prominent

n the ultraviolet and optical regimes, and primarily affects shorter,
luer wavelengths (Cardelli et al. 1989 ; Fitzpatrick 1989 ; Pei 1992 ).
or GRB host galaxies, there are typically three templates used:

he Small Magellanic Cloud (SMC), Large Magellanic Cloud, and
ilk y-Way e xtinction models dev eloped by Pei ( 1992 ). Our code

ncludes all three models, but we chose to use the SMC model for the
imulations presented in this paper because it is most consistent with
bservations for GRB host galaxies, which tend not to have a bump
t 2175 Å (e.g. Schady et al. 2012 ). The 2175 Å bump was originally
ttributed to graphite and silicate grains (Mathis, Rumpl & Nordsieck
977 ; Draine & Lee 1984 ; Pei 1992 ; Schady et al. 2012 ), or a mix of
arbonaceous grains with polycyclic aromatic hydrocarbons (PAHs;
i & Draine 2001 ; Weingartner & Draine 2001 ; Draine & Li 2007 ;
ischera & Dopita 2008 ). Ho we ver, recent work suggests that PAHs
lone may be the cause (Shi v aei et al. 2022 ; Hensley & Draine 2023 ;
in, Yang & Li 2023 ). 
Intergalactic attenuation is applied to the extincted spectrum using

 model developed by Meiksin ( 2006 ), which is based on work by
adau ( 1995 ). Intergalactic attenuation is the photoelectric absorp-

ion and resonant scattering by hydrogen gas in the intergalactic
edium (Madau 1995 ; Meiksin 2006 ). It is dominated by the Ly α

ine, which has a wavelength of λα = 1216 Å, corresponding to the
ransition between the first and second energy levels of the hydrogen
tom (Madau 1995 ; Madau et al. 1996 ; Meiksin 2006 ). This results
n a Ly α forest – a region of spectra ‘blanketed’ by a multitude
f Ly α (and other higher order Lyman series) absorption lines due
o intervening hydrogen (Madau 1995 ; Madau et al. 1996 ). The
ed edge of the Ly α forest features a steep drop-off in spectra that
ccurs at a wavelength of λα(1 + z), so it is heavily dependent on
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Table 1. Table of exponents for each exponential prior of the host galaxy 
extinction, including the various exponents for different redshift ranges in 
the ‘evolving’ prior. Note that the ‘evolving’ prior exponents get steeper in 
higher redshifts ranges due to the increasingly quick drop-off in A V at higher 
redshifts. The table also shows the different A V and E(B − V) upper limits 
included in the code, based on data from Bolmer et al. ( 2018 ), Covino et al. 
( 2013 ), and Greiner et al. ( 2011 ). 

Prior type z E(B − V) exponent Upper limit 1 Upper limit 2 
A V E(B − V) A V E(B − V) 

Basic ≥0 4.28 – – – –
Evolving 0–2 6.9 6 2.05 6 2.05 
Evolving 2–4 12.6 3 1.02 3 1.02 
Evolving > 4 36.2 1 0.34 0.5 0.17 
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he redshift (Madau 1995 ; Madau et al. 1996 ). This Ly α drop-off
s a key marker for estimating the redshift of extragalactic objects 
Steidel & Hamilton 1992 ; Madau et al. 1996 ; Steidel et al. 1996 ;
r ̈uhler et al. 2011 ), and is the main feature used by PHOZZY to
etermine the photometric redshift of a GRB. 
Overall the model is controlled by four parameters: the flux 

ormalization A , the spectral index β, the redshift z, and the
xtinction E(B − V ). The afterglow spectral flux is given by A and
, while E(B − V) and z influence the spectral shape through effects

elated to extinction and redshift, respectively. 

.2 Fitting with MCMC 

he code runs a Markov Chain Monte Carlo (MCMC) fitting method 
sing EMCEE , a python package developed by Foreman-Mackey et al. 
 2013 ). The MCMC method is a stochastic process that estimates
arameters using posterior distributions (Spade 2020 ). The posteriors 
re determined by a likelihood function based on the fit to the data
nd priors, probability distributions for the parameters based on a 
riori information (Spade 2020 ). 
The PHOZZY package uses a Bayesian likelihood function 

log ( L ) = −χ2 

2 
, 

where L is the likelihood, and χ2 is defined as 

2 = 

n ∑ 

1 

( m i − f i ) 2 

σ 2 
i 

, 

where m i and f i are the measured and fit average fluxes across
ach photometric band i , respectively, and σ i are the uncertainties 
f the measurements. The priors used in the Bayesian analysis are 
utlined in Section 2.3.1 . In the photo-z code, a set of 50 w alk ers
re given a 250-step ‘burn-in’ phase allowing them to settle into a
referred, stable region of parameter space before starting its 500- 
tep ‘production’ phase from which the posterior distributions are 
reated (Spade 2020 ). Once the runs are complete, the code takes the
nal positions of all 50 w alk ers for further analysis. 
Even though there are only four parameters, the parameter space 

s complex due to effects from host galaxy extinction and inter- 
alactic attenuation. Furthermore, the number of photometric bands 
s typically not much larger than the number of free parameters. 
his makes fitting prone to getting stuck in local minima instead of
nding a global minimum. An MCMC fitting method is helpful for
omplex parameter spaces because it is stochastic and less likely to 
et stuck in a local minimum. With an MCMC method we can take
he posterior distributions and the final positions of the w alk ers to
dentify multiple minima in parameter space if they exist. 

.3 Parameter priors and inputs 

CMC fitting methods allow for the input of a set of priors, or
robability distributions for the parameters that can inform the 
osteriors. These simulations also require distributions for the input 
arameters that will be used to simulate the photometric band fluxes. 
ere, we describe the parameter distributions used for both priors 

nd input. 

