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DETECTION OF HIGH-ENERGY GAMMA-RAY EMISSION DURING THE X-RAY FLARING ACTIVITY IN
GRB 100728A
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41 Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, Montpellier, France; vlasios.vasileiou@univ-montp2.fr
42 Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan

43 Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
44 Max-Planck Institut für extraterrestrische Physik, 85748 Garching, Germany

1

http://dx.doi.org/10.1088/2041-8205/734/2/L27
mailto:eleonora.troja@nasa.gov
mailto:Julie.E.McEnery@nasa.gov
mailto:sarac@slac.stanford.edu
mailto:vlasios.vasileiou@univ-montp2.fr


The Astrophysical Journal Letters, 734:L27 (6pp), 2011 June 20 Abdo et al.

45 Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
46 Department of Physics, University of Washington, Seattle, WA 98195-1560, USA

47 NYCB Real-Time Computing Inc., Lattingtown, NY 11560-1025, USA
48 Department of Physics, Adıyaman University, 02040 Adıyaman, Turkey

49 Universities Space Research Association (USRA), Columbia, MD 21044, USA
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ABSTRACT

We present the simultaneous Swift and Fermi observations of the bright GRB 100728A and its afterglow. The early
X-ray emission is dominated by a vigorous flaring activity continuing until 1 ks after the burst. In the same time
interval, high-energy emission is significantly detected by the Fermi/Large Area Telescope. Marginal evidence
of GeV emission is observed up to later times. We discuss the broadband properties of this burst within both the
internal and external shock scenarios, with a particular emphasis on the relation between X-ray flares, the GeV
emission, and a continued long-duration central engine activity as their power source.

Key words: gamma-ray burst: individual (GRB100728A) – radiation mechanisms: non-thermal

Online-only material: color figures

1. INTRODUCTION

The Fermi Gamma-Ray Space Telescope, launched in 2008
June, has taken the study of gamma-ray bursts (GRBs) into an
energy realm that so far has been poorly explored. Fermi/LAT
(Large Area Telescope; Atwood et al. 2009) observations of
GRBs allow for the first time a detailed study of the temporal
and spectral behavior at high energies (>100 MeV). One of
the most interesting features is the detection of a delayed and
rapidly decaying high-energy (HE) emission, lasting hundreds
to thousands of seconds longer than the observed sub-MeV
γ -ray emission (Abdo et al. 2009a, 2009b, 2009c). Extended
GeV emission, first hinted at in EGRET observations (Hurley
et al. 1994), appears now as a common feature of Fermi/LAT
bursts. The nature of such long-lived HE emission is far from
being established. One possibility is that it is generated via
synchrotron radiation of the external forward shock (Kumar
& Barniol Duran 2009, 2010; Ghisellini et al. 2010). An
alternative scenario is that it reflects the gradual turnoff of the
central engine activity (Zhang et al. 2011). Such interpretations
predict very different afterglow behaviors (Piron & Nakar 2010;
Mimica et al. 2010) and therefore can be directly verified
through broadband (from optical/X-ray to GeV energies) early-
time observations. To date, only one burst (GRB 090510;
De Pasquale et al. 2010) of the 20 LAT detected GRBs has
been simultaneously detected by the Swift multi-wavelength
observatory (Gehrels et al. 2004). In this case, an afterglow
emission provides a likely explanation of the broadband data set
(e.g., De Pasquale et al. 2010; Corsi et al. 2010).

In this Letter, we report on the Fermi/LAT detection of a
temporally extended emission from GRB 100728A and the
simultaneous Swift observations of an intense X-ray flaring
activity. We further discuss the possibility that in the case of
GRB 100728A the observed HE emission is related to X-ray
flares and ultimately to the long-lasting activity of the inner
engine. Observations and analysis are reported in Section 2; our

55 Resident at Naval Research Laboratory, Washington, DC 20375, USA.
56 Royal Swedish Academy of Sciences Research Fellow, funded by a grant
from the K. A. Wallenberg Foundation.
57 NASA Postdoctoral Program Fellow, USA.

results are discussed in Section 3; we draw our conclusions in
Section 4. Unless otherwise stated, the quoted errors are at the
90% confidence level and times refer to the Fermi/Gamma-ray
Burst Monitor (GBM) trigger T0.

