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A limit on the variation of the speed of light arising
from quantum gravity effects
A list of authors and their affiliations appears at the end of the paper

A cornerstone of Einstein’s special relativity is Lorentz invariance—
the postulate that all observers measure exactly the same speed of
light in vacuum, independent of photon-energy. While special relati-
vity assumes that there is no fundamental length-scale associated
with such invariance, there is a fundamental scale (the Planck scale,
lPlanck < 1.62 3 10233 cm or EPlanck 5 MPlanckc2 < 1.22 3 1019 GeV),
at which quantum effects are expected to strongly affect the nature
of space–time. There is great interest in the (not yet validated) idea
that Lorentz invariance might break near the Planck scale. A key test
of such violation of Lorentz invariance is a possible variation of
photon speed with energy1–7. Even a tiny variation in photon speed,
when accumulated over cosmological light-travel times, may be
revealed by observing sharp features in c-ray burst (GRB) light-
curves2. Here we report the detection of emission up to 31 GeV
from the distant and short GRB 090510. We find no evidence for
the violation of Lorentz invariance, and place a lower limit of
1.2EPlanck on the scale of a linear energy dependence (or an inverse
wavelength dependence), subject to reasonable assumptions about
the emission (equivalently we have an upper limit of lPlanck/1.2 on the
length scale of the effect). Our results disfavour quantum-gravity
theories3,6,7 in which the quantum nature of space–time on a very
small scale linearly alters the speed of light.

On 10 May 2009, at T0 5 00:22:59.97 UT, both the Gamma-ray Burst
Monitor (GBM)8 and the Large Area Telescope (LAT)9 onboard the
Fermi Gamma-ray Space Telescope triggered on the very bright short
GRB 090510 (hereafter all times are measured relative to T0). Ground-
based optical spectroscopy data, taken 3.5 days later10, exhibited
prominent emission lines at a common redshift of z 5 0.903 6 0.003,
corresponding to a luminosity distance of dL 5 1.8 3 1028 cm (for a
standard cosmology of [VL, VM, h] 5 [0.73, 0.27, 0.71]). The GBM
light curve (Fig. 1b, c; 8 keV–40 MeV) consists of seven main pulses.
After the first dim short spike near trigger-time, the flux returns to
background level; the main GBM emission starts at 0.53 s and lasts
,0.5 s. The main LAT emission above 100 MeV starts at ,0.63 s and
lasts ,1 s with a decaying tail that extends to ,200 s.

A single 31-GeV photon was detected at 0.829 s, which coincides in
time with the last of the seven GBM pulses (Fig. 1b, c, f). The nature of
this Fermi/LAT event as a photon (rather than a background cosmic
ray) was confirmed with very thorough analysis (see Supplementary
Information section 1). We find the directional and temporal coincid-
ence of this photon with GRB 090510 to be very significant, at .5s
confidence, and find the 1s confidence interval for its energy to be
27.97–36.32 GeV.

The known distance10 (z 5 0.903 6 0.003) of GRB 090510 and the
detection of .1 GeV photons less than a second from its onset allow us
to constrain the possible variation of the speed of light with photon-
energy (known as photon dispersion: one form of the Lorentz
Invariance Violation, LIV). Some quantum-gravity theories2,4,5 are con-
sistent with the photon-propagation speed vph varying with photon-
energy Eph, and becoming considerably different from the ordinary (or
low-energy limit of) speed of light, c ; vph(EphR0), near the Planck

scale (when Eph becomes comparable to EPlanck 5 MPlanckc2). For
Eph=EPlanck, the leading term in a Taylor series expansion of the
classical dispersion relation is jvph/c 2 1j< (Eph/MQG,nc2)n, where
MQG,n is the quantum gravity mass for order n and n 5 1 or 2 is usually
assumed. The linear case (n 5 1) gives a difference Dt 5 6(DE/
MQG,1c2)D/c in the arrival time of photons emitted together at a
distance D from us, and differing byDE 5 Ehigh 2 Elow. At cosmological
distances this simple expression is somewhat modified (see Sup-
plementary Information section 4).

Because of their short duration (typically with short substructure
consisting of pulses or narrow spikes) and cosmological distances,
GRBs are well-suited for constraining LIV2,11,12. Individual spikes in
long13 (of duration .2 s) GRB light-curves (10–1,000 keV) usually
show14 intrinsic lags: the peak of a spike occurs earlier at higher
photon-energies. However, there are either no lags or very short lags
of either sign for short GRBs15. Thus far, intrinsic lags have been seen
only on timescales of up to the width of individual spikes in a light
curve, which for GRB 090510 are ,1022 s. Intrinsic lags have not yet
been measured at high energies; if they are also present there, it is
reasonable to assume that their behaviour is similar to that at low-
energies (at least approximately).