.3.1 Priors 

or the flux normalization A and redshift z, the code includes a
imple positive uniform prior. We considered including a redshift 
rior based on an expected redshift distribution of GRBs the would
av e been observ ed with Gamow (based on Ghirlanda et al. 2015 ,
021 ; Ghirlanda & Salvaterra 2022 ), but found that it resulted in
 large portion of high- z GRBs being confused as low- z GRBs. We
nstead use this expected distribution for the GRB input redshifts (see
ection 2.3.2 ). The spectral index is given a Gaussian prior centred
n β = 0.7 with a standard deviation of 0.2, which is based on a
arge sample of observed optical afterglow spectral indices (Li et al.
015 ). 
The code includes multiple priors for the host galaxy extinction 

(B − V) , which are explored in the simulations presented in this
aper: 

(i) ‘none’ – extinction is assumed to be 0 and is not fit as a free
arameter; 
(ii) ‘basic’ – a single exponential prior based on results from 

ovino et al. ( 2013 ); 
(iii) ‘evolving’ – a more complex exponential prior that combines 

esults from Covino et al. ( 2013 ), Bolmer et al. ( 2018 ), and Greiner
t al. ( 2011 ), in which the exponential constant changes depending
n the redshift. 

In their study of Swift GRBs, Covino et al. ( 2013 ) found that most
RBs have a relatively low host galaxy extinction, with a quickly
iminishing number of GRBs at higher extinctions. We model our 
basic’ prior off of this (Covino et al. 2013 ) data by fitting their
xtinction distribution with an exponential function. 

A later study performed by Bolmer et al. ( 2018 ) found that
igher redshift GRBs have significantly lower extinction compared 
o those of lower-redshift GRBs, with GRBs with 2 < z < 4 all
aving A V < 3, and GRBs with z > 4 having A V < 0.5. The
ame A V thresholds appear when combining the GRBs examined 
y Bolmer et al. ( 2018 ) and Covino et al. ( 2013 ) with an additional
RB host galaxy extinction study done by Greiner et al. ( 2011 ). To

ccount for this relationship between redshift and extinction, we also 
reated an ‘evolving’ extinction prior for which we fit the extinction
istributions for the z < 2, 2 < z < 4, and z > 4 data sets with
n exponential function, and use the different exponents for their 
orresponding redshift ranges (see Table 1 ). 

We also include the option for two different sets of upper limits
n the ‘evolving’ extinction prior, based on the A V thresholds for
ifferent redshift ranges in the Bolmer et al. ( 2018 ), Covino et al.
 2013 ), and Greiner et al. ( 2011 ) GRB data (see Table 1 ). 

.3.2 Inputs 

hen selecting the input parameters for each simulated GRB, the 
ode can pull from any of the priors for each respective parameter, but
MNRAS 526, 4599–4612 (2023) 
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Figure 1. The structure of PHOZZY . Diagram shows the different modules 
and in which other modules of the code they are used. The main module 
PHOZZY uses the create data , mcmc , and analysis modules to first 
create a number of simulated GRB photometric band measurements, then 
perform fits on each set, and finally, compile all results and determine the 
completeness, purity, and accuracy metrics for the results. 
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ith two additions: a lognormal redshift distribution and a Gaussian
ux distribution with a mean flux determined by the input redshift. 
We include a lognormal input redshift distribution ( μ = 0.8, σ =

.55) based on an expected redshift distribution for GRBs observed
y Gamow and based on previous work found in Ghirlanda et al.
 2015 , 2021 ) and Ghirlanda & Salvaterra ( 2022 ). We chose not to
nclude this distribution as a prior because it ne gativ ely impacted
he fitting methods’ ability to identify high- z GRBs because the
istribution is concentrated around low redshifts, and increases
he likelihood that it would identify high- z GRBs as low- z GRBs.
o we ver, as an input distribution it can estimate how accurate the
hoto- z measurements will be for a general population of GRBs.
 alse positiv es due to low- z dusty interlopers are a great concern for
 high- z GRB mission, so it is vital to ensure that low-redshift GRBs
re correctly categorized. This is especially important since the vast
ajority of GRBs will likely have z < 5, so even a small percentage

f false positives could result in more false positives than true high- z
etections. 
For the input flux, we use a Gaussian prior for the log of the

ux in μJy ( μ = 6.18, σ = 2.65) based on the expected brightness
istribution for GRBs at redshift 10 (Kann et al., submitted). The
ux is then adjusted for the redshift of the GRB by using the
atio of luminosity distances (Weinberg 1972 ) to determine what the
rightness would be for a similar GRB at a different redshift. Note
hat we do not account for the lower intrinsic luminosities for lower-
edshift GRBs (Petrosian, Kitanidis & Kocevski 2015 ; Pescalli et al.
016 ; Lloyd-Ronning, Aykutalp & Johnson 2019 ; Banerjee & Guetta
022 ). This flux distribution may also be optimistic for Gamow , since
t may detect more faint GRBs with dimmer afterglows (Kann et al., in
reparation). If this is the case, this distribution may underestimate
he rate at which the PIRT will observe high-redshift GRBs with
ow fluxes, which tend to have less certain photometric redshift
stimations. Ho we ver, we do not use this distribution as a prior, so it
as a limited impact on the fitting itself. As an input distribution, we
hose to rely on the added uncertainty in the band measurements to
nv elop an y discrepancies. 

.4 Data & code structure 

he code first generates parameters for the desired number of GRBs.
hese sets of parameters are randomly generated by pulling from

he input distributions specified by the user (see Section 2.3.2 ), to
reate a set of simulated GRB spectra using the model laid out in
ection 2.1 . From these spectra, the flux measurements for each
f the specified photometric bands are determined by finding the
v erage inte grated flux across the entire band, and then perturbed
ccording to the assumed statistical uncertainty added in quadrature
o the estimated instrumental noise. If the measured flux is below the
iven detection limit for all photometric bands, the corresponding set
f parameters, GRB spectrum, and band measurements are recreated
o ensure that all simulated GRBs would be considered detections. 

