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ABSTRACT

We consider the possibility that at least some gamma-ray burst (GRB) explosions take place
inside pulsar wind bubbles (PWBs), in the context of the supranova model, where initially a
supernova explosion takes place, leaving behind a supra-massive neutron star (SMNS), which
loses its rotational energy on a time-scale of months to tens of years and collapses to a black
hole, triggering a GRB explosion. The most natural mechanism by which the SMNS can lose
its rotational energy is through a strong pulsar-type wind, between the supernova and the
GRB events, which is expected to create a PWB. We analyse in some detail the observational
implications of such a plerionic environment on the afterglow and prompt GRB emissions and
the prospect for direct detection of the plerion emission. We find that for a simple spherical
model, GRBs with iron lines detected in their X-ray afterglow should not have a detectable
radio afterglow and should have small jet break times and non-relativistic transition times, in
disagreement with observations for some of the GRBs with X-ray lines. These discrepancies
with the observations may be reconciled by resorting to a non-spherical geometry, where the
PWB is elongated along the polar axis. We find that the emission from the PWB should persist
well into the afterglow, and the lack of detection of such a component provides interesting
constraints on the model parameters. Finally, we predict that the inverse Compton upscattering
of the PWB photons by the relativistic electrons of the afterglow (external Compton, EC)
should lead to high-energy emission during the early afterglow that might explain the GeV
photons detected by EGRET for a few GRBs, and should be detectable by future missions
such as GLAST.

Key words: radiation mechanisms: non-thermal – shock waves – pulsars: general – stars:
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1 I N T RO D U C T I O N

The leading models for gamma-ray bursts (GRBs) involve a relativistic wind emanating from a compact central source. The prompt gamma-
ray emission is usually attributed to energy dissipation within the outflow itself, arising from internal shocks within the flow that arise from
variability in its Lorentz factor, while the afterglow (AG) emission arises from an external shock that is driven into the ambient medium, as it
decelerates the ejected matter (Rees & Mészáros 1994; Sari & Piran 1997). In this so-called ‘internal–external’ shock model, the duration of
the prompt GRB is directly related to the time during which the central source is active. The most popular emission mechanism is synchrotron
radiation from relativistic electrons accelerated in the shocks, which radiate in the strong magnetic fields (close to equipartition values) within
the shocked plasma. An additional radiation mechanism that may also play some role is synchrotron self-Compton (SSC) scattering, which
is the upscattering of the synchrotron photons by the relativistic electrons, to much higher energies.

Progenitor models of GRBs are divided into two main categories. The first category involves the merger of a binary system of compact
objects, such as a double neutron star (NS–NS, Eichler et al. 1989), a neutron star and a black hole (NS–BH, Narayan, Paczński & Piran 1992)
or a black hole and a helium star or a white dwarf (BH–He, BH–WD, Fryer & Woosley 1998; Fryer, Woosley & Hartmann 1999). The second
category involves the death of a massive star. It includes the failed supernova (SN) (Woosley 1993) or hypernova (Paczński 1998) models,
where a black hole is created promptly, and a large accretion rate from a surrounding accretion disc (or torus) feeds a strong relativistic jet

�E-mail: dafne@arcetri.astro.it (DG); granot@ias.edu (JG)

C© 2003 RAS



116 D. Guetta and J. Granot

in the polar regions. This type of model is known as the collapsar model. An alternative model within this second category is the supranova
model (Vietri & Stella 1998), where a massive star explodes in a supernova and leaves behind a supra-massive neutron star (SMNS), which
on a time-scale of a few years loses its rotational energy and collapses to a black hole, triggering the GRB event. Long GRBs (with a duration
�2 s) are usually attributed to the second category of progenitors, while short GRBs are attributed to the first category. In all the different
scenarios mentioned above, the final stage of the process consists of a newly formed black hole with a large accretion rate from a surrounding
torus, and involve a similar energy budget (�1054 erg).

In this work we perform a detailed analysis of the supranova model, focusing on its possible observational signatures. This aims towards
establishing tools that would enable us to distinguish between the supranova model and other progenitor models through observations, and
to constrain the model parameter using current observations. The original motivation for the supranova model was to provide a relatively
baryon-clean environment for the GRB jet. As it turned out, it also seemed to naturally accommodate the later detection of iron lines in several
X-ray afterglows (Lazzati, Campana & Ghisellini 1999; Piro et al. 2000; Vietri et al. 2001).

It was later suggested that the most natural mechanism by which the SMNS can lose its rotational energy is through a strong pulsar-type
wind, between the supernova and the GRB events, which typically creates a pulsar wind bubble (PWB), also referred to as a plerion (Königl &
Granot 2002, KG hereafter; Inoue, Guetta & Pacini 2003, IGP hereafter). KG suggested that the shocked pulsar wind into which the afterglow
shock propagates in this picture may naturally account for the large inferred values of εe ∼ 0.1 and εB ∼ 10−3–0.1 (the fractions of the internal
energy in the electrons and in the magnetic field, respectively) that are inferred from fits to afterglow observations (Granot, Piran & Sari
1999; Wijers & Galama 1999; Chevalier & Li 2000; Panaitescu & Kumar 2002). This is attributed to the fact that pulsar winds are believed
to largely consist of electron–positron pairs, and have magnetization parameters in the right range. This relaxes the need to generate strong
magnetic fields in the shock itself, as is required in other models, where the magnetic field in the external medium (assumed to be either the
interstellar medium (ISM) or a stellar wind of a massive star progenitor) is typically too small to account for the values of εB that are inferred
from observations. Another attractive feature of this model, pointed out by IGP is the possible high-energy emission, in the GeV–TeV range,
that may result from the upscattering of photons from the plerion by the relativistic electrons in the afterglow shock (external Compton, EC
hereafter), and may be detected by GLAST. They have shown that the EC emission can provide a viable explanation for the extended GeV
emission seen by EGRET in GRB 940217 (Hurley et al. 1994).

We use a simple spherical model for the PWB. We find that a spherical model cannot accommodate the typical afterglow emission
together with the iron line features observed in the X-ray afterglow of some GRBs. However, it was mentioned early on that in order to have
a long-lived afterglow emission together with the iron line features, a deviation from spherical symmetry is needed, where the line of sight
is relatively devoid of the material producing the iron lines (Lazzati et al. 1999; Vietri et al. 2001). This is required in order to avoid a direct
collision of the afterglow shock with the line producing material on an observed time of the order of a day or so. It was later pointed out that a
PWB is expected to exist inside the supernova remnant (SNR) shell, which decelerates the afterglow shock at a smaller radius, so that in order
for the afterglow to remain relativistic up to a month or more, and produce the iron lines, we need the PWB to be elongated along its rotational
axis (KG). In this paper we strengthen this conclusion, and show that in order to produce iron lines with a spherical PWB, its radius must be
sufficiently small, resulting in a large density inside the PWB and a high self-absorption frequency implying no radio afterglow, in contrast
with observations. We leave the detailed treatment of an elongated PWB to a future work, while in the present work we briefly comment
concerning the expected effects of an elongated geometry compared with a spherical one.

In this work we extend the analysis of KG and IGP, and perform detailed calculations of the radiation from the PWB, the prompt GRB
and from the afterglow that occurs inside the PWB. We now give a short overview of the structure of the paper, where in each section we
stress the original features, new results and the observational constraints on the model. In Section 2 we present our ‘PWB’ model, introduce
the relevant parametrization and model the acceleration of the supernova remnant shell by the shocked pulsar wind. We use a simple spherical
geometry and the pulsar wind is assumed to consist of proton and e± components with roughly equal energies and a magnetic field. The
conditions under which the iron line features that were observed in several X-ray afterglows may be reproduced within the PWB model,
are investigated in Section 3. We find that this requires a time delay of �1 yr between the supernova and the GRB events. In Section 4 we
perform a detailed study of the plerion emission, including the synchrotron and SSC components, and provide an elaborate description of
the relevant Klein–Nishina effect. We also discuss the upper cut-off that is imposed on high-energy photons as a result of pair production
with the radiation field of the PWB, go over the prospect for direct detection of the plerion emission and derive observational constraints on
the parameters of our model. The effects of the PWB environment on the prompt GRB emission are analysed in Section 5, and we find that
the EC from the prompt GRB should typically be very small, but might be detectable for extreme parameters. In Section 6 we discuss the
implications of a plerionic environment on the afterglow emission, and introduce the appropriate parametrization. The radial density profile of
the PWB is approximated as a power law in radius (KG), ∝ r−k , where k typically ranges between 0 (similar to an ISM) and 1 (intermediate
between an ISM and a stellar wind). The synchrotron, SSC and EC components are calculated and we provide detailed expressions for the
break frequencies and flux normalization, for k = 0, 1. We also calculate the high-energy emission that is predicted in this model. The results
are discussed in Section 7 and in Section 8 we give our conclusions.

2 T H E P U L S A R W I N D BU B B L E

Within the framework of the supranova model, an SMNS (also simply referred to as a pulsar) is formed in a supernova explosion, and then
loses a large part of its rotational energy before collapsing to a black hole and triggering the GRB. The most plausible mechanism for this
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energy loss is through a pulsar-type wind (KG; IGP). A pulsar wind bubble is formed when the relativistic wind (consisting of relativistic
particles and magnetic fields) that emanates from a pulsar is abruptly decelerated (typically, to a Newtonian velocity) in a strong relativistic
shock, as a result of interaction with the ambient medium. When a bubble of this type expands inside an SNR, it gives rise to a plerionic
SNR, of which the Crab and Vela remnants are prime examples. Motivated by previous works (Rees & Gunn 1974; Kennel & Coroniti 1984;
Emmering & Chevalier 1987; KG) we consider in detail a spherical model where the shocked pulsar wind remains largely confined within
the SNR. In Section 7 we briefly discuss the possible consequences of some more complicated geometries.

The wind luminosity may be estimated by the magnetic dipole formula (Pacini 1967),

Lw =
B2

∗ R6
∗�

4
∗

6c3
= 7.0 × 1044

(

B∗

1012 G

)2(
R∗

15 km

)6(
�∗

104 s−1

)4

erg s−1, (1)

where B∗ is the polar surface magnetic field, R∗ is the circumferential radius (neglecting the distinction between its equatorial and polar
values in this approximation) and �∗ is the (uniform) angular velocity (the maximum value of which is ∼2 × 104 s−1; e.g. Haensel, Lasota
& Zdunik 1999). The spin-down time of a rapidly rotating SMNS can be estimated as
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(see Vietri & Stella 1998), where E rot = α GM2
∗�∗/2c is the portion of the rotational energy of an SMNS of mass M∗ and angular velocity

�∗ that needs to be lost before it becomes unstable to collapse.1 The spin-down time-scale, which sets the time delay between the supernova
and GRB events, depends on the physical parameters of the SMNS. Of these parameters, the least constrained is the magnetic field, which
is typically expected to be in the range of ∼1012–1013 G, and may cause a variation of �2 orders of magnitude in t sd. There is also a strong
dependence on the radius R∗, which depends on its mass M∗ and the (uncertain) equation of state, which may account for a change of up to
∼1 order of magnitude in the scaling of t sd. For example, for R∗ = 10 km, with the values of the other parameters as given in equation (2),
we have t sd ≈ 60 yr. We conclude that the expected range of t sd is from a few weeks to several years.

During t sd the luminosity of the wind is roughly constant and the wind should energize the PWB, depositing an energy of the order of
E rot. The luminosity of the pulsar wind is divided between its different components: fractions ξ e, ξ p and σ w in e± pairs, protons and Poynting
flux (magnetic field), respectively. The inferred values of ξ B = σ w/(1 + σ w) for PWBs, such as Vela or the Crab, are typically ∼10−3 (Arons
2002), though there are also estimates as high as ∼1 (Helfand, Gotthelf & Halpern 2001). We shall adopt a fiducial value of σ w = 10−3, which
implies ξ e + ξ p = 1 − ξ B

∼= 1. Gallant & Arons (1994) inferred ξ p/ξ e ∼ 2 for the Crab, and we adopt this estimate for our fiducial values,
and use ξ e = 1/3 and ξ p = 2/3. The inferred values of the Lorentz factor of the pulsar wind are γ w ∼ 104–107.

The SN ejecta is accelerated by the force exerted owing to the pressure of the expanding PWB, pout, at its outer boundary, i.e. at the
radius of the SNR, RSNR. The pressure is expected to drop by a factor of the order of unity between the radius of the wind termination shock,
Rs, and RSNR (KG), so that pout ≡ ηp pav, where pav = ηEw/3V = ηEw/4πR3 is the average pressure inside the PWB, η is the fraction of
the energy E rot that remains in the PWB, V = (4π/3)R3 is the volume of the PWB (which can be different for an elongated PWB) and Ew ≈
E rot(t/t sd) is the energy emitted in the wind up to the time t. As we show below, the PWB is typically fast cooling and the electrons lose all
of their internal energy to radiation, implying η ≈ ξ p + ξ B ≈ ξ p. The equation of motion, MSNR R̈ = 4πR2 pout, may be written as

R R̈ =
ηpηErot

MSNRtsd
t. (3)

In the case of a non-spherical PWB, MSNR should be replaced by the isotropic equivalent mass, M iso(θ ) = 4πdMSNR/d�, and R becomes
R(θ ), where θ is the angle from the polar axis. However, the pressure can be taken as being independent of the angle θ , since the shocked
pulsar wind is highly subsonic. If M iso(θ ) is smaller near the poles (θ ≈ 0) and larger near the equator (θ ≈ π/2), then even if the SNR shell
is initially spherical, the acceleration would be larger near the poles, resulting in a much larger polar radius, Rp, compared with the equatorial
radius, Req: Rp � Req. This is a natural mechanism that can lead to an elongated geometry for the PWB.