2. OBSERVATIONS AND DATA ANALYSIS

2.1. Swift Data

The bright GRB 100728A came into the Swift field of view
during a slew to a pre-planned target, when the trigger system
is disabled. After the spacecraft settled, the burst triggered
the Burst Alert Telescope (BAT; Barthelmy et al. 2005) on
board Swift at 02:18:24 UT on 2010 July 28. Swift slewed
immediately to the burst. The two narrow field instruments, the
X-ray Telescope (XRT; Burrows et al. 2005) and the Ultraviolet
Optical Telescope (UVOT; Roming et al. 2005), began settled
observations of the field ∼80 s after the BAT trigger. An
X-ray afterglow was promptly localized at a position of R.A. =
05h55m2.s01, decl. = −15◦15′19.′′1 (J2000) with an uncertainty
of 1.′′4 (Beardmore et al. 2010), while no counterpart was
observed in the early UVOT unfiltered exposures down to a
limiting magnitude wh > 20.5 (3σ confidence level; Oates &
Cannizzo 2010).

Swift data were analyzed in a standard fashion; we refer
the reader to Evans et al. (2007, 2010) for further details. As
shown in Figure 1, the early X-ray afterglow (top panel) is
characterized by a series of bright X-ray flares superimposed on
a power-law decay (∝ t−1.5). Each flare can be described by a
Fast-Rise Exponential Decay (FRED) profile (solid line) with
0.04 < Δt/t < 0.2. In the same time interval, the BAT light
curve (bottom panel) shows a long-lasting emission extending
up to ∼800 s, with several peaks visible in coincidence with the
X-ray flares (vertical dot-dashed lines).

The post-flare X-ray afterglow decays as a power law with
slope α2 = 1.07 ± 0.05, which steepens to α3 = 1.63 ± 0.07
at t ∼ 10 ks. No significant spectral evolution is observed. The
time-averaged photon index is Γ = −2.07 ± 0.09.

By combining the simultaneous BAT and XRT observations,
we performed a joint spectral analysis of the X-ray flares. We
modeled the absorption with two different components: the

2

mailto:luigi.piro@iasf-roma.inaf.it


The Astrophysical Journal Letters, 734:L27 (6pp), 2011 June 20 Abdo et al.

1
0

1
0
0

X
R

T
 [
C

ts
/s

]

1000200 500

0
.0

1
0
.1

B
A

T
 [
C

ts
/s

/d
e
t]

Time since GBM trigger [s]

Figure 1. Top panel: early XRT light curve of GRB 100728A. Bottom panel:
BAT mask-weighted light curve during the X-ray flaring activity. Several peaks
are visible in correspondence of the X-ray flares (vertical dot-dashed lines).

(A color version of this figure is available in the online journal.)

former was fixed at the Galactic value of NH = 1021 cm−2

(Kalberla et al. 2005) and the latter, representing the absorp-
tion local to the burst, was fixed to the value of NH = 2.6
× 1021 cm−2 derived from the late-time (104–106 s) after-
glow spectrum. This constraint prevents artificial NH variations
caused by the intrinsic spectral evolution, commonly observed
in the brightest X-ray flares (Butler & Kocevski 2007). A strong
spectral evolution is observed during the first 100 s, showing a
peak energy that softens from 95 ± 15 keV during the first flare
(from T0 + 167 s to T0 + 192 s) to less than 10 keV in the follow-
ing flares. Excluding the first harder episode, the time-averaged
spectrum, from T0 + 254 s to T0 + 854 s, is well described by a
Band function (Band et al. 1993; χ2 = 614 for 477 degrees of
freedom, dof) with α = −1.06 ± 0.11, β = −2.24 ± 0.02, and
a peak energy Epk = 1.0+0.8

−0.4 keV.