The perturbed fluxes are fit using the MCMC fitting method
escribed in Section 2.2 using the priors selected by the user (see
ection 2.3.1 ). The final fits, posteriors, and positions of all w alk ers

n parameter space for each of the fit are saved for further analysis.
he full code structure is given in Fig. 1 . 
F or the e xample simulations, we input the fiv e simultaneously

bserved optical-NIR bands proposed for the PIRT, which have
avelength ranges of 0.50–0.64, 0.64–0.87, 0.87–1.2, 1.2–1.7, and
.7–2.4 μm. These bands were part of the final design reported in
he Gamow Explorer ’s NASA MIDEX proposal, and are updated
ersions of the ranges from Seiffert et al. ( 2021 ) and White et al.
NRAS 526, 4599–4612 (2023) 
 2021 ). These band edges correspond to the wavelengths of the Ly α
reaks for redshifts of 3.1, 4.3, 6.2, 8.9, 13.0, and 18.7, respectively.

PHOZZY allows for a large amount of customization. It includes
nputs for the instrument parameters, such as band edges, statistical
ncertainties, the 1 σ instrument noise value, and an n σ detection
imit, where n is how many multiples abo v e the 1 σ instrument noise
evel a measurement must be to be considered a detection in that
and. It also allows the user to indicate the desired host galaxy
xtinction model, and the parameter input and prior distributions. The
ode can be used for instruments with bands that are not observed
imultaneously, but the user must account for the additional effects
nd uncertainty that arise when interpolating flux measurements (see
ection 4 ). For each of the PIRT simulations, we create and fit sets
f 500 GRBs, and assume a statistical uncertainty of 5 per cent and
 μJy of 1 σ instrument noise. The results for the PIRT simulations
re presented in Section 3 . 

 RESULTS  

ere we present the results of the PHOZZY simulations for the
amow PIRT instrument, using three metrics to assess the instrument
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Figure 2. Regions defined as true positive, false positive, true negative, 
and false ne gativ e based on the input and output redshift results. For these 
simulations, we consider z = 5 the threshold between low- and high-redshift 
GRBs (white lines). 
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erformance for categorizing high- versus low-redshift GRBs, and 
etrieving the redshift: 

(i) completeness – for GRBs abo v e redshift 5, how many are 
orrectly identified as high-redshift ( z > 5) GRBs; 

(ii) purity – for GRBs below redshift 5, how many are correctly 
dentified as low-redshift ( z < 5) GRBs; 

(iii) accuracy – for GRBs above redshift 5, how often does the 
tting method return a redshift within 10 per cent and 20 per cent of

he input redshift. 

The accuracy metric determines how well the fits retrieve the 
rue redshift, while completeness determines the likelihood of a true 
ositive (as opposed to a false negative) for high-redshift GRBs, 
nd purity gives the likelihood of a true negative (as opposed to a
alse positive) for low-redshift GRBs (see Fig. 2 ). We estimate these
etrics by running fits on 500 randomly generated GRB spectra with 
 variety of input distributions and priors. For these simulations we 
efine high-redshift as z > 5, but the code allows this threshold to be
hanged by the user. 

For these simulations we draw from two different redshift distribu- 
ions for varying purposes: a uniform redshift distribution for which 
ll redshifts between 0 and 20 are equally likely, and an expected
edshift distribution for Gamow that was created using previous work 
ound in Ghirlanda et al. ( 2015 , 2021 ) and Ghirlanda & Salvaterra
 2022 ). 

The uniform redshift distribution is mainly used for measuring 
ompleteness, while the measured redshift distribution is mainly 
sed for measuring purity. To estimate completeness, we need to 
stablish the instrument performance at all redshifts. The measured 
edshift distribution has very few high- z GRBs, and those that do
ccur are concentrated towards the lower end between z = 5–6, so
t supplies very little information about the instrument performance 
f, for example, a z = 10 GRB were to be observed. The uniform
istribution is evenly distributed across all redshifts, so it truly tests
he instrument performance for all redshifts. For estimating purity, 
e do need to take the measured redshift distribution into account. In

his case, we need to know how many misidentified low- z GRBs there
re, which implies using a distribution similar to what we expect to
bserv e. F or estimating accuracy, we use and present the results for
oth distributions. 
For both of these redshift distributions we run a variety of

onfigurations for input and fitting prior extinction distributions: 

(i) Input: no extinction, Fitting: no extinction – acts as a baseline 
nd makes sure the code is working properly; from here on, this will
e denoted as the ‘no extinction baseline’. 
(ii) Input: no extinction, Fitting: basic extinction prior – acts as 

 baseline for how well the instrument would do in the best case
cenario where there is no host galaxy extinction for any GRBs; this
ho ws ho w adding extinction as a free parameter affects the ability
o retrieve the redshift, and will be denoted as the ‘extinction prior
aseline’. 
(iii) Input: basic extinction, Fitting: basic extinction prior – shows 

ow well the instrument performs for an expected distribution of 
RBs when using the basic fitting prior. 
(iv) Input: ‘e volving’ extinction, Fitting: ‘e volving’ extinction 

rior – shows how well the instrument performs for an expected 
istribution of GRBs when using the ‘evolving’ fitting prior. 
(v) Input: ‘evolving’ extinction with upper limit 1, Fitting; ‘evolv- 

ng’ extinction with upper limit 1 – sho ws ho w results change when
dding a lightly constrained upper limit on host galaxy extinction 
hen using the ‘evolving’ extinction prior. 
(vi) Input: ‘evolving’ extinction with upper limit 2, Fitting: ‘evolv- 

ng’ extinction with upper limit 2 – sho ws ho w results change when
dding a more constrained upper limit on host galaxy extinction 
hen using the ‘evolving’ extinction prior. 

While the runs with no extinction for the inputs and/or priors
orm a baseline, the others determine which set of priors will be
est for correctly identifying low- and high-redshift GRBs for the 
amow PIRT instrument specifications (observing bands, instrument 
oise, etc.). The results for all runs are summarized in Table 2 ,
nd displayed using density plots showing the input versus retrieved 
edshift for all runs in Appendix A (see Figs. A1–A6 ). The results and
mplications for the completeness, purity, and accuracy are detailed 
n the following subsections. 

.1 Completeness 

ompleteness is a key metric for estimating the instrument perfor- 
ance at high redshifts by determining how many high- z GRBs will

e correctly identified as such and how many will be missed. In
able 2 , we show the simulation results for both a uniform and an
xpected redshift distrib ution, b ut to estimate completeness we use
he uniform distribution. 

