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ABSTRACT

Gamma-ray burst afterglows are well described by synchrotron emission from relativistic blast waves
expanding into an external medium. The blast wave is believed to amplify the magnetic field and accelerate
the electrons into a power-law distribution of energies promptly behind the shock. These electrons then cool
both adiabatically and by emitting synchrotron and inverse Compton radiation. The resulting spectra are
known to consist of several power-law segments, which smoothly join at certain break frequencies. Here, we
give a complete description of all possible spectra under those assumptions and find that there are five possi-
ble regimes, depending on the ordering of the break frequencies. The flux density is calculated by integrating
over all of the contributions to a given photon arrival time from all of the shocked region using the Blandford
&McKee solution. This allows us to calculate more accurate expressions for the value of these break frequen-
cies and describe the shape of the spectral breaks around them. This also provides the shape of breaks in the
light curves caused by the passage of a break frequency through the observed band. These new, more exact,
estimates are different from more simple calculations by typically a factor of a few, and they describe some
new regimes that were previously ignored.

Subject headings: gamma rays: bursts — gamma rays: theory — radiation mechanisms: nonthermal —
shock waves

1. INTRODUCTION

In recent years, several dozen gamma-ray burst (GRB)
afterglows have been observed, and data are accumulating
rapidly. The quality of these observations is constantly
improving. The study of afterglow emission has helped shed
light on many important aspects of the GRB phenomenon.
The spectrum during the afterglow phase is well described
by synchrotron emission from a relativistic blast wave and
consists of several power-law segments (PLSs) that join at
several break frequencies (e.g., Sari, Piran, & Narayan
1998). These break frequencies are the self-absorption fre-
quency, �sa, below which the optical depth to synchrotron
self-absorption is larger than unity, �m, the typical synchro-
tron frequency of the minimal electron in the power law,
and �c, the synchrotron frequency of an electron whose
cooling time equals the dynamical time of the system.
Granot, Piran, & Sari (2000) then found that if �c < �m, the
self-absorption frequency actually splits in two: �ac and �sa,
where an optical depth of unity is produced by noncooled
electrons and all electrons, respectively. Different possible
orderings of these break frequencies result in five possible
spectral regimes, as shown in Figure 1.

The physical parameters of a burst may be deduced from
fitting the observed broadband spectrum to the theoretical
spectrum. This has been done by Wijers & Galama (1999)
for GRB 970508 by fitting a broken power-law theoretical
spectrum. A detailed description of the shape of the spec-
trum allowed a more accurate determination of the self-
absorption frequency �sa and the peak frequency �m
(Granot, Piran, & Sari 1999b, hereafter GPS99b). A more
accurate theoretical calculation of the break frequencies

leads to a more accurate conversion from the observed spec-
trum to the burst parameters. The combined effect was that
the inferred value of the density, for example, was different
than that of Wijers & Galama (1999) by 2 orders of magni-
tude. This illustrates the sensitivity of this method to the
shape of the theoretical spectrum around the break points
and stresses the need for a more accurate determination of
the theoretical break frequencies for all various spectral
breaks.

So far, only the shape of the spectrum around �m
(Granot, Piran, & Sari 1999a, hereafter GPS99a; Gruzinov
&Waxman 1999) and �sa (GPS99b) was calculated in detail,
and even that was done only for the canonical case, where
�sa < �m < �c (upper panel, Fig. 1). This paper is intended to
extend these works for all spectral breaks and therefore to
provide a comprehensive, self-consistent calculation of the
broadband spectrum. We provide analytic formulae that
approximate the shape of each of the spectral breaks and
their positions in a form that is easy to use for afterglow fit-
ting. We also suggest a prescription for combining these
breaks to a single analytic broadband spectrum.

The physical model is outlined in x 2, while a more
detailed and formal description of the model and of the cal-
culation of the observed flux density is given in the Appen-
dix. Our main results are presented in x 3. In x 4, we give
prescriptions for combining the shapes of the spectrum near
the different spectral breaks into a single analytic broad-
band spectrum.We discuss our results in x 5.