2.2. Fermi Data

The Fermi/GBM triggered and located GRB 100728A
at 02:17:31 UT, 53.6 s before the Swift/BAT trigger (see
Section 2.1). The GBM light curve shows a complex, multi-
peaked structure with a duration T90 ∼ 163 s in the 50–300 keV
energy range (Kienlin 2010). A set of strong peaks is visible at
T0 + 170 s, corresponding to the first flares detected by the XRT.
No significant emission above the highly variable background
level is detected on longer timescales.

The time-averaged spectrum during the T90 interval, from
T0 + 15 s to T0 + 178 s, can be described with a Band
function with the following parameters: α = −0.58 ± 0.03,
β = −2.73+0.27

−0.18, and Epk = 264 ± 11 keV (Castor C-statistics
865 for 351 dof). A power-law function with an exponential HE
cutoff also provides an adequate description (C-statistics 885 for
352 dof). The event fluence (10–1000 keV) in the selected time
interval is 1.181 ± 0.010 × 10−4 erg cm−2. The high fluence
of this burst generated an Autonomous Repoint Request, which
caused the Fermi satellite to slew to the GRB position.

2.2.1. LAT Observations

An unbinned likelihood analysis (Abdo et al. 2009d) was used
to search the LAT data for emission from GRB 100728A. As this
study is part of a systematic search for HE emission from X-ray
flares, a trials factor of 28 for the number of flares considered has
to be taken into account in evaluating the detection significances.

Depending on the time window of interest the search was
performed on transient-class data, optimally suited for short-
duration (tens of seconds) signal-limited studies, or diffuse-
class data, best suited for detecting faint emission over longer
timescales (Atwood et al. 2009). The analysis included LAT
events reconstructed within 15◦ around the XRT localization
(Section 2.1) with energies in the 100 MeV–50 GeV range.
The GRB spectrum was modeled using a power law. No point
source in the vicinity of the GRB (within 15◦) was bright enough
to merit inclusion in the background model. The cosmic-ray
background and the extragalactic gamma-ray background were
estimated following the method described in Abdo et al. (2009d)
for the transient-class searches and modeled as a single isotropic
power law for the diffuse-class searches. The Galactic diffuse
gamma-ray background was described by using the publicly
available template produced by the LAT collaboration.58 The
background contribution from the Earth’s albedo was negligible
since the GRB position was far from the Earth’s limb during
all the time intervals analyzed. Tests performed with different
background models do not show any significant change in our
results.

The results of our analysis are summarized in Table 1. A
time-resolved search performed on each individual flare did
not find any significant excess in the LAT data, though a
marginal evidence of emission (test statistic TS > 10, single
trial) is present during two of the flares (3 and 6). A time-
integrated search performed over the whole flaring interval led
to a significant detection (TS = 32 for transient-class events,
TS = 42 for diffuse-class events). In this time interval the total
number of transient (diffuse) class events is 191 (29); according
to the likelihood analysis the number of events associated with
the GRB is ∼10 (6). The highest energy diffuse-class event
detected during the flaring interval (at T0 + 709 s) and in spatial
coincidence with the source has an energy of 1.68 GeV. The
probability of the LAT background producing an event with
at least that energy and during the same interval is ≈7 ×
10−4. Events of higher energies, tens of GeV, are detected in
the transient-class data set, but the high background rate does
not allow us to significantly associate them with the GRB. Our
best localization of the LAT emission, derived from transient-
class data analysis, is: R.A. = 05h55m49s, decl. = 15◦03′18′′,
with a statistical uncertainty of 0.◦1 (68% confidence level) and
a systematic error of 0.◦2. This position is consistent with the
Swift localization (Section 2.1).