For the ‘no extinction baseline’ run, the completeness is unsur- 
risingly high at 98.1 per cent since the high- z GRBs cannot be
istaken for high-extinction GRBs in this case. Of the ∼ 2 per cent

f GRBs that are mistaken as low-redshift, all had redshifts between
 = 5–5.5, and were mistaken as GRBs with redshifts between z =
.5–5, so they were only missed due to their proximity to the high-
edshift threshold. When performing the ‘extinction prior baseline’ 
un, the completeness drops significantly to 85.4 per cent. Including 
xtinction in the fitting method increases the chances of confusing 
igh- z GRBs with low- z dusty interlopers, especially when there are
nly one or two filters with non-zero fluxes (see Fig. 3 ). 
When including extinction as both an input and fitting parameter, 

he ‘evolving’ extinction distribution with upper limit 1 (see Table 1 )
erformed the best with a completeness of 88.0 per cent. Ho we ver,
or all simulations that use extinction for both the inputs and fit priors,
he completeness is relatively similar, between ∼ 82 − 88 per cent , 
MNRAS 526, 4599–4612 (2023) 
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Table 2. Results from all simulations, listing redshift ( z ) and host galaxy 
extinction [E(B − V ] inputs and priors, as well as the completeness (for 
GRBs abo v e redshift 5, how man y are correctly identified as high- z GRBs) 
and purity (for GRBs below redshift 5, how many are correctly identified as 
low- z GRBs). Baseline runs are italicized, and the most relevant statistic in 
terms of completeness and purity are in bold. 

z E(B − V ) E(B − V) E(B − V ) Completeness Purity 
Input Input Prior Upper limit 

Uniform None None None 98.1 per cent 99.4 
per cent 

Uniform None Basic None 85.4 per cent 99.7 
per cent 

Uniform Basic Basic None 84.3 per cent 92.0 
per cent 

Uniform Evolving Evolving None 81.7 per cent 99.8 
per cent 

Uniform Evolving Evolving Upper limit 1 88.0 per cent 98.0 
per cent 

Uniform Evolving Evolving Upper limit 2 84.3 per cent 84.3 
per cent 

Expected None None None 97.3 per cent 99.7 
per cent 

Expected None Basic None 88.9 per cent > 99.99 
per cent 

Expected Basic Basic None 78.9 per cent 94.0 
per cent 

Expected Evolving Evolving None 87.9 per cent 99.4 
per cent 

Expected Evolving Evolving Upper limit 1 77.3 per cent 96.1 
per cent 

Expected Evolving Evolving Upper limit 2 82.4 per cent 83.8 
per cent 
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Figure 3. Example fits to simulated spectra, with the black lines showing 
the input GRB spectra, the black points showing simulated fluxes with 1 σ
uncertainties, and the blue lines indicating the final positions of the 50 w alk ers. 
High-redshift solutions are in red, and low-redshift solutions are in blue. Top: 
A fit where all 50 w alk ers retrieve a redshift within 10 per cent of the input 
redshift. Bottom: A fit where the w alk ers find varying solutions. Both the 
high- z and low- z high-extinction outputs adequately fit the data, giving a 
mixed result for the GRB redshift. 
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o the choice of distribution seems to have a limited effect on the
ompleteness. 

Only taking GRBs with 5 < z < 13 has little impact on the
ompleteness result. The method does seem to be prone to missing
igh- z GRBs when using the ‘evolving’ extinction prior. For example,
hen using the ‘evolving’ prior without upper limits, GRBs with z
 13 account for 43 per cent of all missed high- z GRBs, while z >

.9 account for 80 per cent of all misidentified high- z GRBs (see Fig.
4 :Left). GRBs with z > 8.9 have their Ly α dropoff occur in one
f the two reddest photometric bands, where it is more difficult to
istinguish between high- z and high-extinction GRBs (see Fig. 3 ). 
When examining the completeness between 5 < z < 13, the

ompleteness for the ‘evolving’ extinction prior increases from 81.7
er cent to 83.0 per cent. Ho we ver, for GRBs with 5 < z < 8.9, where
ost high- z GRBs are expected to be, the completeness increases to

3.0 per cent. A large portion of the remaining miss-identified high- z
RBs are those near the high- z threshold. Of the missed high- z GRBs
ith 5 < z < 13, as many as ∼ 10 per cent fall between 5–5.5 when
sing the ‘evolving’ extinction with upper limit 1 (see Fig. A5 :Left).

.2 Purity 

he purity metric is used to determine the instrument’s ability to
orrectly identify low-redshift GRBs. It estimates the risk for false
ositives by mistaking low-redshift, high-extinction GRBs for high-
edshift ones. It is crucial to reduce the number of false positives,
ecause if high- z detections are regularly false alarms, this will have a
arge impact on the use of follow-up resources. For estimating purity,
NRAS 526, 4599–4612 (2023) 
e focus on the expected redshift distribution because it e v aluates
he false positive rate for a general population of GRBs. 

The baseline fits both have very high purity results of 99.7 per cent
nd > 99 . 99 per cent for the ‘no extinction baseline’ and ‘extinction
rior baseline’ simulations, respectively; so when extinction is not
resent in the GRB spectra, very few low- z GRBs are mistaken for
igh- z ones. Additionally, for both of the baseline runs, all of the
RBs mistaken for high redshift had input redshifts between 4.5–
 and output redshifts between 5–5.5, so these lapses in purity are
aused by GRBs with redshifts near our high-redshift threshold. 