2. PHYSICAL MODEL

An exact calculation of the spectrum requires the knowl-
edge of (1) the hydrodynamic quantities (bulk Lorentz fac-
tor and number density), (2) the magnetic field strength, and
(3) the electron energy distribution. These should be given
for any location behind the shock and at any time. Below,
we describe our approach to all three.
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Fig. 1.—Different possible broadband synchrotron spectra from a relativistic blast wave that accelerates the electrons to a power-law distribution of
energies. The thin solid line shows the asymptotic PLSs and their points of intersection, where the break frequencies, �b, and the corresponding flux densities,
F�b ; ext, are defined. The different PLSs are labeled A–H, while the different break frequencies are labeled 1–11. The temporal scalings of the PLSs and the break
frequencies for an ISM (k ¼ 0) or stellar wind (k ¼ 2) environment are indicated by the arrows. The thick solid line shows the spectrum we calculated in this
paper, where the broadband spectrum is constructed according to the prescription suggested in x 4. The different spectra are labeled 1–5 from top to bottom.
The relevant spectrum is determined by the ordering of the break frequencies. The top two panels (spectra 1 and 2) correspond to slow cooling (�m < �c).
Spectrum 1 applies when �sa < �m, while spectrum 2 applies when �m < �sa < �c. The two bottom panels (spectra 4 and 5) correspond to fast cooling
(�c < �m). Spectrum 5 applies when �sa < �c, and spectrum 4 applies when �c < �sa < �m. Spectrum 3 (middle panel) applies when �sa > �m; �c, where in this
case the relative ordering of �c and �m is unimportant (i.e., spectrum 3may apply to slow cooling or fast cooling).



1. The hydrodynamics is described by the Blandford &
McKee (1976, hereafter BM) self-similar solution. This sol-
ution describes a spherical relativistic blast wave expanding
into a cold medium and assumes an adiabatic flow, i.e., that
radiation losses are small and do not effect the hydrodynam-
ics. Radiative effects can be taken into account to modify
the hydrodynamic evolution, as described by Sari (1997)
and Cohen, Piran, & Sari (1998), and to modify the struc-
ture of the cooling layer behind the shock, as described by
Granot & Königl (2001). If the radiative losses are not too
large, our formalism would give the correct break frequen-
cies and break shapes, provided that one uses the time-
dependent energy, as discussed in the first two of these refer-
ences. The BM solution we use is for an impulsive explosion
in an ambient density described by a power law with radius
�extðrÞ ¼ Ar�k. We consider two different values of k that
are of particular physical interest: k ¼ 0, corresponding to
an interstellar medium (ISM), and k ¼ 2, corresponding to
a massive star progenitor surrounded by its preexplosion
wind. The assumption of a spherical flow is also adequate
for a jetted flow at sufficiently early times, when the Lorentz
factor of the flow is still larger than the inverse opening
angle of the jet. We therefore have the complete hydrody-
namic description in terms of the total energy E and the
external number density next (or A in the case of wind). The
hydrodynamic profile used is given in equations (A4), (A5),
and (A6).
2. We assume that the magnetic field gets a fixed fraction,

�B, of the internal energy everywhere behind the shock, as
given by equation (A2). This would be the case if the shock-
amplified, randomly oriented magnetic field decreases as a
result of adiabatic expansion. Different assumptions on the
evolution and orientation of the magnetic field were shown
to have only a small effect on the resulting spectrum
(GPS99a; GPS99b).
3. The electrons are assumed to acquire a power-law dis-

tribution of energies, Nð�Þ / ��p for � � �min;0, immedi-
ately behind the shock. Their total energy immediately
behind the shock is a fraction �e of the internal energy. After
being accelerated by the shock, the electrons cool because of
radiative losses and adiabatic cooling. The former can be
calculated from synchrotron theory and the latter from the
density profile given by the BM solution. The resulting dis-
tribution is given in equation (A13).

Given the above, the observed flux density may be calcu-
lated as described in the Appendix. The spectrum for the
optically thin breaks may be calculated using equation
(A14), while equation (A24) applies more generally. In both
cases, the contributions from all of the shocked regions
from photons that reach the observer simultaneously are
taken into account when calculating the flux density.

3. RESULTS

Power-law segments.—All five possible different spectra,
which are shown in Figure 1, consist of between three and
five different PLSs. At each asymptotic PLS (sufficiently far
from the break frequencies) we have F� / ��t�. Altogether
there are eight different PLSs, labeled A through H, from
high to low values of �. Note that there are two different
PLSs with a slope of � ¼ 1

3. Both are produced by the low-
energy tail of synchrotron radiation, but in regionD it is the
noncooled electrons that are responsible for the radiation,

while in region E it is the cooled electrons. Most PLSs
appear in more than one of the five possible spectra (see
Fig. 1). If one is interested only in the spectrum far enough
from the break frequencies, then the normalizations of the
different PLSs are all that is needed to accurately describe
the spectrum. This is given in Table 1. The coefficients for
PLSs A, G, and H depend slightly on p in a nonanalytic
way. These were calculated for p ¼ 2:2; 2:5; and 3, and a
linear function (or a linear function multiplied by an expo-
nent) was used to describe the results.