In order to determine whether the LAT emission is temporally
extended or mainly originated during the higher-significance
flares (3 and 6), we performed two stacked searches on
the transient-class data set: one aggregating the data during these
two flares and one during the whole flaring period excluding the
two flares. Emission at a comparable level and with consistent
spectral properties is present during both time intervals (see
Table 1), therefore we conclude that the LAT emission extends
over the whole flaring period. A cross-correlation analysis be-
tween the LAT (diffuse-class) and XRT light curves does not
detect any significant temporal correlation or anti-correlation
between the two data sets. Similar results are obtained from the
analysis of the transient-class events.

As shown in Table 1, no emission is detected during the
GRB prompt phase. The resulting upper limit is consistent
with the extrapolation of the Band spectrum to the LAT energy
range. Marginal evidence of emission (TS ≈ 10 for diffuse-class

58 http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
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Table 1
LAT-analysis Results

Temporal Selection Time Interval Test Statistic Fluxa ΓLAT
b

(s) (10−6 ph cm−2 s−1)

Flare 1. . . . . . . . . . . . . . . . . . . . . . . . 167–192 0 <28 · · ·
Flare 2. . . . . . . . . . . . . . . . . . . . . . . . 254–304 0 <12
Flare 3. . . . . . . . . . . . . . . . . . . . . . . . 309–354 11 <30 · · ·
Flare 4. . . . . . . . . . . . . . . . . . . . . . . . 359–414 0 <12 · · ·
Flare 5. . . . . . . . . . . . . . . . . . . . . . . . 439–474 0 <15 · · ·
Flare 6. . . . . . . . . . . . . . . . . . . . . . . . 504–544 11 <30 · · ·
Flare 7. . . . . . . . . . . . . . . . . . . . . . . . 577–694 0 <7 · · ·
Flare 8. . . . . . . . . . . . . . . . . . . . . . . . 724–854 0 <4 · · ·

Time-integrated Search
Pre-flares (prompt). . . . . . . . . . . . . . 0–167 5 <18 · · ·
Post-flaresc. . . . . . . . . . . . . . . . . . . . 854–1654 10 0.7 ± 0.5 −1.4 ± 0.4
X-ray flares. . . . . . . . . . . . . . . . . . . . 167–854 32 2.4 ± 1 −1.4 ± 0.2
X-ray flares. . . . . . . . . . . . . . . . . . . . 254–854 27 2.0 ± 1 −1.3 ± 0.3
Flares 3 and 6. . . . . . . . . . . . . . . . . . · · · 22 9.6 ± 5 −1.2 ± 0.3
Flaring Interval (excluding 3 and 6) · · · 17 1.6 ± 1 −1.6 ± 0.4

Notes.
a Fluxes in the 100 MeV–50 GeV energy band. The quoted errors are at the 68% confidence level. Upper limits are at the 95% confidence level
and were calculated using the best-fit photon index ΓLAT = −1.4.
b Here the photon index ΓLAT is defined such that dN/dAdEdt ∝ EΓLAT .
c From diffuse-class LAT data.

events) is present after the end of the observed X-ray flaring
activity.

3. DISCUSSION

Below we summarize the results that are relevant to address
the origin of the GeV emission.

1. Significant GeV emission is found in the same interval
where the X-ray flaring activity is enhanced. However, the
backgrounds and limited statistics in the LAT data do not
allow us to search for a one-to-one correlation between
the GeV emission and the single flare episodes. There is
marginal evidence of GeV emission after the end of the
flaring period.

2. The GeV flux is consistent with the extrapolation of the
power law describing the flare spectrum above 1 keV.
Assuming that an afterglow component is present below
the flares and that it has the same spectrum observed at
later times, it is found that the GeV flux is also consistent
with the extrapolation of this putative component. The LAT
data exhibit a harder spectrum than that observed in X-rays
(see Figure 2), though marginally consistent (within 3σ )
with the X-ray spectral slope.