When using the basic extinction distribution for both the inputs and
he fitting, there is a drop in purity down to 94.0 per cent. Ho we ver,
hen switching to the ‘evolving’ extinction prior, the purity jumps
ack up to 99.4 per cent, which is comparable to the baseline runs.
he impro v ement when switching from the ‘basic’ to the ‘evolving’
rior is likely due to the more realistic simulated GRB spectra and
he additional information about extinction as a function of redshift.

hen using the ‘basic’ prior, there are more GRBs that have both a
igh redshift and a high extinction. These kinds of simulated GRBs
o not match up with observation based on studies done by Bolmer
t al. ( 2018 ), Covino et al. ( 2013 ), and Greiner et al. ( 2011 ), and have
pectra that make it difficult to tease out the redshift. The w alk ers are
ble to use both high redshift and high extinction for fitting because
hey do not have a prior that prevents them from settling on this
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Figure 4. Example fits to simulated spectra, with the black lines showing 
the input GRB spectra, the black points showing simulated fluxes with 1 σ
uncertainties, and the blue lines indicating the final positions of the 50 w alk ers. 
Top: An example of a fit using the ‘basic’ extinction distribution for the inputs 
and priors. This simulated GRB has a high redshift and high extinction, which 
makes it difficult to determine the redshift accurately. High-redshift solutions 
are in red, and low-redshift solutions are in blue. Bottom: A similar fit 
using the ‘evolving’ extinction distribution. The w alk ers are less inclined to 
combine high z and high E(B − V ) values for fitting, even though it would 
accurately fit the low flux in the bluer bands. This impro v es the redshift 
retrie v al performance. 
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nlikely solution. Using the ‘evolving’ extinction prior eliminates 
hese kinds of GRBs and fits, which results in an increase in purity
see Fig. 4 ). We note that the implementation of upper limits on E(B

V ) result in a decrease in purity, down to 96.1 per cent or even 83.8
er cent for the most constrained upper limit. This will be further
iscussed in Section 4.2 . 

.3 Accuracy 

he accuracy metric determines how well the code can estimate the 
ctual redshift of a GRB. We explore the accuracy from two different
erspectives. First we examine the accuracy from a ‘Universe 
erspective’, i.e. for GRBs with input redshifts of z > 5, how
an y hav e an accurate measured redshift. This sho ws ho w well the

nstrument can estimate the actual redshift. Secondly, we examine 
he accuracy from an ‘observer perspective’, i.e. for GRBs with 

easured redshifts of z > 5, how many have accurately retrieved 
he input redshift. This tells us how many of the GRBs identified as
aving a high redshift will have accurate redshift measurements. 
For the ‘no extinction baseline’, when looking at the accuracy 

rom the Universe perspective and GRBs with redshifts abo v e 5,
e retrieve a redshift within 10 per cent of the input redshift in
8.2 per cent of the cases for a uniform redshift distribution, and in
0.4 per cent of the cases for an expected redshift distribution. The
arge accuracy difference between the uniform and expected redshift 
istributions can be attributed to the much lower abundance of z >
2 GRBs in the expected redshift distribution. The method struggles 
t redshifts abo v e z ∼ 12 because either only the reddest filter has a
on-zero flux (for z > 13) or the flux in the second reddest band is
ow enough that it is easily mistaken as a non-zero flux measurement
for 12 < z < 13). In these cases, constraining the fit parameters
ecomes very difficult (see Fig. 5 ). When looking only at the redshift
etrie v al between z of 5–12 for the uniform distribution, the accuracy
ncreases to 93.5 per cent, which is comparable to the result for the
xpected distribution. From an observer perspective, the accuracy 
s comparable to the accuracy from a Universe perspective for all
ccuracy metrics in the case of the ‘no extinction baseline’ (see
able 3 ). 
When using the ‘extinction prior baseline’, the accuracy from 

he Uni verse perspecti ve for the uniform redshift distribution drops
o 58.8 per cent. This sharp loss of accuracy can be attributed to the
ncrease in the complexity of the model. When adding extinction as a
ree parameter, at least three filters with non-zero flux measurements 
re required to constrain the flux, redshift, and extinction. The fitting
ethod has a much harder time constraining the redshift for GRBs
ith z > 8.9 where the Ly α dropoff falls in one of the two reddest
lters and only 1–2 non-zero fluxes are present (see Fig. A2 :Left).
or the expected distribution, there is also a drop in accuracy, but it

s not nearly as severe as the loss of accuracy for the uniform redshift
istribution: from 90.4 per cent to 83.4 per cent. This is because the
xpected redshift distribution has far fewer z > 8.9 GRBs than the
niform distribution, and therefore is less impacted by the addition 
f extinction as a fitting parameter. The accuracy from an observer
erspective also decreases, but not nearly as much as the accuracy 
rom a Universe perspectiv e. F or e xample, for GRBs with measured
edshifts of z > 5, the code retrieves the redshift within 10 per cent of
he input redshift 68.8 per cent of the time, compared to 58.8 per cent
f the time from a Universe perspective. 
When extinction is included as both an input and fitting parameter

sing the ‘basic’ extinction distribution, the accuracy continues to 
ecrease from both a Universe and observer perspective. This is due
o high-extinction GRB spectra now present in the sample, which 
ave lo w relati ve flux v alues in the bluer bands and are thus easy to
MNRAS 526, 4599–4612 (2023) 
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Table 3. Results from all simulations, listing redshift ( z ) and E(B − V ) inputs and priors, as well as the accuracy from a Uni verse perspecti ve (’Uni verse 
Acc.’: for GRBs with an input redshift abo v e 5, or between 5 and 12, how man y hav e a retriev ed redshift within 10 per cent or 20 per cent of the input redshift), 
and the accuracy from an observer perspective (’Observer Acc.’: for GRBs with a retrieved redshift above 5, or between 5 and 12, how many are within 10 
per cent or 20 per cent of the input redshift). Baseline runs are italicized. 

z E(B − V) E(B − V) E(B − V) 
Universe acc. (10 

per cent) 
Universe acc. (20 

per cent) 
Observer acc. (10 

per cent) 
Observer acc. (20 

per cent) 
Input Input Prior upper Limit 5 < z 5 < z < 12 5 < z 5 < z < 12 5 < z 5 < z < 12 5 < z 5 < z < 12 