For PLS E, we find that the emission becomes dominated
by the contribution from small radii (i.e., early times when
the radius of the shock was small) for k � 23=13 � 1:769.
The electrons responsible for the emission in this regime
have suffered considerable adiabatic cooling (as well as radi-
ative losses). In this regime (k > 23=13), PLS E splits into
two different PLSs, whose spectral slope � depends on k.
Furthermore, the effective size of the afterglow image at a
given observed time in this regime depends on the observed
frequency. Since this new regime is somewhat out of the
main stream of this paper, however, and in order to avoid
confusion, we leave the detailed description of this new
regime to a future work (J. Granot & R. Sari 2002, in prepa-
ration). The normalization of PLS E and the expressions for
the spectral breaks b ¼ 10; 11 (that involve PLS E) are
therefore left out of Tables 1 and 2, respectively, for k ¼ 2.

Break frequencies.—The different possible combinations
of the eight PLSs result in 11 different break frequencies
labeled b ¼ 1; . . . ; 11 (see Fig. 1). Again, the same break
frequency can appear in more than one spectrum. The
values of the break frequencies, �b, and the corresponding
extrapolated flux densities, F�b; ext, are defined at the point
where the asymptotic PLSs meet. These can be calculated
directly from the normalization of the PLSs that are given in
Table 1, but for completeness they are given explicitly in
Table 2. The fit for the p dependence was redone in this table
(with either a linear fit, an exponent, or a combination of
the two) using the accurate results for p ¼ 2:2; 2:5; 3, there-
fore resulting in slight (a few percent) inconsistencies with
the previous table.

Shape of breaks.—The flux density near a spectral break,
�b, may be approximated by

F� ¼ F�b; ext
�

�b

� ��s�1

þ �

�b

� ��s�2
" #�1=s

; ð1Þ

where �1 and �2 are the asymptotic spectral slopes below
and above the break, respectively, and s is a parameter that
describes the sharpness of each break. The sign of s is equal
to that of �1 � �2 (i.e., positive if the spectral slope decreases
across the break), while jsj represents the sharpness of the
break (the sharper the break, the larger jsj). The shape of
most spectral breaks (except for b ¼ 1; 8; 10; 11) depends
on the value of p, as does the corresponding value of
s ¼ sðpÞ, which is given in Table 2. All quantities that
depend on the value of p were calculated for p ¼ 2:2; 2:5; 3
and are given in a form that is as exact as the functional
parameterization permits at these values of p and interpo-
lates (or extrapolates) for other values of p; these values
should therefore be reasonably accurate for 1:5. p. 3:5
(see discussion below eq. [A1] for p < 2).

The break b ¼ 1 has been investigated in detail by
GPS99a for k ¼ 0, and they found that the physically
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TABLE 1

Normalization of the Different Power-Law Segments

PLS �

F�ðk ¼ 0Þ
(mJy)

F�ðk ¼ 2Þ
(mJy)