Returning to the spherical case, the acceleration becomes significant at the time t acc (and radius Racc ≈ v0t acc) when Ew first exceeded
the initial kinetic energy of the SNR, E0 = MSNRv2

0/2 (∼1051 erg), where t acc = t sd E0/E rot. We therefore have
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where vb ≡ vSNR(t sd) and Rb ≡ RSNR(t sd). The dynamics are given by

RSNR ≈
{

v0t t < tacc

Rb(t/tsd)3/2 t > tacc,
(5)

vSNR ≈
{

v0 t < tacc

vb(t/tsd)1/2 t > tacc.
(6)

These scalings agree with the results of Reynolds & Chevalier (1984). At t > t acc we have ESNR/Ew = 3ηpη/2, and conservation of energy
implies that E0 + Ew ≈ Ew = ηEw + ESNR = (3ηp/2 + 1)ηEw or (3ηp/2 + 1)η = 1. Our fiducial value of η ≈ ξ p = 2/3 implies ηp =

1 The total rotational energy of the SMNS is given by jGM2
∗ �∗/2c, where the parameter j measures the stellar angular momentum in units of GM2

∗/c and has
values in the range 0.57–0.78 for realistic equations of state (e.g. Cook, Shapiro & Teukolsky 1994; Salgado et al. 1994).
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1/3, which is reasonable. We also obtain that ESNR(t sd) = (3η/2)E rot ≈ E rot. For a typical ejected mass, MSNR ∼ 10 M�, this would imply
vb ∼ 0.1c. Finally, we have

Rb =
2

3
vbtsd = 6.3 × 1016βb,−1tsd,0 cm, (7)

where we set vb/c ≡ βb = 0.1βb,−1 and t sd = t sd,0 yr. To the extent that vb ∝ (E rot/MSNR)1/2 has nearly the same value in all sources, the
magnitude of Rb is determined by that of t sd. In a similar vein, if the energy lost during the SMNS lifetime, E rot = 1053 E53 erg, is approximately
constant from source to source (E53 ∼ 1), then t sd can also be used to parametrize the SMNS wind power: Lw = E rot/t sd = 3.2 × 1045 E53/t sd,0

erg s−1.
The acceleration of the SNR shell by the lower-density bubble gas would subject it to a Rayleigh–Taylor (RT) instability, which could

lead to clumping (Jun 1998). The growth time-scale of the RT instability on a spatial scale R is tRT ∼ (R/R̈)1/2. The important quantity to
estimate in order to see whether the SNR shell can be clumped is the ratio between tRT and the dynamical time-scale tdyn = (R/Ṙ),
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2ESNR

ηpηEw
, (8)

where we have used equation (3). This implies tRT/texp ≈
√

3 during the acceleration (t acc < t < t sd). This could produce only moderately
strong fragmentation over the dynamical time of the system. However, as the acceleration occurs over ∼3 orders of magnitude in radius (see
equation 4), the radius doubles itself ∼10 times during the course of the SNR acceleration, so that despite the fact that tRT/t exp is of the order
of unity, it is feasible that considerable clumpiness may still be caused because of the RT instability. An even stronger fragmentation may
occur if the RT instabilities grow on a length-scale x ∼ αR smaller than R (i.e. α < 1), where in this case tRT/texp ≈

√
3α.

In order to calculate the emission from the plerion, we use the average quantities of the shocked pulsar wind within the PWB, and
neglect their variation with radius. The latter is expected to be more important in the afterglow emission, and is therefore taken into account
in Section 6, which discusses the afterglow emission. The post-shock energy density is given by

e =
ηErot

V
=

3ηErot

4π R3
b

, (9)

where V = (4π/3)R3
b is the total volume within the PWB, and is approximately equal to the volume occupied by the shocked wind. For an

elongated PWB the expression for the volume, V , will be different, but it can directly be plugged into these equations, in place of the spherical
expression. The injection rates of electron–positron pairs and of protons at the source are given by

Ṅe,p =
ξe,p Lw

γwme,pc2
. (10)

Hence, the total number of particles within Rb at time t is Ne,p(t) = Ṅe,pt , and the number density at t sd is
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Ne,p(tsd)
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Fractions εbB , εbe , εbp of the post-shock energy density go to the magnetic field, the electrons and the protons, respectively. We expect these
fractions to be similar to those in the pulsar wind (εbB ∼ ξ B ∼ σ w, εbe ∼ ξ e) and use the corresponding fiducial values. Subscripts containing
the letter ‘b’ denote quantities related to the PWB. The electrons will lose energy through synchrotron emission and inverse-Compton (IC)
scattering. We study the characteristic features of the plerion emission and investigate the conditions required for the production of the observed
iron lines and whether the plerion can be detected by the present instruments. Moreover, an important implication of the plerion emission
is that the GRB should explode inside a radiation-rich environment (i.e. the luminous radiation field of the PWB). The external photons are
highly Doppler-boosted in the rest frame of the shocked fluid, for both internal and external shocks (that are responsible for the prompt GRB
and afterglow emission, respectively), and can act as efficient seed photons for IC scattering (external Comptonization, EC). We study the
observational consequences of the EC process, both for the prompt GRB emission and for the afterglow.

Since we use a large number of parameters in the paper, and in order to make it easier to follow all the different parameters, we include a
table (Table 1) with the most often used parameters, where we mention the meaning of each parameter and the fiducial value that we use for
that parameter.

3 X - R AY L I N E S I N T H E A F T E R G L OW

One of the main motivations for the supranova model is that it can naturally explain the detections of iron lines in the X-ray afterglows
of several GRBs, both in emission (GRB 970508, Piro et al. 1998; GRB 970828, Yoshida et al. 2001; GRB 000214, Antonelli et al. 2000;
GRB 991216, Piro et al. 2000) and in absorption (GRB 990705; Amati et al. 2000). The statistical significance of these detections is at the
∼3σ level, with the exception of GRB 991216 where a k-α emission line was detected with a significance of ∼4σ . Emission lines of lighter
elements (Mg, Si, S, Ar, Ca) have been reported in the X-ray afterglow of GRB 011211, at the level of 3σ (Reeves et al. 2002). This latter
detection has been disputed by other authors (Borozdin & Trudolyubov 2003; Rutledge & Sako 2003), and may be said to be controversial.
These line features may naturally arise in the context of the supranova model, where an SNR shell is located at a distance of R � 1016 cm
from the location of the GRB explosion (Lazzati et al. 1999; Piro et al. 2000; Böttcher, Fryer & Dermer 2002; Lazzati et al. 2001; Vietri et al.
2001). In this section we explore the condition under which such features may occur within our model, and obtain the relevant constraints on
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Table 1. The parameters most often used in the paper, their meaning and fiducial values.

Parameter Meaning Fiducial value

t sd Time delay between SN and GRB 1 or 103/2 yr
γ w Lorentz factor of pulsar wind 104.5

E rot Rotational energy lost by SMNS 1053 erg
MSNR The mass of the SNR shell 10 M�
η Fraction of E rot that remains in the PWB 2/3
ξ B Fraction of wind energy in magnetic field 10−3

ξ e Fraction of wind energy in e± pairs 1/3
ξp Fraction of wind energy in protons 2/3
βb Velocity of SNR shell at t sd (in units of c) 0.1
εbB Fraction of PWB energy in magnetic field 10−3

εbe Fraction of PWB energy in e± pairs 1/3
a Fraction of e± energy that is radiated 1
s Power-law index of e± distribution in PWB 2.2
p Electron power-law index in the GRB 2.5
� Bulk Lorentz factor of GRB ejecta 105/2

Lw Kinetic luminosity of GRB outflow 1052 erg s−1

tv Variability time of GRB central engine 10 ms
k n, e ∝ r−k in the PWB 0 or 1
εB Fraction of AG energy in magnetic field 10−3

εe Fraction of AG energy in electrons 0.1
E iso Isotropic equivalent energy in AG shock 1053 erg
t Observed time since GRB 1 d

the model parameters. In the following sections we investigate the implications of these constraints on the other observational signatures of
the model: the plerion, prompt GRB and afterglow emissions.

We derive constraints on our model parameters using the observational data for GRB 991216, as an example of an afterglow for which
iron lines were detected, since this is the most statistically significant detection to date. Similar constraints may be obtained for other afterglows
with X-ray features, using similar arguments. The X-ray afterglow of GRB 991216 was observed by Chandra from 37 to 40 h after the GRB,
and shows an emission line at 3.49 ± 0.06 keV, with a significance of ∼4σ . The line flux was FFe ∼ 1.6 × 10−13 erg cm−2 s−1, which for a
redshift z = 1.02 of this burst (Vreeswijk et al. 1999) implies an emission rate ṄFe ∼ 4 × 1052 s−1 of line photons, a luminosity of LFe ∼ 4 ×
1044 erg s−1 and a total energy of EFe ∼ 3 × 1049 erg, assuming the line emission lasted for tFe ∼ 40/(1 + z) h in the cosmological rest frame
of the GRB (Vietri et al. 2001).

In the simplest version of our model, we assume a spherical geometry, and identify the line-emitting material with the SNR shell, which
is located at a radius Rb. We use the above observations to derive constraints on Rb, or equivalently, on the time delay between the SN and
the GRB events, t sd. The value of Rb may be constrained by the requirement that the geometrical time delay in the arrival of the photons to
the observer, ∼Rbθ

2
rad/2, should not exceed the total duration of the iron line emission, tFe,

Rb � 1.7 × 1018

(

tFe

20 h

)(

θrad

0.05

)−2

cm, tsd � 27

(

tFe

20 h

)(

θrad

0.05

)−2

β−1
b,−1 yr, (12)

where we have identified the opening angle to which the ionizing radiation extends, θ rad, with the jet opening angle, θ j ≈ 0.05 (Frail et al.
2001; Panaitescu & Kumar 2002).

Another constraint may arise from the requirement that ṄFe = NFe/trec ∼ 4 × 1052 s−1, where the recombination time is given by
t rec ≈ 4 × 109 Z−2T 0.6

e n−1
e = 2.8 × 1010T 0.6

6 n−1
e s, T 6 = T e/106 K, and we have assumed an electric charge of Z = 24 for the iron ions (Lazzati

et al. 2001; KG). In order to parametrize the electron number density, ne, we need to relate between the width of the SNR shell, �Rb, and
its radius, Rb. If the SNR shell is efficiently fragmented during its acceleration phase, as a result of the RT instability, then one might expect
dense clumps of size lcl � �Rb, spread over a radial interval of �Rb, that cover a fraction of the order of unity of the total solid angle. This
amounts to an effective width for the SNR shell of �Reff = lcl � �Rb, implying ne = MSNR/4πRb

2�Reffmp and

Rb � 9 × 1016 M
1/3
SNR,1 M

1/3
Fe,−1ξ

−1/3
−3 T

−1/5
6 cm, tsd � 1.4M

1/3
SNR,1 M

1/3
Fe,−1ξ

−1/3
−3 T

−1/5
6 β−1

b,−1 yr, (13)

where ξ ≡ �Reff/Rb = 10−3ξ−3 and MFe = 0.1MFe,−1 M� is the mass of the iron in the SNR shell. The SNR shell is compressed during its
acceleration, and may attain �Rb � 0.1Rb, so that ξ may be as low as ∼10−3.

A final constraint may be derived by considerations related to the total energy budget. The total energy in the line is EFe ≡ εEγ ∼ 3 ×
1049 erg, where the efficiency ε is the product of the ratio of energies in the ionizing X-ray continuum and the prompt gamma-ray emission,
and the energy fraction of the X-ray continuum that goes into the line emission, and is expected to be �0.01 (Ghisellini et al. 2002). This
implies Eγ � 3 × 1051 erg, which is somewhat in excess of the value Eγ ≈ 7 × 1050 erg found by Frail et al. (2001). If the optical depth
of the iron atoms is τ Fe < 1, then the efficiency is further reduced by a factor of τ Fe = MFeσ Fe/4πR2

b 56mp, where σ Fe ≈ 2.0 × 10−20 cm2

(Krolik & Kallman 1987). Therefore, we must have τ Fe � 1, i.e.
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Rb � 6 × 1016 M
1/2
Fe,−1 cm, tsd � 0.9M

1/2
Fe,−1β

−1
b,−1 yr. (14)

We conclude that X-ray line features, such as those observed in the afterglow of several GRBs, may be accommodated in a spherical
model only for t sd � 1 yr, Rb � 1017 cm. This constraint can be relaxed for an elongated PWB. In this case the iron lines may be produced
by the material near the equator, which is at a much smaller radius than the polar radius, enabling the afterglow shock that propagates along
the poles to reach a considerably larger radius.

4 T H E P L E R I O N E M I S S I O N

In this section we evaluate the luminosity and the spectrum emitted by the plerion. We use the average values of the quantities within the
PWB, which were derived in Section 2. As we show below, the electrons are in the fast cooling regime for relevant values of t sd, and therefore
most of the emission takes place within a small radial interval just behind the wind termination shock, and the various quantities should not
vary significantly within this region, and should not be very different from their average values within the PWB.