The last result suggests that the HE emission can simply
represent the HE tail of the synchrotron component. The
presence of an additional Inverse Compton (IC) component
dominating over the synchrotron just above ∼1 GeV cannot
be excluded, and it would be consistent with the observed
flatter GeV spectrum. These deductions apply to whichever is
the source of electron acceleration, internal or external shocks.

The discovery of HE emission in a time frame of vigorous
flaring activity in X-rays lead us to consider first the association
of the GeV emission with X-ray flares. We now discuss this
scenario. Given the large number of flares, we can exclude that
a delayed external shock is the dominant process originating
the X-ray flares (Galli & Piro 2007). In fact, in this model
only a single outstanding flare, corresponding to the onset of
the afterglow from a long-duration central engine, is produced.
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Figure 2. Spectral energy distribution of the X-ray flares including data from
Swift/BAT, XRT, and Fermi/LAT. Error bars are at 1σ confidence level. The
solid line shows the best-fit model of the joint XRT/BAT spectral fit described
in Section 2.1 and extrapolated to the Fermi/LAT energy range. As discussed in
the text, the Fermi/LAT detection is consistent within 3σ with the extrapolation
of the model.

(A color version of this figure is available in the online journal.)

We thus consider internal shocks from a long-lasting relativistic
outflow as the source of flares (e.g., Zhang et al. 2006).

In order to allow the GeV emission to be observed we require
two conditions. First, the source has to be optically thin for pair
production. By computing the optical depth for e+e− production
(Lithwick & Sari 2001) by photons of energy EGeV in GeV on
the X-ray to GeV power-law component observed at about 300 s,
we derive a lower limit on the Lorentz factor:

Γ � Γγ γ ≈ 30 E
1/6
GeV t−1/6

v D
1/3
28

(
1 + z

2

)1/3

, (1)

where we specialized the equation for a photon index 2. The
tightest constraints on Γ are derived from the shortest timescale
for variability tv that can be associated with the relativistic flow
produced by the central source. In the scenario of a late internal
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shock, X-ray flares and the GRB prompt emission are both
related to the central engine activity. We therefore consider that
a variability timescale of millisecond typical of the prompt phase
is a reasonable possibility. In this case, a single flare is produced
by the superposition of several internal shock events from a
relativistic wind active for the whole duration of the flare. By
assuming tv = 10−3 s, a timescale similar to that characterizing
the prompt phase, one derives Γγ γ ∼ 115 E

1/6
GeV for a typical

redshift z = 1. On the contrary, if the flare is associated with
a single internal shock event, i.e., the interaction of two shells,
then tv should be equal to the flare duration, i.e., about 100 s. In
this case Γγ γ ∼ 20 E

1/6
GeV.

The lower boundary on the Lorentz factor derived above
for the flaring phase encompasses the range of values typical
of the prompt phase (Lithwick & Sari 2001; Liang et al.
2010), consistent with the notion that a long-duration relativistic
outflow with a Lorentz factor of the order of ≈100 is producing
both the prompt emission and the flares. In principle, the
parameters describing the relativistic shocks (εe, εB, L, Γ, tv)
can all be time dependent, i.e., be different during the prompt
and late flaring phases. On the other hand, one wishes to reduce
the number of variable parameters (Occam’s razor). It goes
beyond the scope of this Letter to find the best self-consistent
internal shock model reproducing both the prompt and X-ray
flaring phases. We just note the following. The model should be
able to reproduce a peak energy that shifts from the ≈100 keV
region during the prompt phase to the keV range observed during
X-ray flares. Recalling that the peak of the synchrotron spectrum
is given by (e.g., Zhang & Mészáros 2002)

νm ∝ ε3/2
e ε

1/2
B L1/2Γ−2t−1

v , (2)

it follows that the decrease of the luminosity L from the prompt
to the flare phase already accounts for a decrease of the peak
energy by a factor of 20, with all the other parameters remaining
constant. The further reduction that is needed can be obtained,
e.g., by the very reasonable assumption that the magnetic field
weakens at the larger radii where flares are produced or by a
smaller contrast in the Lorentz factor between colliding shells
(Barraud et al. 2005).