Uniform None None None 78.2 
per cent 

93.5 
per cent 

90.8 
per cent 

96.8 
per cent 

79.7 
per cent 

95.5 
per cent 

92.5 
per cent 

99.1 
per cent 

Uniform None Basic None 58.8 
per cent 

70.3 
per cent 

75.2 
per cent 

81.6 
per cent 

68.8 
per cent 

75.5 
per cent 

87.8 
per cent 

87.8 
per cent 

Uniform Basic Basic None 49.2 
per cent 

50.7 
per cent 

65.0 
per cent 

62.7 
per cent 

54.6 
per cent 

56.6 
per cent 

72.0 
per cent 

70.6 
per cent 

Uniform Evolving Evolving None 62.2 
per cent 

79.3 
per cent 

75.0 
per cent 

84.0 
per cent 

76.0 
per cent 

92.1 
per cent 

91.7 
per cent 

97.3 
per cent 

Uniform Evolving Evolving Upper limit 1 68.2 
per cent 

85.4 
per cent 

81.0 
per cent 

89.4 
per cent 

76.5 
per cent 

91.3 
per cent 

90.9 
per cent 

95.8 
per cent 

Uniform Evolving Evolving Upper limit 2 64.5 
per cent 

76.4 
per cent 

77.6 
per cent 

82.1 
per cent 

70.3 
per cent 

83.2 
per cent 

84.7 
per cent 

89.2 
per cent 

Expected None None None 90.4 
per cent 

92.0 
per cent 

94.5 
per cent 

94.9 
per cent 

93.0 
per cent 

94.8 
per cent 

97.1 
per cent 

97.5 
per cent 

Expected None Basic None 83.4 
per cent 

83.8 
per cent 

86.8 
per cent 

87.1 
per cent 

92.9 
per cent 

93.7 
per cent 

96.7 
per cent 

97.2 
per cent 

Expected Basic Basic None 62.8 
per cent 

63.9 
per cent 

71.6 
per cent 

72.3 
per cent 

54.9 
per cent 

57.0 
per cent 

63.2 
per cent 

65.1 
per cent 

Expected Evolving Evolving None 83.5 
per cent 

86.2 
per cent 

87.0 
per cent 

88.1 
per cent 

91.9 
per cent 

95.2 
per cent 

95.6 
per cent 

96.8 
per cent 

Expected Evolving Evolving Upper limit 1 73.3 
per cent 

73.1 
per cent 

76.9 
per cent 

76.3 
per cent 

74.9 
per cent 

80.4 
per cent 

79.0 
per cent 

84.4 
per cent 

Expected Evolving Evolving Upper limit 2 78.4 
per cent 

78.6 
per cent 

82.5 
per cent 

82.6 
per cent 

47.1 
per cent 

58.7 
per cent 

49.7 
per cent 

61.8 
per cent 
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istake for a high-redshift GRB. When using the ‘evolving’ extinc-
ion distribution, the instrument’s accuracies become comparable to
hose of the ‘extinction prior baseline’. Of the different ‘evolving’
xtinction distributions, the performance of the one with no upper
imits on E(B − V ), and the one using upper limit 1 for E(B − V) (see
able 1 ), are comparable to that of the ‘extinction prior baseline’
imulation for nearly ev ery accurac y measurement, re gardless of
nput redshift distribution. This is promising because the instrument
s expected to perform as well as it would in the best case scenario
here every detected GRB has virtually no extinction. 
The run using the ‘evolving’ extinction prior with upper limit 1

ends to do slightly better from the Uni verse perspecti ve, as for GRBs
ith 5 < z < 12 it retrieves a redshift within 10 per cent of the input

edshift in 85.4 per cent of cases, compared to 79.3 per cent of cases
or the ‘evolving’ extinction prior without upper limits. Ho we ver,
sing the ‘evolving’ extinction prior with no upper limits outperforms
ll other runs from an observational perspectiv e. F or e xample, for
RBs with a measured redshift 5 < z < 12, the measured redshift

s within 10 per cent of the input redshift 92.1 per cent of the time
hen using the ‘evolving’ extinction without upper limit, as opposed

o 91.3 per cent of the time when using the ‘evolving’ extinction
ith upper limit 1. This pattern holds when examining the accuracy
etric as a function of redshift (see Figs 6 and 7 ). For the ‘evolving’

xtinction prior without upper limits, the accuracy from a Universe
erspective gradually decreases with higher redshifts, but from an
bserv er perspectiv e it has a high accuracy out to z ∼ 12. Conversely,
he ‘evolving’ extinction prior with upper limit 1 has a more reliable
ccuracy at higher redshifts from a universe perspective, but has a
ess reliable accuracy from an observ ational perspecti ve. This means
hat while the ‘evolving’ extinction with upper limit 1 has a better
NRAS 526, 4599–4612 (2023) 
ccuracy for high- z GRBs o v erall, for GRBs that are successfully
dentified as high-redshift the ‘evolving’ extinction prior without
pper limits is more reliable. For full accuracy results see Table 3 . 

 DI SCUSSI ON  

n the previous section, we presented a variety of statistics for com-
leteness, purity, and accuracy when making different assumptions
bout the redshift and host galaxy extinction distributions. We will
ow discuss the implications of these results for determining which
xtinction prior leads to the best performance of the Gamow PIRT, the
rawbacks of implementing E(B − V) upper limits, the limitations of
he instrument at low redshifts, and the advantages of simultaneous
bservations in different photometric bands. 

.1 Optimal E(B − V) prior 

here is a natural trade-off between completeness and purity. We have
hown that adding upper limits on the host galaxy extinction increases
he completeness while at the same time ne gativ ely affecting the
urity. When looking at percentage changes, it is not obvious what
he optimal choice of extinction model is. Ho we ver, it is important to
ote that there is a much larger population of low- z GRBs, so a small
hange in percentage can have a noticeable impact on the number
f false positives. We must be mindful of this when balancing our
bility to maximize the number of correctly identified high- z GRBs
hile minimizing false positives. Here, we use Swift ’s detection rate

o estimate the number of high- z triggers and false alarms. 
Since its launch in 2004, Swift has detected ∼100 GRBs per year