The magnetic field inside the plerion is

Bb =
√

8πεbBe ≈ 1.3η
1/2
2/3ε

1/2
bB,−3 E

1/2
rot,53β

−3/2
b,−1 t

−3/2
sd,0 G, (15)

where εbB,−3 = εbB/103 and η2/3 = η/(2/3). Relativistic electrons/positrons (hereafter simply electrons) are injected into the plerion at the
rate Ṅe (see equation 10) with a power-law distribution N (γ b) ≡ dn/dγ b ∝ γ −s

b in the Lorentz factor (LF) range γ bm � γ b � γ bM . The
minimum electron LF is given by

γbm =
(

s − 2

s − 1

)

εbee

nemec2
≈ 3.5 × 103η2/3εbe,1/3ξ

−1
e,1/3γw,4.5, (16)

where γ w,4.5 = γ w/104.5, εbe,1/3 = εbe/(1/3), ξ e,1/3 = ξ e/(1/3) and we use s = 2.2 to obtain the numerical values for the rest of the paper.
The electrons radiatively cool by the combination of the synchrotron and synchrotron-self-Compton (SSC) process, the time-scales of which
are t syn ∼ 6πmec/σ T B2

b γ b and tSC = t syn/Y b and the combined cooling time being t c = (1/t syn + 1/tSC)−1 = t syn/(1 + Y b), where

Yb ∼
aεbe

(1 + Yb)εbB

, Yb ≈

{

aεbe/εbB aεbe/εbB � 1
√

aεbe/εbB aεbe/εbB � 1
(17)

(Sari, Narayan & Piran 1996; Panaitescu & Kumar 2000; Sari & Esin 2001)2 is the Compton y-parameter of the plerion, which is the fractional
energy gain of a photon when travelling through the plerion, owing to upscattering by the relativistic electrons and a ≡ min [1, (γ bm/γ bc)s−2]
is the fraction of the internal energy in the electrons that is radiated away (Sari & Esin 2001). For our choice of parameters εbB � εbe and
there is fast cooling so that a = 1. This implies Y b ≈ (εbe/εbB)1/2, and we shall use this relation in the following. The maximum LF is set by
equating t c with the acceleration time ∼2πγ bmec/qBb (where q is the electric charge of the electron):

γbM =
√

3q

BbσT(1 + Yb)
≈ 9.7 × 106a−1/4η

−1/4
2/3 ε

−1/4
be,1/3 E

−1/4
rot,53β

3/4
b,−1t

3/4
sd,0. (18)

The LF of an electron that cools on the adiabatic expansion time t sd (i.e. an electron for which t c = t sd) is given by

γbc =
6πmec

(1 + Yb)B2
b σTtsd

≈ 0.84a−1/2η−1
2/3ε

−1/2
be,1/3ε

−1/2
bB,−3 E−1

rot,53β
3
b,−1t2

sd,0. (19)

For t sd < t1, where

t1 ≈ 1.1η
1/2
2/3ε

1/4
be,1/3ε

1/4
bB,−3 E

1/2
rot,53β

−3/2
b,−1 yr, (20)

the cooling is so fast that equation (19) implies γ bc < 1. This means that all electrons cool to non-relativistic random velocities within a time
∼γ bct sd and a distance ∼γ bc Rb behind the termination shock of the pulsar wind. Of course, in this regime γ bc < 1 no longer corresponds to
the physical LF of the electrons.3 We shall call this regime very fast cooling.

In the case of a non-spherical (elongated) PWB, we can still use the same expressions, if we make the simple substitution described
below. We define an effective radius, Reff ≡ (3V /4π)1/3, so that a sphere of that radius will have the same volume, V , as the non-spherical
PWB. Since the volume of the PWB determines its average number density and energy density (which determine the PWB emission), and
since we expect the interior of the PWB to be roughly homogeneous (i.e. the local values are not very different from the mean values), then
we can reproduce the expressions appropriate for a non-spherical model by simply replacing Rb with Reff. Since βb appears in the various
expressions only through Rb, we may achieve this task most easily by substituting βb = 3Reff/2ct sd everywhere. In order to illustrate the
effects of a non-spherical geometry, we consider a particular example (which we also consider to be likely) of an elongated PWB with a polar

2 Sari and Esin pointed out that generally the factor a should be multiplied by the fluid velocity just behind the shock (in the shock frame), which for a relativistic
shock with εB � 1, that is relevant for the pulsar wind termination shock, is β = 1/3. This factor of 1/3 should be divided by the ratio of the radiation flux
and the photon energy density times c, which is 1/4 for an isotropic emission in the local rest frame of the emitting fluid. Together this gives a factor of 4/3
which is close to 1, and is therefore neglected.
3 Formally we obtain γ bc < 1 because we used the approximation β2 ≈ 1 in the expression for the total synchrotron power of a single electron, under the
assumption (which does not hold here) that the electrons are always relativistic.
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radius much larger than the equatorial radius, Rp � Req, where Rp/2 � Reff < Rp. If the surface mass density at the poles is sufficiently
small, then the velocity of the SNR shell there can become close to c, so that Rp ≈ ct sd. This would imply βb = 3Reff/2ct sd ≈ 1.

4.1 The synchrotron spectrum

The characteristic synchrotron frequency of an electron with LF γ b is νb = γ 2
bνb0, where νb0 = 3qBb/16 mec. The synchrotron frequencies

corresponding to γ bm , γ bM and γ bc, respectively, are

νbc ≈ 2.9 × 106(1 + z)−1a−1η
−3/2
2/3 ε−1

be,1/3ε
−1/2
bB,−3 E

−3/2
rot,53β

9/2
b,−1t

5/2
sd,0 Hz,

νbm ≈ 5.1 × 1013(1 + z)−1η
5/2
2/3ε

2
be,1/3ε

1/2
bB,−3ξ

−2
e,1/3 E

1/2
rot,53γ

2
w,4.5β

−3/2
b,−1 t

−3/2
sd,0 Hz,

νbM ≈ 3.9 × 1020(1 + z)−1a−1/2ε
−1/2
be,1/3ε

−1/2
bB,−3 Hz. (21)

For t sd < t2 (which is given in equation 35) the synchrotron self-absorption frequency νbsa (which is treated below) is above the cooling
frequency νbc, and the synchrotron flux density, Fν , peaks at νbsa and consists of three power-law segments:

Fν(tsd < t2)

Fν,max
=

(

νbsa

νbc

)−1/2

×







(ν/νbsa)2 ν < νbsa

(ν/νbsa)−1/2 νbsa < ν < νbm

(νbm/νbsa)−1/2(ν/νbm)−s/2 νbm < ν < νbM .

(22)

For time separations between the SN and GRB events, t1 < t sd < t3, where

t3 ≈ 65η2/3ε
3/4
be,1/3ε

3/4
bB,−3ξ

−1/2
e,1/3 E

1/2
rot,53γ

1/2
w,4.5β

−3/2
b,−1 yr, (23)

we have 1 < γ bc < γ bm and the bubble is in the (moderately) fast cooling regime. For t2 < t sd < t3, Fν peaks at νc and is given by

Fν(t2 < tsd < t3)

Fν,max
=















(νbsa/νbc)1/3(ν/νbsa)2 ν < νbsa

(ν/νbc)1/3 νbsa < ν < νbc

(ν/νbc)−1/2 νbc < ν < νbm

(νbm/νbc)−1/2(ν/νbm)−s/2 νbm < ν < νbM .

(24)

For t sd > t3 the bubble is in the slow cooling regime, where the spectrum peaks at νbm and again consists of four power-law segments:

Fν(tsd > t3)

Fν,max
=















(νbsa/νbm)1/3(ν/νbsa)2 ν < νbsa

(ν/νbm)1/3 νbsa < ν < νbm

(ν/νbm)(1−s)/2 νbm < ν < νbc

(νbc/νbm)(1−s)/2(ν/νbc)−s/2 νbc < ν < νbM .

(25)

The peak synchrotron flux, Fν,max, for either fast or slow cooling, is

Fν,max ≈
ξe Erot Pν,max

γwmec2

(1 + z)

4πd2
L

≈ 42(1 + z)η1/2
2/3ε

1/2
bB,−3ξe,1/3 E

3/2
rot,53β

−3/2
b,−1 t

−3/2
sd,0 γ −1

w,4.5d−2
L28 mJy, (26)

where Pν,max ≈ Pe,syn/νsyn, Pe,syn = 4/3σ Tc(B2
p/8π)γ 2

e , νsyn = νb0 γ 2
e and dL = 1028d L28 cm is the luminosity distance of the GRB. Synchrotron

self-absorption (SSA) will cause a break in the spectrum at a frequency νbsa below which4 Fν ∝ ν2. The absorption coefficient is given by

αν = −
1

8πmeν2

∫

dγe Pν,eγ
2
e

∂

∂γe

[

N (γe)

γ 2
e

]

, (27)

where

Pν,e ≈ Pν,max

(

ν

νsyn

)1/3

≈
8mec

2 BpσT

9πq

(

ν

νsyn

)1/3

for (ν < νsyn) (28)

is the spectral emissivity of a single electron.
The electron distribution, N (γ e), is different for the fast cooling and slow cooling regimes. In the fast cooling case we have

N (γe) ≈ N0 ×
{

γ −2
e max(γbc, 1) < γe < γbm

γ −2
bm (γe/γbm)−s−1 γbm < γe < γbM ,

(29)

with N 0 = γ bcne. The local electron distribution depends on the distance behind the shock, l, and the distribution given above is averaged
over l. Furthermore, it includes only the relativistic electrons (i.e. for γ c < 1, most electrons would cool to non-relativistic random Lorentz
factors, and are not included in this distribution).

For ν < max (νbc , νb0), all the electrons with γ e > max (γ c , 1) contribute to the SSA and the absorption coefficient is

αν ≈
3N0 Pν,max

16πmeν5/3ν
1/3
b0

min(γ −8/3
bc , 1). (30)

4 For PWBs, this also applies for the fast cooling regime, as opposed to the spectral slope of Fν ∝ ν11/8 (Granot, Piran & Sari 2000; Granot & Sari 2002)
predicted for GRBs (both for the prompt emission and afterglow) since for the PWB the observer faces the back of the shell, i.e. the side further from the shock,
where the coolest electrons reside.
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If max(νbc, νb0) < ν < νbm we have

αν ≈
3N0 Pν,max

16πmeν5/3ν
1/3
b0

(

16mecν

3q Bb

)−4/3

, (31)

and, finally, if ν> νbm then

αν ≈
3N0 Pν,max

16πmeν5/3ν
1/3
b0

(

16mecν

3q Bb

)−(s+5/3)/2

γ s−1
bm . (32)

In the slow cooling case we have

N (γe) ≈ N0 ×
{

γ −s
e γbm < γe < γbc

γ −s
bc (γe/γbc)−s−1 γbc < γe < γbM ,

(33)

with N 0 = (s − 1)γ s−1
bm ne. The absorption coefficient for ν < νbm is given by

αν =
4

(3s + 2)

N0 Pν,max

8πmeν5/3ν
1/3
b0

γ
−s−2/3
bm . (34)

The optical depth to SSA is given by τ ν,sa = αν Rb min(γ bc, 1), and νsa is obtained by equating τ ν,sa = 1. For t sd < t2, where

t2 ≈ 12η
3/7
2/3ε

5/21
be,1/3ε

4/21
bB,−3ξ

2/21
e,1/3 E

11/21
rot,53γ

−2/21
w,4.5 β

−31/21
b,−1 yr, (35)

we have νbsa > νbc. Since typically t1 < t2 < t3, for t sd < t2 we have either very fast cooling or moderately fast cooling and may use
equation (31) to derive

νbsa ≈ 1.9 × 1010(1 + z)−1a−1/6ε
−1/6
be,1/3ε

1/6
bB,−3ξ

1/3
e,1/3 E

1/3
rot,53γ

−1/3
w,4.5 β

−2/3
b,−1 t−1

sd,0 Hz. (36)

For t2 < t sd < t3 we use equation (30) and obtain

νbsa ≈ 1.1 × 1013(1 + z)−1a1/2η
6/5
2/3ε

1/2
be,1/3ε

7/10
bB,−3ξ

3/5
e,1/3 E

9/5
rot,53γ

−3/5
w,4.5 β

−24/5
b,−1 t

−19/5
sd,0 Hz. (37)

Since the SSA frequency approaches νbm only for very large time delays t sd � t3, we do not consider the case νbsa > νbm . In the slow cooling
regime (t sd > t3) we have

νbsa ≈ 2.9 × 109(1 + z)−1η
−4/5
2/3 ε

1/5
bB,−3ξ

8/5
e,1/3 E

4/5
rot,53γ

−8/5
w,4.5 β

−9/5
b,−1 t

−9/5
sd,0 Hz. (38)

4.2 The SSC spectrum

The SSC spectrum has a similar shape to the synchrotron spectrum, and we approximate it as comprising of broken power laws with
characteristic frequencies. For the different ranges in t sd, it assumes the following forms:

νFSC
ν (tsd < t2)

Ybνbm Fνbm

=















(

νSC∗
bsa

/

νSC
bm

)1/2(
ν
/

νSC∗
bsa

)2
ν < νSC∗

bsa
(

ν
/

νSC
bm

)1/2
νSC∗

bsa < ν < νSC
bm

(

ν
/

νSC
bm

)(2−s)/2
ν > νSC

bm ,

(39)

νFSC
ν (t2 < tsd < t3)