The second condition is derived by requiring that the max-
imum energy at which the electrons are accelerated is large
enough to produce photons of energy E via synchrotron
radiation:

Γ > 60

(
1 + z

2

)
(1 + Y )EGeV, (3)

where Y is the Compton y parameter. This equation gives a
condition on Γ comparable to that derived from Equation (1).
In conclusion, we find that both the prompt emission and
the later X-ray flares and HE emission can be explained by
internal shocks produced by a long-duration central engine with
a Lorentz factor of ≈ 100 and decreasing luminosity.

This simple internal shock model predicts an emission that is
cospatial and simultaneous in the X-ray and GeV ranges. On the
other hand, we find a marginal evidence of delayed HE emission.
This is naturally predicted when the X-ray photons, produced by
internal shocks at smaller radii, are upscattered to GeV energies
via IC by the electron population of the forward shock (Wang
et al. 2006; Fan et al. 2008).

Finally, given the quality of the present data set, we cannot
exclude the possibility that the GeV emission is actually related
to an afterglow underlying the X-ray flares. This requires that
the afterglow onset takes place before 200 s. Such a condition

is satisfied when the Lorentz factor of the relativistic flow at the
beginning of the deceleration phase is

Γext >

{
171

(
1+z

2

)3/8 (
E54
n

)1/8
ISM,

74
(

1+z
2

)1/4 (
E54
A∗

)1/4
Wind,

(4)

where A∗ is the density scaling factor in units of 5 ×
1011 g cm−1. In other GRBs, the HE emission has been in-
deed associated with the forward shock synchrotron emission
(Ghirlanda et al. 2010; Kumar & Barniol Duran 2010), though
the shorter timescales observed require much larger values of
Γext than those derived here. We further explore the external
shock scenario in GRB 100728A by analyzing the late-time
X-ray behavior. The afterglow spectral and temporal laws are
bound to obey specific relations (the so-called closure relations,
e.g., Zhang & Mészáros 2004) that depend upon the density
profile of the external medium, the jet opening angle, and the
relative position of the typical frequencies of the synchrotron
spectrum with respect to the observed range. Within the sim-
ple external shock model, the closest solution envisages a jet
with a rather narrow opening angle of ≈1–2 deg expanding in
a medium with a wind-like density profile, though the lack of
multi-wavelength afterglow observations does not allow us to
firmly characterize the circumburst environment. This scenario
is consistent with the lack of spectral variations before and after
the break at 10 ks, albeit in a wind-like medium a jet transition
is expected to take place on much longer timescales (Kumar &
Panaitescu 2000). In this scenario the cooling frequency falls
below the X-ray band, and the early GeV emission (if after-
glow) likely belongs to the same synchrotron regime. In this
case, the LAT emission should display a similar decay slope of
∼1.07 and a photon index of ∼−2.07, softer than the observed
value of −1.4 ± 0.2 (1σ ) but still consistent within the large
uncertainty.

4. CONCLUSION

GRB 100728A is the second case to date with simultaneous
Swift and Fermi observations. HE gamma rays are detected by
the Fermi/LAT until 850 s (TS = 42) and possibly continuing
until 1600 s (TS ≈ 10). Very interestingly, the early X-ray
afterglow exhibits intense and long-lasting flaring activity,
visible both in BAT and XRT. Although an afterglow origin
of the GeV emission cannot be excluded, the presence of
bright X-ray flares unveiled by Swift observations opens the
possibility that a prolonged central engine activity is powering
the temporally extended HE emission observed in this burst.

Within the internal shock scenario a relativistic outflow with a
Lorentz factor of ≈ 100 and decreasing luminosity can explain
the prompt emission, the later X-ray flares, and HE emission.
The presence of a delayed HE emission naturally arises from
IC scattering of low-energy flare photons off the relativistic
electrons at the external forward shock radius.
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