Gehrels, Cannizzo & Norris 2007 ). If we assume the same rate of
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Figure 6. Accuracy as a function of redshift when using the ‘evolving’ 
extinction prior without upper limits. The black dashed lines represent the 
redshifts where the Ly α dropoff aligns with the filter edges, and the grey 
dashed lines show redshift in increments of 1 and the fraction of GRBs with 
accurate redshifts in increments of 0.2. Top: The fraction of retrieved redshifts 
within 10 per cent and 20 per cent of the input redshift for z in > 5 (Universe 
perspective). Bottom: The fraction of retrieved redshifts within 10 per cent 
and 20 per cent of the input redshift for z ret > 5 (observer perspective). 

d  

d
2  

9  

p  

a  

h
y

l  

9
z  

d  

i  

G  

w
u
p

4

F  

z  

t  

Figure 7. Accuracy as a function of redshift when using the ‘evolving’ 
extinction prior with upper limit 1. The black dashed lines represent the 
redshifts where the Ly α dropoff aligns with the filter edges, and the grey 
dashed lines show redshift in increments of 1 and the fraction of GRBs with 
accurate redshifts in increments of 0.2. Top: The fraction of retrieved redshifts 
within 10 per cent and 20 per cent of the input redshift for z in > 5 (Universe 
perspective). Bottom: The fraction of retrieved redshifts within 10 per cent 
and 20 per cent of the input redshift for z ret > 5 (observer perspective). 
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etection for a mission like Gamow , based on the measured redshift
istribution (Ghirlanda et al. 2015 , 2021 ; Ghirlanda & Salvaterra 
022 ), approximately 7.3 of these GRBs would have z > 5, while
2.7 GRBs would have z < 5. When using the ‘evolving’ extinction
rior with no upper limit, we find a completeness of 81.7 per cent and
 purity of 99.4 per cent. This translates to ∼6 correctly identified
igh- z GRBs per year, and ∼0.2 misidentified low-redshift GRB per 
ear, or ∼1 o v er the course of a five-year mission. 

Conversely, when using the ‘evolving’ extinction prior with upper 
imit 1, we find a completeness of 88.0 per cent and a purity of
6.1 per cent, which translates to ∼6.4 correctly identified high- 
 GRBs and ∼3.6 misidentified low- z GRBs per year. The small
ecrease in purity when using upper limit 1 results in a detrimental
ncrease in false alarms, as now 36 per cent of reported high-redshift
RBs would turn out to be low- z dusty interlopers. For this reason,
e would recommend to use a ‘evolving’ extinction prior without 
pper limits for both simulating performance beforehand and fitting 
hotometric data during the instrument’s operation. 

.2 Extremes of parameter space 

or all simulations there is a loss of accurate redshift retrie v al belo w
 ∼ 3. This result is expected as the Ly α break does not fall in any of
he Gamow PIRT photometric bands for GRBs with z ≤ 3.1, so there
re no features to distinguish between GRBs with redshifts below this
hreshold. We are not concerned about the loss of accuracy for low- z
RBs as long as we are capable of accurately identifying them as
aving a low redshift. The main goal for a high- z GRB mission is to
inimize the rate of false positives caused by low- z dusty interlopers,

o maximizing the purity is far more important than accurate redshift
etrie v al for z < 3 GRBs. 

For the ‘evolving’ extinction prior, we find that the more restrictive
he upper limits on E(B − V) , the worse the purity becomes (see
able 2 ). This degradation of purity is also visible in the input
ersus output redshift density plots. See Figs A4 :Right, A5 :Right,
nd A6 :Right for comparison of results from the ‘evolving’ extinction
uns with no upper limit, upper limit 1, and upper limit 2, respectively.
his occurs because the upper limits restrict the w alk ers to regions
f parameter space that they would otherwise have access to at a
ifferent redshift. For w alk ers with a high-redshift guess at the start
f the burn-in phase, they are restricted to fitting the fluxes with
 lower E(B − V ), which may inadvertently push them towards a
igher redshift if the bluer bands have relati vely lo w-flux v alues.
hile this is not an issue when fitting high- z GRBs, it is problematic

or w alk ers fitting a low- z high-extinction GRB if they start in this
egion of parameter space. These upper limits are an example of a
rior that, while adding more information about the parameters, can 
mpact the w alk ers’ ability to mo v e through parameter space. 
MNRAS 526, 4599–4612 (2023) 
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M

Figure 8. Accuracy as a function of flux for both a Universe and an observer 
perspectiv e. The accurac y is the rate of retrie v al within 10 per cent of 
the rele v ant redshift. The flux ceiling is the maximum flux in the reddest 
photometric band of the GRBs considered. 

Figure 9. Completeness and purity as a function of flux. The flux ceiling is 
the maximum flux in the reddest photometric band of the GRBs considered. 
The purity decreases at lower flux values, while the completeness is fairly 
constant. 
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.3 Perf ormance f or low-flux GRBs 

hen examining the completeness, purity, and accuracy statistics
or GRBs with lower flux values, the purity and accuracy tend
o decrease, while the completeness remains relativ ely stable. F or
xample, when using the ‘evolving’ extinction prior with no upper
imits, the percentage of retrieved redshifts within 10 per cent of the
nput redshift for GRBs with z > 5 drops to 45.3 per cent when
nly looking at those with fluxes less than 75 μJy in the reddest
hotometric band, compared to 79.3 per cent for all GRBs with z > 5.
he accuracy also decreases at low flux from an observ er perspectiv e.
hen looking at GRBs with z > 5 and fluxes in the reddest band

ess than 75 μJy, only 53.7 per cent of retrieved redshifts are within
0 per cent of the input redshift for GRBs, compared to 91.9 per cent
or all GRB with z > 5 (see Fig. 8 ). 

The purity also drops significantly from 99.4 per cent for all GRBs
o 81.2 per cent for GRBs with fluxes less than 100 μJy, and to 75.1
er cent for GRBs with fluxes less than 75 μJy in the reddest band.
o we ver, the completeness remains largely unaffected regardless of
RB flux, as it ho v ers between 82 and 88 per cent when looking at
RBs with fluxes less than 75 μJy up to GRBs with fluxes less than
00 μJy in the reddest band (see Fig. 9 ). This is also consistent with
he behaviour of the completeness when using different extinction
riors. 
NRAS 526, 4599–4612 (2023) 
While the o v erall purity is very high and the rate of false positives
s low, GRBs with lower flux values are more likely to be confused
s having a high redshift. For this reason, it may be important to flag
ow-flux bursts as being higher risk targets for follow-up observations
f future high- z GRB missions. 