Ybνbm Fνbm

=























(

νSC
bc

/

νSC
bm

)1/2(
νSC

bsa

/

νSC
bc

)4/3(
ν
/

νSC
bsa

)2
ν < νSC

bsa
(

νSC
bc

/

νSC
bm

)1/2(
ν
/

νSC
bc

)4/3
νSC

bsa < ν < νSC
bc

(

ν
/

νSC
bm

)1/2
νSC

bc < ν < νSC
bm

(

ν
/

νSC
bm

)(2−s)/2
ν > νSC

bm ,

(40)

νFSC
ν (tsd > t3)

Ybνbc Fνbc

=























(

νSC
bm

/

νSC
bc

)(3−s)/2(
νSC

bsa

/

νSC
bm )4/3(ν

/

νSC
bsa

)2
ν < νSC

bsa
(

νSC
bm

/

νSC
bc

)(3−s)/2(
ν
/

νSC
bm

)4/3
νSC

bsa < ν < νSC
bm

(

ν
/

νSC
bc

)(3−s)/2
νSC

bm < ν < νSC
bc

(

ν
/

νSC
bc

)(2−s)/2
ν > νSC

bc ,

(41)

where νSC∗
bsa ≡ max(1, γ 2

bc)νbsa, and

νSC
bc = γ 2

bcνbc ≈ 2.1 × 106(1 + z)−1a−2η
−7/2
2/3 ε2

be,1/3ε
−3/2
bB,−3 E

−7/2
rot,53β

21/2
b,−1t

13/2
sd,0 Hz,

νSC
bm = γ 2

bmνbm ≈ 6.4 × 1020(1 + z)−1η
9/2
2/3ε

4
be,1/3ε

1/2
bB,−3ξ

−4
e,1/3 E

1/2
rot,53γ

4
w,4.5β

−3/2
b,−1 t

−3/2
sd,0 Hz, (42)
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and

νSC
bsa =















γ 2
bcνbsa ≈ 1.4 × 1010(1 + z)−1a−7/6η−2

2/3ε
−7/6
be,1/3ε

−5/6
bB,−3ξ

1/3
e,1/3 E

−5/3
rot,53γ

−1/3
w,4.5 β

16/3
b,−1t3

sd,0 Hz t1 < tsd < t2

γ 2
bcνbsa ≈ 8.0 × 1012(1 + z)−1a−1/2η

−4/5
2/3 ε

−1/5
be,1/3ε

−3/10
bB,−3ξ

3/5
e,1/3 E

−1/5
rot,53γ

−3/5
w,4.5 β

6/5
b,−1t

1/5
sd,0 Hz t2 < tsd < t3

γ 2
bmνbsa ≈ 3.6 × 1016(1 + z)−1η

6/5
2/3εbe,1/3ε

1/5
bB,−3ξ

−2/5
e,1/3 E

4/5
rot,53γ

2/5
w,4.5β

−9/5
b,−1 t

−9/5
sd,0 Hz tsd > t3.

(43)

The peak of νFSC
ν is simply Y b times the peak of the synchrotron νFν , which for fast cooling is given by

νbm Fνbm
= νbm Fν,max

√

νbc

νbm

≈ 5.1 × 10−15a−1/2η2/3ε
1/2
be,1/3ε

1/2
bB,−3 Erot,53t−1

sd,0 d−2
L28, (44)

and for slow cooling is given by this expression multiplied by the factor of a.

4.3 The Klein–Nishina effect

When the energy of the seed (synchrotron) photon in the rest frame of the scattering electron exceeds the electrons rest energy, γ e hνsyn �

mec
2, then we move from the Thomson limit to the Klein–Nishina (KN) regime, where there is a reduction in the scattering cross-section and

the electron recoil becomes important. The corresponding frequencies where the KN limit is reached for the seed synchrotron photon and
upscattered (SC) photon are given by

νSC
KN

γe
= γeν

syn
KN = νKN,0 ≡

mec
2

h
=

c

λc
= 1.23 × 1020 Hz, (45)

where λc is the Compton wavelength. As the energy increase of the photon arising from the scattering cannot exceed that of the electron, the
photon energy of hνSC

KN = γ emec
2 sets the natural upper limit to the frequency of photons that are upscattered by electrons with an LF γ e.

Typically, either the fractional energy gain in successive scatterings is Y ∼ τTγ 2
e � 1, or the KN limit is reached for the second scattering,

γ 3
ehνsyn � mec

2, thus allowing us to ignore multiple scatterings.
In KN effects typically become important only at νSC > max (νSC

bsa, νSC
bc ) in the fast cooling regime, or at ν > νSC

bm in the slow cooling
regime. We therefore restrict our discussion to these frequency ranges of the SSC spectrum. Within this frequency range, the SSC flux density
at a given frequency consists of roughly equal contributions from seed synchrotron photons that extend over a finite range of frequencies,
that are upscattered by electrons within a finite range of LFs γ b, so that γ 2

bν
syn = νSC = constant. For this reason, a significant change in

the SSC flux at a certain frequency νSC, arising from KN effects, will occur only when all the electrons that contribute significantly to this
frequency reach the KN limit. Since νSC

KN(γ b) ∝ γ b, this occurs when the electron with the maximal γ b that still contributes significantly to νSC,
γ max(νSC), reaches the KN limit. For fast cooling

γmax(ν) =















√

ν/νbp γ 2
bcνbp < ν < γ 2

bmνbp

γbm γ 2
bmνbp < ν < νSC

bm√
ν/νbm νSC

bm < ν < γ 2
bMνbm

γbM ν > γ 2
bMνbm,

(46)

where νbp ≡ max (νbsa , νbc), while for slow cooling

γmax(ν) =















√
ν/νbm νSC

bm < ν < γ 2
bcνbm

γbc γ 2
bcνbm < ν < νSC

bc√
ν/νbc νSC

bc < ν < γ 2
bMνbc

γbM ν > γ 2
bMνbc,

(47)

where νbsa < νbm . The KN effects become important at the frequency νSC
kN,1 that satisfies5 ν = γ max (ν)νKN,0. For fast cooling

νSC
k N ,1 =















ν2
KN,0/νbp γ 2

bcνbp < νSC
k N ,1 < γ 2

bmνbp

γbmνKN,0 γ 2
bmνbp < νSC

k N ,1 < νSC
bm

ν2
KN,0/νbm νSC

bm < νSC
k N ,1 < γ 2

bMνbm

γbMνKN,0 νSC
k N ,1 > γ 2

bMνbm,

(48)

while for slow cooling

νSC
k N ,1 =















ν2
KN,0/νbm νSC

bm < νSC
k N ,1 < γ 2

bcνbm

γbcνKN,0 γ 2
bcνbm < νSC

k N ,1 < νSC
bc

ν2
KN,0/νbc νSC

bc < νSC
k N ,1 < γ 2

bMνbc

γbMνKN,0 νSC
k N ,1 > γ 2

bMνbc.

(49)

5 From equations (46) and (47) it is evident that there is always exactly one solution to this equation, while the explicit form of this solution depends on the
frequency range in which it is obtained.
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At ν < νSC
kN,1 KN effects are unimportant and the SSC spectrum is given by equations (39)–(41). At ν > νSC

kN,1 KN effects become
important. In order to calculate Fν in this range we first need to estimate the scattering optical depth τ e(γ b) of electrons with LF γ e ∼ γ b,
which is of the same order as the total optical depth of electrons with γ e > γ b:

τe(γb) ≈ σT Rb

∫ γbM

γb

dγe N (γe), (50)

where N (γ e) is given in equations (29) and (33) for fast cooling and for slow cooling, respectively. For fast cooling we obtain

τe(γe) ≈ τT ×
{

γbc/γe γbc < γe < γbm

γbcγ
s−1
bm γ −s

e γbm < γe < γbM ,
(51)

while for slow cooling

τe(γe) ≈ τT ×
{

(γe/γbm)1−s γbm < γe < γbc

γbcγ
s−1
bm γ −s

e γbc < γe < γbM .
(52)

At ν > νSC
kN,1 the SSC flux density is dominated by the contribution from electrons with νSC

KN(γ b) ∼ ν and is given by

FSC
ν ≈ τe(γe = ν/νKN,0)F

syn

ν2
KN,0/ν

. (53)

The frequency dependence arising from the first term on the right-hand side of equation (53) is just the γ e dependence of τ e(γ e) (which appears
explicitly in equations 51 and 52), while the second term introduces a frequency dependence of ν−β where F syn

ν ∝ νβ at νsyn = ν2
KN,0/ν

SC.
In all cases the largest frequency that the SSC spectrum reaches is min[νSC

KN(γ bM ), γ 2
bMνbM ]. For νSC

KN(γ bM ) > γ 2
bMνbM the SSC spectrum

is given by equations (39)–(41), with no changes. For γ 2
bM max(νbm , νbc) < νSC

KN(γ bM ) < γ 2
bMνbM , the SSC spectrum is the same as in

equations (39)–(41) up to νSC
KN(γ bM ), where it ends sharply [note that νSC

KN(γ bM ) = νSC
KN,1 in this region].

For fast cooling with γ 2
bmνbp < νSC

KN,1 < γ 2
bMνbm we have FSC

ν ∝ ν−β−s for νSC
KN,1 < ν < νSC

KN(γ bM ), and the spectrum ends at νSC
KN(γ bM ).

Immediately above νSC
KN,1 we have β = −1/2 while β might change to 1/3 (for νbc > νbsa) or 2 (for νbc < νbsa) at a higher frequency, ν2

KN,0/νbp,
producing a spectral break at this frequency, if ν2

KN,0/νbp < νSC
KN(γ bM ) [i.e. if γ 2

bMνbp > νSC
KN(γ bM )]. For fast cooling with γ 2

bcνbp < νSC
KN,1 <

γ 2
bmνbp we have FSC

ν ∝ ν−β−1 for νSC
KN,1 < ν < νSC

KN(γ bm), and FSC
ν ∝ ν−β−s for νSC

KN(γ bm) < ν < νSC
KN(γ bM ), where for νbsa > νbc we have β =

2, while for νbc > νbsa we have β = 1/3 immediately above νSC
KN,1, which may change to β = 2 at ν2

KN,0/νbsa if ν2
KN,0/νbsa < νSC

KN(γ bM ).
For slow cooling with γ 2

bcνbm < νSC
KN,1 < γ 2

bMνbc we have FSC
ν ∝ ν−β−s for νSC

KN,1 < ν < νSC
KN(γ bM ), and the spectrum ends at νSC

KN(γ bM ).
Immediately above νSC

KN,1 we have β = (1 − s)/2, while β might change to 1/3 at a higher frequency, ν2
KN,0/νbm , producing a spectral break at

this frequency, if ν2
KN,0/νbm < νSC

KN(γ bM ). For slow cooling with γ SC
bc < νSC

KN,1 < γ 2
bcνbm we have FSC

ν ∝ ν1−s−β for νSC
KN,1 < ν < νSC

KN(γ bc), and
FSC

ν ∝ ν−s−β for νSC
KN(γ bc) < ν < νSC

KN(γ bM ), where β = 1/3 immediately above νSC
KN,1, and may change to β = 2 at ν2

KN,0/νbsa if ν2
KN,0/νbsa <

νSC
KN(γ bM ).

4.4 Opacity to pair production

High-energy photons emitted in the PWB, either by the plerion itself or by the prompt GRB or afterglow that occur inside the PWB, may
interact with lower-energy photons of the strong radiation field of the plerion to create e± pairs. For sufficiently high photon energies, the
optical depth to this process, τ γ γ , may exceed unity, so that they could not escape and reach the observer. We now calculate the photon energy
ε (in units of mec

2) for which τ γ γ (ε) = 1. This sets the maximal photon energy that will not be affected by this process.
The radiation field of the plerion is roughly homogeneous and isotropic within the largest radius where the radiation is emitted, which

we parametrize as f Rb. For a fast cooling PWB (t sd � t3 ∼ 65 yr), the radiation is emitted within a thin layer behind the wind termination
shock, at the radius Rs, so that f = Rs/Rb. For an adiabatic bubble, such as the one considered here, the value of this ratio ranges between
0.2 and 0.5 (KG). For a slow cooling PWB (t sd > t3 ∼ 65 yr) the radiation is emitted from the whole volume of the PWB, and f = 1. The
internal shocks that produce the prompt GRB emission take place at a radius smaller than f Rb, and the energy density of the plerion radiation
field is U ph ≈ aξ e E rot/t sd2π( f Rb)2c. However, the relevant target photons for pair production with high-energy photons are the synchrotron
photons, since the synchrotron component is dominant at low energies. Therefore, we should use the energy density of the synchrotron
photons, U syn = U ph/(1 + Y b). As we shall see in Section 6.3, the afterglow emission typically occurs at R > f Rb, where the radiation field
is not homogeneous, but rather drops as U ph ∝ R−2, and is not isotropic, causing a smaller typical angle between the trajectories of the two
photons that could possibly produce an e± pair. Both effects reduce τ γ γ for the afterglow emission, compared with that for the prompt GRB
or the plerion emission itself, which we calculate below.