When allowing for LIV-induced time-delays, the measured arrival
time, th, of the high-energy photons might not directly reflect their
emission time, tem (which would have been their arrival time if
vph 5 c). Therefore, we make reasonable and conservative assump-
tions on tem, constraining it using the observed lower-energy emis-
sion (for which LIV-induced time-delays are relatively negligible).

Using the DisCan method12, we have searched for time delays
within the LAT data (actual energy range of the photons used:
35 MeV–31 GeV) in the burst interval with the most intense emission
(0.50–1.45 s). This approach extracts dispersion information from all
detected LAT photons, and does not involve binning in either time or
energy. It moves each photon to the time at which it would have been
detected in the absence of any LIV-induced lag, given a trial value of
the energy-lag coefficient. The value of this coefficient that maxi-
mizes a measure of the sharpness of the resulting light curve is an
estimate of the apparent dispersion. Bootstrap error analysis16 shows
that this is not a detection, just an upper limit. For reasons similar to
those advanced above (improbability of inherent lags or fortuitous
cancellation of quantum gravity and intrinsic dispersion) we take this
as an upper limit on LIV-induced dispersion. A similar method was
described in ref. 17. We obtain a robust upper limit of jDt/
DEj, 30 ms GeV21 (at the 99% confidence level) on possible linear
energy dispersion of either sign, or j1 ; MQG,1/MPlanck . 1.22 (limit
a in Table 1).

Using a different approach, we derive additional limits. To con-
strain a positive time delay (vph , c, implying th . tem) we do not
attempt to associate the relevant high-energy photon with a particu-
lar spike in the low-energy light-curve. Instead, we simply assume
that it was emitted sometime during the relevant lower-energy emis-
sion episode, that is, after its starting time tstart (tem . tstart; see Fig. 1).
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This implies Dt , th 2 tstart and thus sets a lower limit on MQG. We
have conservatively used the 31-GeV photon, even if another photon
gave a stricter limit, because it is less sensitive to the exact choice of
tstart or to intrinsic lags. In the following, we describe several possible
different assumptions along with the astrophysical reasoning behind
them and the corresponding lower limits on MQG, starting from the

most conservative assumption, and ending with the least conserva-
tive assumption (which is still very likely, and with good astrophy-
sical motivation).

No high-energy photon has ever been detected before the onset of
the low-energy emission in a GRB. Therefore, it is highly unlikely that
the 31-GeV photon was emitted before the observed onset of
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Figure 1 | Light curves of GRB 090510 at different energies. a, Energy
versus arrival time with respect to the GBM trigger time for the 160 LAT
photons that passed the transient off-line event selection (red) and the 161
photons that passed the onboard c-ray filter (blue), and are consistent with
the direction of GRB 090510. The solid and dashed curves are normalized to
pass through the highest energy (31 GeV) photon and represent the relation
between a photon’s energy and arrival time for linear (n 5 1) and quadratic
(n 5 2) LIV, respectively, assuming it is emitted at tstart 5 230 ms (black;
first small GBM pulse onset), 530 ms (red; main ,1 MeV emission onset),
630 ms (green; .100 MeV emission onset), 730 ms (blue; .1 GeV emission
onset). Photons emitted at tstart would be located along such a line owing to
(a positive) LIV-induced time delay. b–f, GBM and LAT light curves, from

lowest to highest energies. f also overlays energy versus arrival time for each
photon, with the energy scale displayed on the right side. The dashed-dotted
vertical lines show our four different possible choices for tstart. The grey
shaded regions indicate the arrival time of the 31-GeV photon 610 ms (on
the right) and of a 750-MeV photon (during the first GBM pulse) 620 ms
(on the left), which can both constrain time delays of either sign. b and c show
background-subtracted light curves for GBM NaI in the 8–260-keV band
and a GBM BGO in the 0.260–5-MeV band, respectively. d, LAT events
passing the onboard c-ray filter. e, LAT transient class events with
E . 100 MeV. f, LAT transient class events with E . 1 GeV. In all light
curves, the time-bin width is 10 ms. In b–e the per-second count rate is
displayed on the right for convenience.
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GRB 090510. This implies j1 . 1.19 (limit b in Table 1), which we
consider our most conservative limit with this method. While the
underlying assumption on tem is very reasonable, it is still an assump-
tion; if for some reason tem were to be before tstart, this limit would be
weakened by a factor of (th 2 tem)/(th 2 tstart).