.4 Simultaneous bands 

n recent years, multiple instruments have been designed to use
ichroics and beam splitters to take simultaneous photometric band
easurements, such as GROND (Greiner et al. 2008 ), the PIRT on

he Gamow explorer (Seiffert et al. 2021 ; White et al. 2021 ), and
CORPIO, an imaging and spectroscopy instrument in development
or the Gemini South telescope (Robberto et al. 2020 ). Simultaneous
easurements in different photometric bands are advantageous for

ast evolving transients such as GRBs, because it eliminates the un-
ertainty that arises when correcting for rapid fading of the afterglow:
ven a small change in time can result in a large change in flux, which
an only be corrected for by interpolation and e xtrapolation. Ev en
areful correction can introduce error in the photometric band fluxes,
s it still relies on accurate measurements of temporal indices to do
he correction. This is particularly important for the fast-evolving
ight curves of GRBs. There is also no guarantee that the light curve
ill have a steady decay between observations, due to for instance
ares (Gao 2009 ; Greiner et al. 2009 ) or rebrightening episodes
Bersier et al. 2003 ; Kann et al. 2018 ). It is important to minimize
n y e xtra sources of error or uncertainty for high- z GRB missions
here accurate photometric estimation is crucial, and any offsets
r uncertainty in the bands relative fluxes could have an impact on
edshift estimation. Even a small change in the purity can have a
rastic impact on false alarm rates for a high- z GRB mission (see
ection 4.1 ), so it is imperative to reduce the likelihood of confusion
y eliminating as many sources of error as possible. The issue of
nterpolation could be partly mitigated with dense temporal sampling,
ut simultaneous photometric bands will be the optimal solution for
uture high-redshift GRB missions. 

 C O N C L U S I O N S  

RBs are valuable probes of the high-redshift Universe due to their
igh luminosities and simple power-la w spectra. The y are ideal for
racking the chemical evolution of the Universe, studying early star
ormation, and constraining the end of the Epoch of Reionization.

ultiple missions including optical-NIR photometric instruments
ave been proposed for finding and studying high-redshift GRBs.
ost galaxy extinction poses a challenge for constraining GRB

edshifts, as low- z high-extinction GRBs can mimic high- z GRBs
hen using broad photometric bands. It is imperative that future
igh- z GRB missions are capable of rapidly and reliably identifying
he redshift of detected GRBs with as few false alarms as possible to
ncourage community follow-up. 

PHOZZY is a photo-z simulations and fitting code that can be
sed by future high- z GRB missions for testing their ability to
ccurately retrieve the redshift of an expected GRB population.
sing it, we have tested the capabilities of the Gamow PIRT
hen using different extinction priors, and found that using the

evolving’ E(B − V) distribution gave the best results. We find
hat Gamow PIRT would have a ∼ 92 per cent accuracy from an
bserv er perspectiv e, a completeness of ∼ 82 per cent , and would
nly mistake ∼ 0 . 6 per cent of low-redshift GRBs as having a high
 z > 5) redshift. This translates to ∼1 false alarm per 500 GRBs
etected. We have also shown that we can increase the completeness
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o ∼ 88 per cent by imposing constraints on the E(B − V ) at high
edshifts, but this would have a significantly negative effect on the 
urity. The latter would decrease such that ∼1/3 of high-redshift 
RB alerts would in fact be a low- z dusty interloper. We note that

he completeness for the ‘evolving’ E(B − V ) distribution increases to 
ell abo v e 90 per cent for GRBs with 5 < z < 9. Finally, we discuss

hat the use of simultaneous measurements in different photometric 
ands can help remo v e unnecessary sources of error and impro v e the
hances of retrieving GRB redshifts. 
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PPENDIX  A :  REDSHIFT  RETRIEVAL  PLOTS  

ere, we present the 2D histograms for the input versus output
edshifts found by PHOZZY for each simulation shown in Table 2 ,
NRAS 526, 4599–4612 (2023) 

igure A1. Input versus output redshift when excluding extinction from both the in
istribution. 

igure A2. Input versus output redshift when excluding extinction as an input par
istribution. Right: expected redshift distribution. 
ith input redshift on the x -axis, output redshift on the y -axis, and
he colours corresponding to the number density in each bin. Each
gure corresponds to a different configuration of extinction inputs
nd priors. In each figure, the uniform redshift distribution results
re displayed on the left while the expected redshift distribution
esults are on the right. For each of the plots, the solid white lines
orrespond to z = 5, which we use as the boundary between low- and
igh-redshift GRBs. The vertical dashed lines represent the redshifts
here the Ly α line occurs at a band edge (occurring at z = 3.1,
.3, 6.2, 8.9, 13.0, and 18.7 from left to right). The dash-dotted line
s where the input redshift would exactly equal the output redshift,
nd the dotted lines show where the retrieved redshift is within 10
er cent of the input redshift. 
puts and priors. Left: uniform redshift distribution. Right: expected redshift 

ameter but including basic extinction prior for the fit. Left: uniform redshift 
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Figure A3. Input versus output redshift when using a basic extinction distribution for both inputs and priors. Left: uniform redshift distribution. Right: expected 
redshift distribution. 

Figure A4. Input versus output redshift when using the ‘evolving’ extinction distribution for both input parameters and priors. Left: uniform redshift distribution. 
Right: expected redshift distribution. 

Figure A5. Input versus output redshift when using the ‘evolving’ extinction distribution for both input parameters and priors, and including upper limits for 
E(B − V) (see Fig. 1 :Upper limit 1). Left: uniform redshift distribution. Right: expected redshift distribution. 
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Figure A6. Input versus output redshift when using the ‘evolving’ extinction distribution for both input parameters and priors, including upper limits for E(B 

− V ) (see Fig. 1 :Upper limit 2). Left: uniform redshift distribution. Right: expected redshift distribution. 
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