The number density of synchrotron photons, nε , per unit dimensionless photon energy ε, may be obtained from the shape of the synchrotron
spectrum, and its normalization is

aξe Erot

ctsd2π( f Rb)2(1 + Yb)
= Usyn = mec

2

∫

dεnεε = gmec
2ε2

bmnεbm
, (54)

where U ph is the photon energy density of the plerion and g = 2(s − 1)/(s − 2). The optical depth to pair production is given by

τγ γ (ε) ≈ σT f Rbε
−1n1/ε = σT f Rb

Usyn

gmec2
ε

(s−2)/2
bm εs/2, (55)
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and τ γ γ (ε) = 1 is satisfied for

hνγ γ =
εmec

2

(1 + z)
≈

2.4 GeV

(1 + z)

(

f1/3√
a

)10/11

η
−5/22
2/3 ε

3/11
be,1/3ε

−1/2
bB,−3ξ

−8/11
e,1/3 E

−21/22
rot,53 γ

−2/11
w,4.5 β

23/22
b,−1 t

43/22
sd,0 , (56)

where f 1/3 = f /(1/3). It can be seen from equation (56) that opacity to pair production becomes important only at very high photon energies,
and is larger for smaller t sd.

For an elongated PWB, the radiation field can generally have a rather different structure, resulting in a different expression for νγ γ .
However, one can imagine a simple scenario where the structure of the radiation field is similar to the spherical case, and equation (56) is
still applicable with simple substitutions. This can occur if the PWB cools rapidly and most of the radiation is emitted just behind the wind
termination shock, and the latter is roughly spherical, with a radius, Rs, similar to the equatorial radius, Req. In this case we should make the
usual substitution βb = 3Reff/2ct sd and f = Rs/Reff ∼ Req/Reff. For example, with βb ≈ 1 and Req/Reff ∼ 0.1 this would increase νγ γ by a
factor of ∼3.

4.5 Prospects for direct detection

An important prediction of this model is a strong radiation field within the PWB. We now examine the possibility of directly observing the
radiation emanating from the PWB during the time between the SN and the GRB events. For time separations t sd smaller than

tτ = 0.4

(

MSNR

10 M�

)1/2

β−1
b,−1 yr, (57)

the SNR shell has a Thomson optical depth larger than unity, and would therefore obscure the radiation emitted within the PWB. For t sd <

t τ the emission owing to the radioactive decay of Ni and Co in the SNR shell, might be observed, as in a regular supernova. However, even
at the peak of the supernova emission, it will be hard to detect at a cosmological distance. This difficulty is also present in ongoing searches
for high-redshift supernovae, where as in our case, random patches of the sky need to be searched, as there is no prompt GRB and afterglow
emission to tell us where and when to look.

If there is considerable clumping of the SNR shell before this time, then equation (57) gives the time when the average optical depth of
the SNR equals 1, while for regions of the shell with a less than average density the optical depth can drop below unity at a somewhat earlier
time. This constraint may also be eased if the geometry of the PWB is not spherical (an elongated PWB), and the mean density of the SNR
shell is significantly smaller near the poles compared with near the equator, and our line of sight is near one of the poles (as is required in
order to see the prompt γ -ray emission from a jetted GRB).

Once the SNR shell becomes optically thin, the PWB radiation may be detected if the flux that arrives at the observer is sufficiently
large. For simplicity, we calculate the flux at the time of the GRB explosion, t sd after the supernova event, since the relevant quantities scale
as power laws with the time t after the supernova, and the system spends most of its (logarithmic) time near t = t sd. For concreteness, we
consider the observed flux in the radio, optical and X-ray bands, for a typical frequency in each of these frequency ranges: νrad = 5 × 109 Hz,
νop = 5 × 1014 Hz and νX = 1018 Hz.

For the radio band we have νrad < νbsa for t sd < t sa,rad, νbsa < νrad < νbc for t sa,rad < t sd < t c,rad and νbc < νrad < νbm for t sd > t c,rad, where

tsa,rad = 3.9(1 + z)−1ε
−1/6
be,1/3ε

1/6
bB,−3ξ

1/3
e,1/3 E

1/3
rot,53γ

−1/3
w,4.5 β

−2/3
b,−1 ν−1

9.7 yr, (58)

tc,rad = 20(1 + z)2/5η
3/5
2/3ε

2/5
be,1/3ε

1/5
bB,−3 E

3/5
rot,53β

−9/5
b,−1 ν

2/5
14.7 yr, (59)

and

F syn
ν =















34 µJy(1 + z)3η
−1/4
2/3 ε

−1/12
be,1/3ε

−1/6
bB,−3ξ

1/6
e,1/3 E

−1/12
rot,53 γ

−1/6
w,4.5 β

29/12
b,−1 t

9/4
sd,0ν

2
9.7d−2

L28 tsd < tsa,rad

1.0 mJy(1 + z)1/2η
−1/4
2/3 ε

−1/2
be,1/3ε

1/4
bB,−3ξe,1/3 E

3/4
rot,53γ

−1
w,4.5β

3/4
b,−1t

−1/4
sd,0 ν

−1/2
9.7 d−2

L28 tsa,rad < tsd < tc,rad

0.50 Jy(1 + z)4/3η2/3ε
1/3
be,1/3ε

2/3
bB,−3ξe,1/3 E2

rot,53γ
−1
w,4.5β

−3
b,−1t

−7/3
sd,0 ν

1/3
9.7 d−2

L28 tsd > tc,rad.

(60)

For t sd < tm,op we have νop < νbm , while for t sd > tm,op, the ordering is reversed νop > νbm , where tm,op is given by

tm,op = 0.22(1 + z)−2/3η
5/3
2/3ε

4/3
be,1/3ε

1/3
bB,−3ξ

−4/3
e,1/3 E

1/3
rot,53γ

4/3
w,4.5β

−1
b,−1ν

−2/3
14.7 yr. (61)

The optical flux is dominated by synchrotron emission and is given by

F syn
ν =

{

3.1 µJy(1 + z)1/2η
−1/4
2/3 ε

−1/2
be,1/3ε

1/4
bB,−3ξe,1/3 E

3/4
rot,53γ

−1
w,4.5β

3/4
b,−1t

−1/4
sd,0 ν

−1/2
14.7 d−2

L28 tsd < tm,op

0.82 µJy(1 + z)−1/10η
5/4
2/3ε

7/10
be,1/3ε

11/20
bB,−3ξ

−1/5
e,1/3 E

21/20
rot,53γ

1/5
w,4.5β

−3/20
b,−1 t

−23/20
sd,0 ν

−11/10
14.7 d−2

L28 tsd > tm,op.
(62)

The X-ray is typically above νbm , and for the synchrotron emission we have

νF syn
ν = 1.9 × 10−15(1 + z)−1/10η

5/4
2/3ε

7/10
be,1/3ε

11/20
bB,−3ξ

−1/5
e,1/3 E

21/20
rot,53γ

1/5
w,4.5β

−3/20
b,−1 t

−23/20
sd,0 ν

−1/10
18 d−2

L28

erg

cm2 s
. (63)

For sufficiently small values t sd we have νSC
bc < νX < νSC

bm (as t sd increases, then νSC
bm decreases below the X-ray for t sd > tSC

m,X), and νSC
bc grows

above the X-ray for t sd > tSC
c,X, where the relative ordering of tSC

m,X and tSC
c,X depends on the values of the other parameters. For our fiducial

values we have
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tSC
m,X = 25(1 + z)−2/3η3

2/3ε
8/3
be,1/3ν

SC
bmε

1/3
bB,−3ξ

−8/3
e,1/3 E

1/3
rot,53γ

8/3
w,4.5β

−1
b,−1ν

−2/3
18 yr, (64)

tSC
c,X = 80(1 + z)2/13a4/13η

7/13
2/3 ε

4/13
be,1/3ε

3/13
bB,−3 E

7/13
rot,53β

−21/13
b,−1 ν

2/13
18 yr. (65)

For this ordering of these two times we have νX > max(νSC
bm , νSC

bc ) for tSC
m,X < t sd < tSC

c,X, and νSC
bm < νX < νSC

bc for t sd > tSC
c,X. For the other

ordering, tSC
c,X < tSC

m,X, we have νX < min(νSC
bm , νSC

bc ) for tSC
c,X < t sd < tSC

m,X and νSC
bm < νX < νSC

bc for t sd > tSC
m,X. The X-ray is always below the

KN limit, and the SSC ν Fν , is given by

νFSC
ν

(

erg cm−2 s−1
) =
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.

(66)

The emission from the PWB calculated above is at the time of the GRB explosion, t sd. However, an important question one needs to
address is for how long after the onset of the GRB explosion will the radiation from the plerion persist. Once the SMNS collapses to a black
hole, giving rise to the GRB event, the pulsar wind stops abruptly, and no new electrons, freshly accelerated at the wind termination shock, are
injected into the plerion from this point onwards. The electrons in the PWB begin to cool radiatively, and adiabatic cooling of the electrons
become important on the dynamical time of the plerion, t sd (where this is also a good estimate of the dynamical time for an elongated PWB).
Once the final accelerated electrons cool below the Lorentz factor at which they radiate at some observed frequency ν, no more radiation is
emitted at that frequency. This cooling time is given by

tcool = 8.9(1 + z)−1/2η
−3/4
2/3 ε

−1/2
be,1/3ε

−1/4
bB,−3β

9/4
b,−1 E

−3/4
rot,53t

9/4
sd,0ν

−1/2
9.7 d, (67)

where the above numerical coefficient is for the radio band, while for the optical and X-ray bands the numerical coefficient is 40 min and
24 s, respectively. For our simple example of an elongated PWB, where βb ≈ 1, the cooling time is approximately two orders of magnitude
larger. Owing to the strong dependence on t sd, t cool can become quite large for large values of t sd, especially for radio frequencies.

A possibly more severe constraint arises from the geometrical time delay in the arrival of photons to the observer, from the different parts
of the PWB,

tg ∼
Rb

c
= 24.2βb,−1tsd,0 d. (68)

That is to say, even if the emission from the PWB were to stop at once, with the onset of the GRB, the radiation would still reach the observer
tg after the GRB, owing to the geometrical time delay in the arrival of photons to the observer from the far side of the PWB, compared with
the side facing the observer. For t sd < t3, where t3 is typically rather large (see equation 23), the PWB is in the fast cooling regime, and most
of the emission occurs near the radius of the termination shock, Rs. This reduces tg by a factor of Rs/Rb. However, this is not expected to
account for more than a factor of ∼5 (KG). For an elongated PWB we have tg ∼ Rs/c for t sd � t3, while for t sd > t3 we have tg ∼ Rp/c ≈
t sd. The emission from the PWB should persist for an observed time of tpl ∼ (1 + z) max [tg, min(t sd, t cool)] after the GRB, which as can be
seen from equations (67) and (68) should be at least a few days after the GRB, but can also be much larger (tpl � tg, see equation 68).

The plerion emission at the radio, optical and X-ray bands is shown in Fig. 1. For reference, we also show the times t τ (below which the
Thomson optical depth is larger than unity), tFe (below which iron line features can appear in the X-ray spectrum of the afterglow) and t ISM

(for which the effective density of the PWB is similar to that of a typical ISM, i.e. 1 cm−3). In the radio band, the typical limiting flux for
detection is ∼0.1 mJy, and upper limits at this flux level, at a time t < tpl after the GRB, would exclude 2 � t sd,0 � 20 for γ w � 105, while
for 2 � t sd,0 � 65 this would imply γ w � 104. Values of t sd � 2 yr or t sd � 65 yr are hard to constrain with the radio results.

Optical upper limits at the R band at the level of ∼24–25th magnitude (Fν � 0.5 µJy) would imply γ w � 105 for t sd < tFe, i.e. for
afterglows with iron lines. More stringent upper limits, may provide more severe constraints. For example, an upper limit of 0.01 µJy [i.e.
R = 28.6, which might be reached with the Hubble Space Telescope (HST)] implies t sd � t ISM.

In the X-ray range, for γ w � 104.5 the SSC emission dominates over the synchrotron emission for all t sd � t τ , and for γ w = 105 it
dominates for t sd � 7 yr. The typical limiting flux for detection in the X-ray range is a few×10−14 erg cm−2 s−1, and upper limits at this level
may imply γ w � 104 for t sd � tFe. For t sd � tFe, such upper limits cannot provide any useful constraints.

5 E F F E C T S O N P RO M P T G R B E M I S S I O N

Prompt gamma-ray emission is believed to arise from internal shocks within the GRB outflow, owing to variability in its Lorentz factor �

(Rees & Mészáros 1994; Sari & Piran 1997). In order for this process to be efficient, it needs to occur before the ejecta is significantly
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Figure 1. The flux density, Fν , of the plerion emission at the time of the GRB (i.e. a time t sd after the supernova event), as a function of t sd. The three
panels show the flux density in the radio, optical and X-ray bands (ν = 5 × 109, 5 × 1014, 1018 Hz, respectively). For the radio and optical bands we show
Fν of the synchrotron emission, and for the X-ray band we show νFν for both the synchrotron and SSC components. The dashed, solid and dot-dashed lines
represent log10(γ w) = 4, 4.5 and 5, respectively. Dashed lines are shown at tτ (below which the Thomson optical depth is larger than unity), tFe (below which
iron line features can appear in the X-ray spectrum of the afterglow) and t ISM (for which the effective density of the PWB is similar to that of a typical ISM,
i.e. 1 cm−3.

decelerated by the ambient medium. Therefore, the main effect that a plerionic environment may have on the prompt GRB stage is through
inverse Compton scattering of the photons from the external plerion radiation field (which we shall refer to as external Compton, or EC).