We stress here that our most conservative limits, a and b in Table 1,
rely on very different and largely independent analysis, yet still give a
very similar limit, of j1 . 1.2. This lends considerable support to this
result, and makes it more robust and secure than for each of the
methods separately.

Our data can be used to set additional limits, which, although not
as secure as the one mentioned above, are still very useful. Using the
same approach as for limit b, we note that for a reasonable emission
spectrum the 31-GeV photon would be accompanied by a large
number of detectable (by either GBM or LAT) lower-energy photons,
which suffer a much smaller LIV-induced time-delay, and thus
‘mark’ its emission time, tem,31. If tem,31 were during the first isolated
GBM spike, then lower-energy photons emitted together with it
should have been clustered near the black line in Fig. 1a owing to
LIV-induced energy dispersion. Because this is not observed, it is
much more likely that tem,31 is associated with a later lower-energy
emission episode. Setting tstart to the onset of the main GBM emission
(530 ms) results in j1 . 3.42.

Similarly, the expected large number of detectable .0.1-GeV
photons emitted together with the 31-GeV photon makes it reasonable
to set tstart to the onset of the main .0.1-GeV emission (630 ms; see
Supplementary Information section 2), resulting in j1 . 5.12.
Correspondingly, the expected fair number of detectable .1-GeV
photons emitted together with the 31-GeV photon makes it reasonable
to set tstart to the onset of the main .1-GeV emission (730 ms), result-
ing in j1 . 10.0. The j1 . 10.0 value might be somewhat affected by
the relatively small-number statistics for .1-GeV photons, or by
intrinsic spectral lags (such effects are expected to be much smaller
for the limit based on .0.1 GeV photons).

Finally, one can also set limits on LIV-induced time-delays of
either sign based on the temporal association of the 31-GeV photon
with the 7th GBM spike, and by associating the 0.75-GeV photon
with the first GBM spike, because these photons arrive near the peak
of a very narrow GBM spike (see Fig. 1), which is probably not due to
chance coincidences. These associations would imply j1 . 102 and
1.33, respectively. It is important to keep in mind, however, that
while these associations are most likely, they are not very secure.

Our most secure and conservative new limit, j1 . 1.2, is much
stronger than the previous best limit of this kind (j1 . 0.1 from
GRB080916C; ref. 18) and fundamentally more meaningful. Given
that in most quantum gravity scenarios MQG,n # MPlanck, even our
most conservative limits greatly reduce the parameter space for n 5 1
models19,20. Our other limits, and especially our least conservative
limit of j1 . 102, make such theories highly implausible (models
with n . 1 are not significantly constrained by our results). Thus, it
is unlikely that other predictions of such n 5 1 models would be
observed. These include, for example, a reduction in the absorption
of $10 TeV c-rays by cc R e1e2 interactions with extragalactic

infrared photons21,22, and fuzziness of radio or optical images of
distant extragalactic sources23–25. Our stringent photon dispersion
limit strongly disfavours models of Planck scale physics in which
the quantum nature of space–time causes a linear variation of the
speed of light with photon energy.
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Table 1 | Limits on Lorentz invariance violation

Limit on |Dt/DE | or |Dt | Limit on MQG,1/MPlanck Valid for sn

Limit a: |Dt/DE | , 30 ms GeV21 .1.22 61

Limit b: | Dt | , 859 ms .1.19 1

Details for the derivations of these limits are given in the main text and Supplementary
Information Section 4. Limit a is obtained by testing for an energy-dispersion in the high-energy
(LAT all-event) data (that might smear the sharp observed spikes in the light curve); we find an
upper limit for a linear dispersion of photons above 30 MeV of |Dt/DE | , 30 ms GeV21 (at 99%
confidence; see Supplementary Information section 3). Limit b relies on the 31-GeV photon, and
conservatively uses the 1s lower limit on its energy (28.0 GeV) and the 1s lower limit on the
redshift (z 5 0.900). Limit b assumes that the 31-GeV photon was not emitted before the onset
of any emission detected by Fermi, so that tstart is set to the onset of the first small isolated GRB
spike, 30 ms before the GBM trigger time. sn 5 1 indicates a positive (vph , c) time-delay and
sn 5 21 indicates a negative (vph . c) time-delay.
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