The external (plerion) radiation field in the local rest frame of the shocked shells is U ′
ph,ext = �2U ph,ext where U ph,ext is given by

equation (54). The electrons radiatively cool by a combination of synchrotron, SSC and EC processes the time-scales of which are (in the
comoving frame) t ′

syn ∼ 6πmec/σ T B ′2γ ,t ′
SC = t ′

syn/Y and t ′
EC = t ′

syn/X , where Y is the Compton y-parameter and

X =
U ′

ph,ext

εBe′ = 3.1 × 10−4a1/2 f −2
1/3ξe,1/3ε

−1/2
be,1/3ε

1/2
bB,−3εeε

−1
B β−2

b,−1t−3
sd,0 Erot,53 L−1

52 �8
2.5t2

v,−2 (69)

is the ratio of the energy density of the external radiation field and the magnetic field in the local rest frame of the shocked shells, which is
also the ratio between the energies in the EC and synchrotron components. As can be seen from equation (69), X � 1 for typical parameters.
In order to have X � 1, we need t sd � 1 yr and � � 103. For an elongated PWB of the type described just before Section 4.1, with f ∼
Rs/Reff ∼ 0.1 and βb ≈ 1, X is roughly the same.

The EC component is a result of the scattering of external photons from the plerion radiation field by the electrons from the GRB ejecta.
This scattering can be done either by hot (relativistic) electrons, or by cold (non-relativistic) electrons, the latter being either in cold shells or
cold portions of colliding shells (in either regions before the shock or at a distance larger than γ c�

′ behind the shock for γ c < 1).
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For the colliding shells, we assume that the Thomson optical depth, τT, is smaller than 1. We provide detailed expressions for one
representative plerion spectrum, the one given in equation (22), that is relevant for t sd < t2 ∼ 12 yr (see equation 35), which is of most interest.
Similar expressions for the other plerion spectra can be readily derived in a similar manner. The plerion SSC emission in this regime has a
peak for the νFν at νSC

bm � 1020 Hz for t sd � 1 yr, and will therefore be above the KN cut-off for both hot and cold electrons in the outflowing
shells, and its contribution to the EC emission can be neglected. The resulting EC spectrum arising from scattering by the hot electrons is

νF EC
ν

νm Fνm

= X ×











(

νEC
sa /νEC

m

)1/2(
ν
/

νEC
sa

)2
ν < νEC

sa
(

ν
/

νEC
m

)1/2
νEC

sa < ν < νEC
m

(

ν
/

νEC
m

)1−s/2
νEC

m < ν < νEC
KN (γM ),

(70)

where νEC
sa ≡ �2 max (γ 2

c , 1)νbsa and

νEC
m = �2γ 2
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If νSC
KN,1 < νSC

KN(γ M ) then we have νFν ∝ ν1/2−s for νSC
KN,1 < ν < νSC

KN(γ M ). The peak of the νFEC
ν spectrum, of the EC component from hot

electrons is ∼10−10(X/10−4) erg cm−2 s−1 and is a factor of X ∼ 10−4 (for t sd ∼ 1 yr) smaller than that of the synchrotron component and
therefore might be detected only for extreme parameters (t sd,0 � 1, � � 103).

For the scattering by cold electrons, the optical depth is approximately

τT = σt n
′
e�

′ ≈ 0.02ε−1
e L52�

−5
2.5 t−1

v,−2, (72)

and the Compton y-parameter is Y = min (τT , 1)�2. This implies that all frequencies of the plerion spectrum are shifted upwards by a factor
of �2, and the corresponding flux density, Fν , should be multiplied by min (τT, 1). The only exception to this simple re-scaling is that the
spectral slope below the upscattered self-absorption frequency will be Fν ∝ ν, instead of ν2 in the plerion spectrum. The peak of the νFEC

ν

spectrum will be at

�2νbm ≈ 5.1 × 1018(1 + z)−1η
5/2
2/3ε

2
be,1/3ε

1/2
bB,−3ξ

−2
e,1/3 E

1/2
rot,53γ

2
w,4.5β

−3/2
b,−1 t

−3/2
sd,0 Hz, (73)

which is typically in the hard X-ray or soft gamma-ray range for t sd � 1 yr. However, the peak of νFEC
ν for this component is a factor of Y �

�2 ∼ 105 larger than νbm Fνbm
� 10−14 erg cm−2 s−1 and is therefore � 10−9 erg cm−2s−1, and will typically hide below the standard GRB

emission.
Another possible effect of the plerion radiation field is that photons with energy �1 t2

sd,0 GeV cannot escape the emission region owing
to a large opacity to pair production (τ γ γ > 1). Therefore, all the components of the prompt GRB emission, including synchrotron, SSC and
EC, will have an upper cut-off at this photon energy.

Finally, we consider the effect of the Compton drag caused by the plerion radiation field on the GRB outflow.6 The effect of Compton
drag in GRBs was considered in the context of the collapsar model, where the radiation comes from the walls of a funnel along the rotational
axis of the progenitor star (Ghisellini et al. 2000; Lazzati et al. 2000). The rate of energy loss of a shell of initial Lorentz factor �0 rest mass
M and solid angle � j , is given by

dE

dt
=

d�

dt
Mc2 = −� j R2c�2Uph min(τT, 1), (74)

where t ≈ R/c is the laboratory frame time, τT = (R/Rτ )−2 is the Thomson optical depth of the shell, Rτ is the radius where this optical
depth drops below unity.7 We render equation (74) dimensionless by introducing R̃ ≡ R/Rτ = τ

−1/2
T ,

d(1/�)

d R̃
= A min(R̃2, 1), A ≡

� j Uph R3
τ

Mc2
. (75)

This gives

�(R̃)

�0
=

{

(1 + A�0 R̃3/3)−1 R̃ < 1
[

1 + A�0(R̃ − 2/3)
]−1

R̃ > 1,
(76)

where

Rτ = 3.3 × 1012ε−1/2
γ L

1/2
52 �

−1/2
2.5 t

1/2
v,−2 cm,

A = 1.6 × 10−8a f −2
1/3ε

−1/2
γ ξe,1/3 Erot,53β

−2
b,−1t−3

sd,0 L
1/2
52 �

−1/2
2.5 t

1/2
v,−2, (77)

6 The emission from the initial supernova itself always contributes much less to the total radiation field inside the PWB, and may therefore be neglected.
7 We have used the total photon energy density of the PWB, U ph, which includes the SSC component, even though for t sd �30 yr, most of the energy in the SSC
component is in photons that are above the Klein–Nishina limit, and would therefore have a reduced cross-section for scattering. Since we show that Compton
drag is unimportant even without taking into account the reduced cross-section, this effect can only strengthen our conclusion.
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where εγ is the fraction of the kinetic luminosity of the GRB outflow that is converted into gamma-ray emission. As can be seen from
equations (76) and (77), A�0 � 1 and therefore �(Rτ ) ∼= �0, while for R � Rτ the fractional change in � is given by A�0 R̃. If the radius,
Rcd, at which deceleration caused by Compton drag becomes significant, is larger than the deceleration radius, Rdec ≈ f Rb, owing to the
sweeping up of the PWB material, then the deceleration caused by Compton drag is at most comparable to (and never dominant over) the
deceleration caused by the ambient medium, for8 k � 1. Therefore, Compton drag will have a significant effect on the deceleration only if
Rcd < Rdec, which for our fiducial values may be expressed as t sd < 0.3 f 1/2yr. For such low values of t sd the SNR shell is still optically thick
to Compton scattering (t sd < t τ ), so that we do not expect to see the GRB or afterglow emission. We conclude that the deceleration of the
GRB ejecta caused by Compton drag is negligible for relevant values of t sd.

6 E F F E C T S O N T H E A F T E R G L OW E M I S S I O N

At a time t sd after the supernova event, the SMNS collapses and triggers the GRB explosion, sending a fireball and relativistic blast wave into
the PWB. When the GRB ejecta has swept up enough of the outlying material, it is decelerated, and it drives a strong relativistic shock into
the external medium, that is responsible for the afterglow emission.

In this section we study the observational consequences of the plerionic environment inside the PWB that are different from the standard
‘cold’, weakly magnetized proton–electron external medium. One of the advantages of having the PWB as the environment for the GRB
afterglow is that it naturally yields high values of εe and εB (the fraction of the internal energy in the electrons and in the magnetic field,
respectively) behind the AG shock (KG). High values of εe are expected from the fact that relativistic pulsar-type winds are probably
dominated by an electron–positron component, whereas significant values of εB should naturally occur if the winds are characterized by a
high magnetization parameter. We expect εB ∼ εbB , and use the same fiducial value for these two parameters. The electrons in the PWB are
typically colder than the protons by the time the afterglow shock arrives, and most of the energy is in the internal energy of the hot protons.
This might suggest that εe can be slightly smaller than εbe and motivates us to use εe = εe,−1/10 for our fiducial values.

The values of the physical quantities behind the AG shock can be determined from the appropriate generalizations of the hydrodynamic
conditions used in the case of a ‘cold’ medium, taking into account the fact that the pre-shock gas is now ‘hot’ and should be well described
by a relativistic equation of state, p = e/3 = w/4, where w is the enthalpy density and p is the particle pressure. In the following we largely
follow the analysis of KG. The deceleration of the AG shock is determined by the total enthalpy of the external medium, wtot, which includes
contributions from the particles and the magnetic field enthalpy, B2/4π, where the latter contribution is negligible for our choice of parameters
(εB � 1). This make it convenient to define an ‘equivalent’ hydrogen number density nH,equiv ≡ wtot/mpc2 ≈ w/mpc2 = (4/3) e/mpc2, in
analogy with the traditional parametrization of the external medium enthalpy density, w = nH mp c2, which is relevant for a standard ISM or
stellar-wind environment.

In general, both the energy and the electron number density may be a function of the distance r from the centre of the PWB and can be
parametrized as

e(r ) = Aer
−k∗ , Ae =

(3 − k∗)ηErot

4πR3−k
b

, (78)

ne(r ) = Anr−k, An =
(3 − k)Ne

4πR3−k
b

, (79)

where Ne = Ṅetsd is the total number of electrons in the PWB and Ṅe is given in equation (10). When a large fraction of the energy density
in the PWB goes to the proton component we have η ∼ 1 and we can expect both nH,equiv and ne to have a similar radial dependence, i.e.
k = k∗. The expected values of k typically range between k = 0, similar to the ISM, and k = 1, which is intermediate between an ISM and a
stellar wind (KG). For an elongated PWB, things can become much more complicated, since e and ne can depend not only on r but also on
the angle θ from the polar axis. However, if the θ dependence within the opening angle of the GRB jet is small, and the dependence on r may
be reasonably approximated by a power law, then our formalism still holds for k ≈ 0, with the usual substitution of βb = 3Reff/2ct sd (see the
beginning of Section 4). For k > 0 we also need to change the normalization in equations (78) and (79) accordingly.

The expressions for the radius RAG and the Lorentz factor �AG of the shocked AG material can be derived using energy conservation,

Eiso = �2
AG

∫ RAG

RS

nH,equivmpc24πr 2 dr, (80)

where E iso is the isotropic equivalent energy of the AG shock, and using the relation

t ∼
RAG

4c�2
AG

, (81)

where t is the observed time. We obtain

RAG =
(

3Eisoct R3−k
b

ηErot

)1/(4−k)

(82)

8 This is since the Lorentz factor decreases with radius as R−1 caused by Compton drag and as R(k−3)/2 caused by the ambient medium.
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�AG =

√

RAG

4ct
∝ t (k−3)/2(4−k) ∝

{

t−3/8 k = 0
t−1/3 k = 1.

(83)

The post-shock energy and particle density (in the shock comoving frame) are given by

e′ = 4�2
AGw, n′

e = 4�AGne. (84)

The electron distribution is assumed to be similar to that of internal shocks, N (γ ) ∝ γ −p for γ m < γ < γ M , and we use p = 2.5 to obtain the
numerical values.

As mentioned in Section 4.4, the plerion radiation field is roughly homogeneous and isotropic within the radius f Rb where the plerion
emission takes place. At r � f Rb the external (plerion) photon energy density, U ph,ext, is given by equation (54), and we may use the relation
U ′

ph,ext = �2
AGU ph,ext (which is valid for an isotropic radiation field) to obtain

X =
U ′

ph,ext

εBe′ ≈

{

2.1a1/2 f −2
1/3η

−1
2/3ε

−1/2
be,1/3ε

1/2
bB,−3ε

−1
B,−3ξe,1/3βb,−1 k = 0

1.8a1/2 f −2
1/3η

−4/3
2/3 ε

−1/2
be,1/3ε

1/2
bB,−3ε

−1
B,−3ξe,1/3 E

−1/3
rot,53β

2/3
b,−1t

−1/3
sd,1.5 E

1/3
iso,53t

1/3
d k = 1,

(85)

where t sd,1.5 = t sd/103/2. For t sd > t3 ∼ 65 yr the PWB is slow cooling, and f = 1, so that RAG < f Rb throughout the afterglow. For t sd < t3

the plerion emission is radiated within a shell of width Rb − Rs times the ratio, (t sd/t3)2, of the cooling time of electrons with γ bm , and the
dynamical time t sd. This implies that generally, f = min{1, (Rs/Rb)[1 − (t sd/t3)2] + (t sd/t3)2}. For t sd < t3 we have f < 1 and therefore
RAG < f Rb only at sufficiently early times after the GRB. For t sd � t3, the radiation is emitted within a thin shell behind the wind termination
shock, at Rs, and f ≈ Rs/Rb. In this case RAG > f Rb throughout the afterglow. We study the implications in the following.

At r > f Rb, the plerion radiation field is no longer isotropic or homogeneous, and we model the plerion radiation field as resulting from
emission by a uniformly bright sphere with a radius f Rb, and obtain

Uph =
ξe Lw

2πc f R2
b

(1 − µ) ≈
ξe Lw

4πcr 2
, U ′

ph =
ξe Lw

2πc f R2
b

�2
AG

3β
[(1 − βµ)3 − (1 − β)3], (86)

where µ ≡ [1 − ( f Rb/r )2]1/2 and β = (1 − �−2
AG)1/2. The ratio of the photon energy in the local and the observer frames is now

U ′
ph

Uph
=

�2
AG

[

(1 − βµ)3 − (1 − β)3
]

3β(1 − µ)
≈

{

�2
AG(1 − µ)2/3 ≈ ( f Rb/r )4�2

AG/12 r � �AG f Rb

(1 − β)/(1 + β) ≈ 1/4�2
AG r � �AG f Rb.

(87)

During the early afterglow, RAG is relatively small and �AG � 1, so that RAG � �AG f Rb, and the first limit of equation (87) is applicable,
implying

X1 ≈

{

0.26a−1/2 f 4
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−5/3
d k = 1.

(88)

During the course of the afterglow its radius increases while its Lorentz factor decreases, so that eventually RAG becomes larger than �AG

f Rb, and the second limit of equation (87) becomes relevant, implying

X2 ≈

{

1.3 × 10−4a−1/2ε
−1/2
be,1/3ε

1/2
bB,−3ε

−1
B,−3ξe,1/3 Erot,53t

3/2
sd,1.5 E−1

iso,53td k = 0

2.0 × 10−4a−1/2ε
−1/2
be,1/3ε

1/2
bB,−3ε

−1
B,−3ξe,1/3 Erot,53t

3/2
sd,1.5 E−1

iso,53td k = 1,
(89)

as long as the afterglow shock is still relativistic. One can combine the two limits and use X = max (X 1, X 2). However, since the region
where these asymptotic expressions for X are not a very good approximation may play an important role, we use equation (86) rather than
equations (88) and (89) for all our calculations.

It is also worth noting that the average shift in frequency of the photons between the observer frame and the local and the rest frame
is 〈ν ′/ν〉 = �AG[1 − β(1 + µ)/2] ≈ [1 + �2

AG(1 − µ)2]/2�AG, and varies between �AG/2 and 1/2�AG. This should be compared with the
usual factor of �AG for an isotropic (plerion) radiation field, and implies lower typical EC frequencies, by a factor of [1 − β(1 + µ)/2]. For
simplicity we do not include this factor in the expressions for the EC frequencies, but we do take it into account in Fig. 2, and when deriving
constraints on the model parameters.

The electron cooling time is t syn/(1 + Y + X ) where the Compton y-parameter may be obtained by solving the equation

Y ≈ τTaγcγm ≈
aεe

εB(1 + Y + X )
, (90)

which gives (Granot & Königl 2001)

Y ≈







√
aεe/εB 1, X 2 � aεe/εB

aεe/εB X, aεe/εB � 1
aεe/(εB X ) aεe/εB, 1 � X 2.

(91)

For our choice of parameters, εB � εe and aεe/εB � 1, so that either the first or the third limits of equation (91) are relevant. As the first limit
is more often applicable, we use the parametrization (1 + Y + X ) ≡ X̄ (aεe/εB)1/2, so that the numerical coefficients and explicit dependence
on the parameters of the break frequencies (that depend on the electron cooling time), would be relevant for X 2 � aεe/εB , where X̄ ≈ 1.
In the limit X 2 � aεe/εB , the numerical coefficients and parameter dependences change because of the dependence on X̄ ≈ X/(aεe/εB)1/2,
which is no longer close to 1 in this limit.
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Figure 2. The afterglow νFν spectrum at t = 500 s (upper panel) and 5 × 103 s (lower panel) after the GRB, for our fiducial parameters, and for t sd = 20 yr,
E rot,53 = 0.5, z = 1, Rs/Rb = 0.1. Dotted vertical lines indicate νM where the upper cut-off for the synchrotron emission is located, and νγ γ where the upper
cut-off of the SSC and EC (owing to pair opacity) is located.

6.1 The synchrotron emission

In the standard case of a uniform ambient medium, one can express the break frequencies and the peak flux in terms of the shock energy
E, the ambient density nH, the observed time t and εe, εB , and the distance to the source (Sari, Piran & Narayan 1998). This is thanks to
the fact that for a ‘standard’ external medium that is composed of equal numbers of protons and electrons, so that both the shock dynamics
(that is determined by w = nHmpc2) and the external number density of electrons (that enter the expressions for the flux normalization and
self-absorption frequency), are determined by a single parameter, nH. In the case of a shock propagating inside a PWB, the dynamics of the
AG shock are determined by w = nH,equiv mpc2 ≈ ηγ wnpmpc2, i.e. dominated by the internal energy of the hot protons, while the number
density of electrons is different, and is dominated by the electron–positron pairs. We find

nH,equiv =
ηErot

πR3
bmpc2

≈ 1.8η2/3 Erot,53β
−3
b,−1t−3

sd,1.5,

ne

nH,equiv
=

3ξemp

4ηeγwme
≈ 0.022η−1

2/3ξe,1/3γ
−1
w,4.5.

(92)

For an elongated PWB we can make the usual substitution βb = 3Reff/2ct sd, to obtain the relevant expressions (see the discussion just before
Section 4.1).

The self-absorption frequency is typically νsa < min(νc, νm), and is calculated using equation (30) for fast cooling and equation (34) for
slow cooling, solving for τ ′

ν = α′ RAG/�AG = 1 for ν ′
sa and then νsa = �AGν ′

sa . The transition time from fast to slow cooling, t0, is obtained
by equating γ c and γ m . For k = 0 we obtain
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where νsa1 is for fast cooling and νsa2 is for slow cooling. For k = 1 we obtain

νc ≈ 7.0 × 1013(1 + z)−5/6a−1 X̄−2η
−4/3
2/3 ε−1

e,−1ε
−1/2
B,−3 E

−4/3
rot,53β

8/3
b,−1t

8/3
sd,1.5 E

−1/6
iso,53t

−1/6
d Hz,

νm ≈ 9.9 × 1014(1 + z)1/2η2
2/3ξ

−2
e,1/3ε

2
e,−1ε

1/2
B,−3γ

2
w,4.5 E

1/2
iso,53t

−3/2
d Hz,

νM ≈ 4.2 × 1021(1 + z)−2/3a−1/2 X̄−1η
−1/6
2/3 ε

−1/2
e,−1 ε

1/2
B,−3 E

−1/6
rot,53β

1/3
b,−1t

1/3
sd,1.5 E

1/6
iso,53t

−1/3
d Hz,

νsa1 ≈ 3.3 × 108(1 + z)−2/15 X̄η
13/15
2/3 ξ

3/5
e,1/3ε

1/2
e,−1ε

7/10
B,−3 E

22/15
rot,53γ

−3/5
w,4.5 β

−44/15
b,−1 t

−44/15
sd,1.5 E

1/3
iso,53t

−13/15
d Hz,

νsa2 ≈ 5.2 × 107(1 + z)−4/5η
−4/5
2/3 ξ

8/5
e,1/3ε

−1
e,−1ε

1/5
B,−3 E

4/5
rot,53γ

−8/5
w,4.5 β

−8/5
b,−1 t

−8/5
sd,1.5t

−1/5
d Hz,

Fν,max ≈ 1.2(1 + z)7/6η
−1/3
2/3 ξe,1/3ε

1/2
B,−3 E

2/3
rot,53γ

−1
w,4.5β

−4/3
b,−1 t

−4/3
sd,1.5 E

5/6
iso,53t

−1/6
d d−2

L28 mJy,

t0 ≈ 7.3(1 + z)X̄ 3/2η
5/2
2/3ξ

−3/2
e,1/3 ε

9/4
e,−1ε

3/4
B,−3 Erot,53γ

3/2
w,4.5β

−2
b,−1t−2

sd,1.5 E
1/2
iso,53 d.

(94)

We note that in order for νsa not to exceed a few GHz, as typically implied by observations, we need t sd � 10 yr. This also gives more
reasonable values for the transition time from fast to slow cooling, t0, and for Fν,max. For k = 0 the effective mass density of the PWB becomes
similar to that of a typical ISM, nH,equiv = 1 cm−3, for

tISM = 38η
1/3
2/3 E

1/3
rot,53β

−1
b,−1 yr, (95)

while the electron number density reaches the same value for a smaller t sd = 10.7 η
1/6
2/3ξ

1/6
e,1/3γ

−1/6
w,4.5β

−1
b,−1 yr. For t sd ∼ t ISM the afterglow emission

is close to that of the ‘standard’ model, where the external medium is the ISM or a stellar wind, which has been extensively and successfully
fitted to afterglow observations.

In order to explain the X-ray lines, we need t sd � tFe ∼ 1 yr. This implies that the radio will typically be below the self-absorption
frequency, and hence the radio emission from the afterglow would not be detectable. On top of this, the jet break time is given by substituting
nH,equiv in place of the external density for a ‘standard’ external medium (Sari, Piran & Halpern 1999),

t j = 1.1

(

1 + z

2

)(
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8/3
j,−1 h, (96)

and is very low for θ j,−1 = θ j/0.1 ∼ 1. If we want to explain the observed values of t j ∼ 1 d that are typically observed as resulting from a
larger θ j (∼0.4) then this would imply that the time of transition to a non-relativistic flow should be tNR ∼ θ−2

j t j ∼ 7t j ∼ 7d, and in general,

tNR ∼
1

c

(

E

nH,equivmpc2

)1/3

≈ 18

(

1 + z

2

)(

E51

η2/3 Erot,53

)1/3

βb,−1tsd,0 d, (97)

where E = 1051 E51 erg is the true energy of the afterglow, and we have dropped factors of the order of unity. Finally, for t sd � tFe ∼ 1 yr, the
transition time from fast to slow cooling is very large, and fast cooling is expected during all of the afterglow.

For t < t0, in the fast cooling regime, the synchrotron flux density, Fν , is given by9

Fν = Fν,max ×



















(νsa/νc)1/3(ν/νsa)2 ν < νsa

(ν/νc)1/3 νsa < ν < νc

(ν/νc)−1/2 νc < ν < νm

(νm/νc)−1/2(ν/νm)−p/2 νm < ν < νM .

(98)

9 If there is no significant mixing of the shocked fluid the spectral slope just below νsa should be ν11/8, and the familiar ν2 slope is obtained below a lower
break frequency, νac (4).
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For t > t0 we are in the slow cooling regime, in this case the spectrum peaks at νm and again consists of four power-law segments:

Fν = Fν,max ×















(νsa/νm)1/3(ν/νsa)2 ν < νsa

(ν/νm)1/3 νsa < ν < νm

(ν/νm)(1−p)/2 νm < ν < νc

(νc/νm)(1−p)/2(ν/νc)−p/2 νc < ν < νM .

(99)

6.2 The SSC emission

The SSC emission is calculated similarly to Sections 4.2 and 4.3. The fast cooling spectrum is given by
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where

νm Fνm
= 3.1 × 10−12(1 + z)X̄−1ε

1/2
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1/2
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d d−2
L28 erg cm−2 s−1, (101)

and for k = 0 we have
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while for k = 1 we have
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The slow cooling spectrum is
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where νc Fνc is just a = (νm/νc)(2−p)/2 times νm Fνm
for the fast cooling, which is given in equation (101). For k = 0 we have
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and for k = 1 we obtain
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νSC
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(106)

6.3 The EC emission

The EC emission in this case arises from the upscattering of the plerion radiation by the relativistic electrons behind the afterglow shock.
We provide detailed expressions for one representative plerion spectrum, the one given in equation (24). This spectrum is the spectrum for
12 yr ∼ t2 < t sd < t3 ∼ 65 yr (see equations 35 and 23), which is of most interest. Similar expressions for the other plerion spectra can be
readily derived in a similar manner. We note that for t sd < t2 the synchrotron emission of the plerion near the peak of νFν is the same as for
the spectrum we use (i.e. for t2 < t sd < t3), and therefore the EC near the peak of its νFν should be the same. The peak of νFν for the SSC
plerion emission is typically above the KN limit for the AG electrons, and should therefore have a negligible contribution for the EC emission
of the afterglow. The resulting EC spectrum depends on whether the electrons in the afterglow shock are in the fast cooling or slow cooling
regime. The EC spectrum is
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where νEC
KN(γ M ) = νSC

KN(γ M ) is given by equation (102). For fast cooling and k = 0
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while for fast cooling with k = 1 we have
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For slow cooling with k = 0 we have
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and finally for k = 1 we have

νEC
sa ≈ 5.8 × 1018(1 + z)1/3η

4/3
2/3ξ

−5/3
e,1/3 ε

−1/6
be,1/3ε

1/6
bB,−3ε

2
e,−1 E

−1/3
rot,53γ

5/3
w,4.5β

2/3
b,−1t

1/3
sd,1.5 E

2/3
iso,53t

−4/3
d Hz,

νEC
c ≈ 1.6 × 1020(1 + z)1/3η

−1/6
2/3 ξ−2

e,1/3ε
−1
be,1/3ε

−1/2
bB,−3ε

2
e,−1 E

−13/6
rot,53 γ 2

w,4.5β
35/6
b,−1t

23/6
sd,1.5 E

2/3
iso,53t

−4/3
d Hz,

νEC
m ≈ 1.9 × 1020(1 + z)−1a−1 X̄−2η

1/2
2/3ξ

−2
e,1/3ε

2
be,1/3ε

1/2
bB,−3ε

−1
e,−1ε

−1
B,−3 E

−3/2
rot,53γ

2
w,4.5β

5/2
b,−1t

5/2
sd,1.5 Hz.

(111)

6.4 High-energy emission

Fig. 2 shows the νFν spectrum of the afterglow at t = 500 s and 5 × 103 s, for our fiducial parameters, and for t sd = 20 yr, E rot,53 = 0.5, z =
1, Rs/Rb = 0.1. As can be seen from the figure, for t = 500 s (5 × 103 s) the synchrotron is dominant below 45 MeV (2 MeV), while the EC
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is dominant above this range. At t = 5 × 103 s the SSC component becomes dominant above 40 GeV. We expect an upper cut-off at hνγ γ ∼
250 GeV, owing to opacity to pair production, with the photons of the plerion. This upper cut-off moves down to a lower energy for smaller
values of t sd, and is ∼1 GeV for t sd = 1 yr ∼ tFe. This implies that for afterglows with X-ray line features we expect no high-energy emission
above this limit.

We find that the early afterglow (t � 100 s) emission at � 100 MeV is dominated by the EC and SSC component, which are comparable
at this time. At later times the EC becomes dominant over the SSC component. The peak of the νFEC

ν emission is at the level of ∼5 ×
10−9(t/500 s)−1 erg cm−2s−1, and is located at hνEC

m ∼ 70 (t/500 s)−3/2 GeV (see equation 108). The spectrum scales as νFν ∝ ν(2−s)/2 above
this photon energy, implying a flat νFν for values of s ∼ 2 that are typically inferred for PWBs, while it scales as νFν ∝ ν1/2 below this
energy. At early times the afterglow radius is relatively small (RAG � f Rb), so that X is approximately constant in time, and the peak of the
νFν EC spectrum has a temporal scaling similar to that for the synchrotron component (i.e. ∝ t−1, see equation 101). We therefore expect
νFν at a fixed photon energy to decay very slowly with time, as t−1/4, at ν < νEC

m , and decay approximately linearly with time (∝t−1−3(s−2)/4)
at ν > νEC

m . The temporal decay becomes larger than these scalings as the afterglow radius RAG increases above f Rb, and the parameter X

begins to decrease with time.
This result can explain the high-energy emission detected by EGRET for GRB 940217 (Hurley et al. 1994). This detection consists of

photons of energies � 50 MeV, where 10 photons were observed during the prompt GRB emission, that lasted 180s, and 18 photons were
detected up to 5400 s after the end of the GRB, which include a photon of energy 18 GeV. During the post-GRB emission, the source position
was Earth-occulted for ∼3700 s. At t ∼ 500 s the flux is ∼1–2 × 10−9 erg cm−2s−1 which is roughly consistent with our results. At t ∼ 5000 s,
after the Earth occultation, the flux is a factor of ∼2–3 lower, if we exclude the one 18 GeV photon. This moderate time decay is consistent
with our results.

A different interpretation for the high-energy emission discussed above was recently suggested by Wang et al. (2002), in the similar
context of the supranova model, where the GRB occurs inside a plerionic environment. The main difference is that they consider a pulsar wind
that consists purely of e± pairs, which is in the fast cooling regime, and therefore the radius of the termination shock of the wind, Rs is very
close to the outer radius of the PWB, Rb, and all the shocked wind is concentrated within a thin radial interval, Rb − Rs � Rb. They try to
explain the high-energy emission as the synchrotron emission from the early afterglow. They obtain hνm ∼ 1 GeV at t ∼ 180 s, and according
to their model t ∼ Rb/2�2c or � ∝ t−1/2 and νm ∝ �4 ∝ t−2. However, this implies hνm ∼ a few keV after 1 day, which is inconsistent with
afterglow observations. They also claim that the EC emission is unimportant, which is in contradiction with our conclusions. The inclusion
of a proton component in the pulsar wind with a similar energy to that of the e± component allows only the energy in the e± to be radiated
away, so that even for a fast cooling PWB a large part of the energy of the pulsar wind remains in the protons and Rs is significantly smaller
than Rb.

7 D I S C U S S I O N

We have studied the observational implications of GRBs occurring inside a pulsar wind bubble, as is expected in the supranova model. We find
that the most important parameter that determines the behaviour of the system is the time delay, t sd, between the supernova and GRB events.
The value of t sd is given by the typical time-scale on which the SMNS loses its rotational energy as a result of magnetic dipole radiation (see
equation 2) and depends mainly on the magnetic field strength of the SMNS, B∗ (since its mass, radius and spin period are constrained to
a much smaller range of possible values). For B∗ ∼ 1012–1013 G, t sd is between a few weeks and several years. However, a larger range in
B∗, and correspondingly in t sd, seems plausible. We therefore consider t sd as a free parameter, and predict the observational consequences of
different values for this parameter.

(i) For extremely small values of t sd < t col = R�/βbc ≈ 0.9R�,13β
−1
b,−1 h, where R� = 1013 R�,13 cm is the radius of the progenitor star

(before it explodes in a supernova), the stellar envelope does not have enough time to increase its radius considerably before the GRB goes
off, and the supranova model reduces to the collapsar model. In this respect, the collapsar model may be seen to be a special case of the
supranova model. Such low values of t sd might be achieved if the SMNS is not rotating uniformly, as differential rotation may amplify the
magnetic field to very large values.

(ii) When t col < t sd < t IS ∼ 3β−1
b tv�

2(4−k)/(3−k) ≈ 16β−1
b,−1�

8/3
2.5 tv,−2 d (for k = 0) the deceleration radius Rdec ∼ RNR�−2/(3−k) ∼ Rb �−2/(3−k)

is smaller than the radius for internal shocks RIS ∼ 2�2ctv . In this case the kinetic energy of the GRB ejecta is dissipated through an external
shock that is driven into the shocked pulsar wind, before internal shocks that result from variability within the outflow have time to occur.
For an elongated PWB, t IS can be smaller by up to a factor of ∼10, since the polar radius would be ∼10 times larger for the same t sd, and the
volume of the PWB would be much larger and the density much smaller.

(iii) If t IS < t sd < t τ ∼ 0.4 yr, an internal shock can occur inside the PWB, but the SNR shell is still optically thick to Thomson scattering,
and the radiation from the plerion, the prompt GRB and the afterglow cannot escape and reach the observer. If the SNR shell is clumpy
(possibly owing to the Rayleigh–Taylor instability, see Section 2), then the Thomson optical depth in the underdense regions within the shell
may decrease below unity at t sd somewhat smaller than t τ , enabling some of the radiation from the plerion to escape. For an elongated PWB,
the polar radius can be larger by up to a factor of ∼10, which reduces t τ by the same factor. Furthermore, the elongation can be caused by a
smaller than average surface mass density of the SNR shell at the poles. This would further reduce t τ .
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(iv) For t τ < t sd < tFe ∼ 1 yr the SNR shell has a Thomson optical depth smaller than unity, but the optical depth for the iron line features
is still � 1 so that detectable X-ray line features, such as the iron lines observed in several afterglows, can be produced.

(v) Finally, for tFe < t sd, we expect no iron lines. When t sd is between ∼2 and ∼20 yr the radio emission of the plerion may be detectable
for γ w � 105. The lack of detection of such a radio emission excludes values of t sd in this range, if indeed γ w � 105, as is needed to obtain
reasonable values for the break frequencies of the afterglow. For t sd = t ISM ∼ 38 yr, the effective density of the PWB is similar to that of the
ISM (i.e. 1 cm−3), and the afterglow emission is similar to that of the standard model, where k = 0 is similar to an ISM environment, with the
exception that in our model a value of k = 1, that is intermediate between an ISM and a stellar wind, is also possible. Larger (smaller) values
of the external density are obtained for smaller (larger) values of t sd.

The SNR shell is decelerated owing to the sweeping up of the surrounding medium for t sd > 225 M
1/3
SNR,1n

−1/3
0 β−1

b,−1 yr, where n = n0

cm−3 is the number density of the external medium, which is larger than the values of t sd that are of interest to us. This effect may therefore
be neglected for our purposes.

An important difference between our analysis and previous works (KG; IGP) is that we allow for a proton component in the pulsar wind,
which carries a significant fraction of its energy. In contrast to the e± component, the internal energy of the protons in the shocked wind is
not radiated away, and therefore a large fraction of the energy in the pulsar wind (∼1053 erg) is always left in the PWB. This implies that
even for a fast cooling PWB, the radius of the wind termination shock Rs is significantly smaller than the radius of the SNR, Rb, and that the
afterglow shock typically becomes non-relativistic before it reaches the outer boundary of the PWB.

8 C O N C L U S I O N S

Our main conclusion is that existing afterglow observations set interesting constraints on the model parameters, the most important of which is
the time delay t sd between the supernova and GRB events, which is constrained to be � 20 yr, in order to explain typical afterglow observations
and the lack of detection of the plerion emission in the radio during the afterglow. Another important conclusion is that iron line features that
have been observed in a few X-ray afterglows cannot be naturally explained within the simplest spherical version of the PWB model that has
been considered in this work. This is because the production of these lines requires t sd � tFe ∼ 1 yr, which implies a very large density for the
PWB and effects the afterglow emission in a number of different ways: (i) the self-absorption frequency of the afterglow is typically above
the radio band, implying no detectable radio afterglow, while radio afterglows were detected for GRBs 970508, 970828 and 991216, where
the iron line feature for the latest of these three is the most significant detection to date (∼4σ ). We also expect the self-absorption frequency
of the plerion emission to be above the radio in this case, so that the radio emission from the plerion should not be detectable, and possibly
confused with that of the afterglow. (ii) A short jet break time t j and a relatively short non-relativistic transition time tNR are implied, as both
scale linearly with t sd and are in the right range inferred from observations for t sd ∼ 30 yr (see equations 96 and 97). (iii) The electrons are
always in the fast cooling regime during the entire afterglow.

The above constraints regarding the iron lines may be relaxed if we allow for deviations from the simple spherical geometry we have
assumed for the PWB. A natural variant is when the PWB becomes elongated along its rotational axis (KG). This may occur if the surface
mass density of the SNR shell is smaller at the poles compared with the equator, so that during the acceleration of the SNR shell by the
pressure of the shocked pulsar wind (which is expected to be roughly the same at the poles and at the equator) its radius will become larger at
the poles, as the acceleration there will be larger. A large-scale toroidal magnetic field within the PWB may also contribute to the elongation
of the SNR shell along its polar axis (KG). It is also likely that the progenitor star that gave rise to an SMNS had an anisotropic mass loss,
which results in a density contrast between the equators (where the density is higher) and the poles (where the density is lower). A sufficiently
large density contrast between the equator and the poles can also contribute to the elongation of the shell, for sufficiently large t sd, as the
SNR shell will begin to be decelerated owing to the interaction with the external medium, at a smaller radius near the equator, compared with
the poles. A similar non-spherical variant of the model is if we allow for holes in the SNR shell, that extend over a small angle around the
polar axis, where all the wind is decelerated in a termination shock within the SNR shell (Rs < Rb), but most of the shocked pulsar wind can
get out through the holes near the poles and reach a radius considerably larger than Rb. This variant may be viewed as a limiting case of the
previous variant, when the surface density contrast of the SNR shell, between the equator and the poles is very large. This implies that most
of the mass in the SNR shell is concentrated near the equator, while only a small fraction of it is near the poles, so the radius near the poles
can be as large as ∼ct sd, while the equatorial radius is � Rb. In both variants, the total volume of the PWB is close to that of a sphere with
the polar radius, and much larger than that of a sphere with the equatorial radius. This would allow for a smaller density with the same small
value of the equatorial radius that is required to produce the iron lines. We see that in principle, variants of the simple model are capable of
reconciling between the iron line detections and the afterglow observations.

An important advantage of the PWB model is that it can naturally explain the large values of εB and εe that are inferred from fits to
afterglow data (KG), thanks to the large relative number of electron–positron pairs and large magnetic fields in the PWB. This is in contrast
with a standard environment that is usually assumed to be either an ISM or the stellar wind of a massive progenitor, that consists of protons and
electrons, and where the magnetic field is too small to explain the values inferred from afterglow observations, and magnetic field generation
at the shock itself is required. Additional advantages of the PWB model are its ability to naturally account for the range of external densities
inferred from afterglow fits, and allowing for a homogeneous external medium (k ∼ 0), as inferred for most afterglows, with a massive star
progenitor.

C© 2003 RAS, MNRAS 340, 115–138



Implications of a plerionic environment 137

Another advantage of the PWB model is its capability of explaining the high-energy emission observed in some GRBs (Schneid et al.
1992, 1995; Hurley et al. 1994; Sommer et al. 1994). We find that the high-energy emission during the early afterglow at photon energies
�100 keV is dominated by the external Compton component, which is as a result of the upscattering of photons from the plerion radiation
field to higher energies by the relativistic electrons behind the afterglow shock. We predict that such a high-energy emission may be detected
in a large fraction of GRBs with the upcoming mission GLAST. However, we find an upper cut-off at a photon energy of ∼1 t2

sd,0 GeV, owing
to opacity to pair production with the photons of the PWB. This implies no high-energy emission above ∼1 GeV for afterglows with X-ray
line features, but allows photons up to an energy of ∼1TeV for afterglows with an external density typical of the ISM (t sd ∼ t ISM).
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