A....... 5=2 1:18ð4:59� pÞ108ð1þ zÞ9=4��1=4
B n

�1=2
0 E

1=4
52 t

5=4
daysd

�2
L28�

5=2
14 2:96ð4:59� pÞ107ð1þ zÞ7=4��1=4

B A�1� E
3=4
52 t

7=4
daysd

�2
L28�

5=2
14

B ....... 2 4:20
3pþ 2

3p� 1
109ð1þ zÞ5=2���en�1=2

0 E
1=2
52 t

1=2
daysd

�2
L28�

2
14 1:33

3pþ 2

3p� 1
109ð1þ zÞ2���eA�1� E52tdaysd

�2
L28�

2
14

C....... 11=8 8:01� 105ð1þ zÞ27=16��1=4
B n

�5=16
0 E

7=16
52 t

11=16
days d�2

L28�
11=8
14 3:28� 105ð1þ zÞ11=8��1=4

B A
�5=8
� E

3=4
52 tdaysd

�2
L28�

11=8
14

D ...... 1=3 27:9
p� 1

3p� 1
ð1þ zÞ5=6����2=3

e �
1=3
B n

1=2
0 E

5=6
52 t

1=2
daysd

�2
L28�

1=3
14 211

p� 1

3p� 1
ð1þ zÞ4=3����2=3

e �
1=3
B A�E1=3

52 d�2
L28�

1=3
14

E ....... 1=3 73:0ð1þ zÞ7=6�Bn5=60 E
7=6
52 t

1=6
daysd

�2
L28�

1=3
14 . . .a

F ....... �1=2 6:87ð1þ zÞ3=4��1=4
B E

3=4
52 t

�1=4
days d

�2
L28�

�1=2
14 6:68ð1þ zÞ3=4��1=4

B E
3=4
52 t

�1=4
days d

�2
L28�

�1=2
14

G ...... ð1� pÞ=2 0:461ðp� 0:04Þe2:53pð1þ zÞ 3þpð Þ=4���p�1
e �

1þpð Þ=4
B n

1=2
0 E

3þpð Þ=4
52 t

3 1�pð Þ=4
days d�2

L28�
1�pð Þ=2
14 3:82ðp� 0:18Þe2:54pð1þ zÞ 5þpð Þ=4���p�1

e �
1þpð Þ=4
B A�E 1þpð Þ=4

52 t
1�3pð Þ=4
days d�2

L28�
1�pð Þ=2
14

H ...... �p=2 0:855ðp� 0:98Þe1:95pð1þ zÞ 2þpð Þ=4���p�1
e �

p�2ð Þ=4
B E

2þpð Þ=4
52 t

2�3pð Þ=4
days d�2

L28�
�p=2
14 0:0381ð7:11� pÞe2:76pð1þ zÞ 2þpð Þ=4���p�1

e �
p�2ð Þ=4
B E

2þpð Þ=4
52 t

2�3pð Þ=4
days d�2

L28�
�p=2
14

Note.—First two columns give the labels and the spectral slope, �, of the different PLSs (see Fig. 1), while the last two columns give the asymptotic flux density within each PLS
for k ¼ 0 and k ¼ 2. The reader is reminded that ���e ¼ �eðp� 2Þ=ðp� 1Þ depends on p. The notationQx stands for the quantityQ in units of 10x times the (cgs) units ofQ, while tdays
is the observed time in days, andA� isA in units of 5� 1011 g cm�1 (Chevalier & Li 2000).

a For PLS E, the emission becomes dominated by the contribution from small radii for k > 23=13. This new regime is described in a separate work (J. Granot & R. Sari 2002, in
preparation).

TABLE 2

Break Frequencies and Corresponding Flux Densities

b �1 �2 �b

�bðpÞ
(Hz)

F�b ;extðpÞ
(mJy) sðpÞ

MRD

(%)

1..... 2
1

3
�sa 1:24

ðp� 1Þ3=5
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109ð1þ zÞ�1��� �1

e �
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B n
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e �
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B n
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0 E

9=10
52 t
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daysd

�2
L28 1.64 6.68

8:31
ðp� 1Þ3=5
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109ð1þ zÞ�2=5��� �1

e �
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52 t
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days 9:19

ðp� 1Þ6=5
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52 t

�1=5
days d

�2
L28 1.06 1.02

2.....
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3

1� p

2
�m 3:73ðp� 0:67Þ1015ð1þ zÞ1=2E1=2

52 ���2e�
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days 9:93ðpþ 0:14Þð1þ zÞ�1=2B n
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0 E52d
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L28 1:84� 0:40p 5.9

4:02ðp� 0:69Þ1015ð1þ zÞ1=2E1=2
52 ���2e�

1=2
B t

�3=2
days 76:9ðpþ 0:12Þð1þ zÞ3=2�1=2B A�E1=2

52 t
�1=2
days d
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L28 1:76� 0:38p 7.2

3.....
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2
� p

2
�c 6:37ðp� 0:46Þ1013e�1:16pð1þ zÞ�1=2�
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B n�1

0 E
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TABLE 2—Continued
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11

8
�ac 1:12

ð3p� 1Þ8=5

ð3pþ 2Þ8=5
108ð1þ zÞ�13=10���

�8=5
e �

�2=5
B n

3=10
0 E

�1=10
52 t

3=10
days 5:27

ð3p� 1Þ11=5

ð3pþ 2Þ11=5
10�3ð1þ zÞ�1=10���

�11=5
e �

�4=5
B n

1=10
0 E

3=10
52 t

11=10
days d�2

L28 1:99� 0:04p 1.9

1:68
ð3p� 1Þ8=5

ð3pþ 2Þ8=5
108ð1þ zÞ�1���

�8=5
e �

�2=5
B A

3=5
� E

�2=5
52 3:76

ð3p� 1Þ11=5

ð3pþ 2Þ11=5
10�3���

�11=5
e �

�4=5
B A

1=5
� E

1=5
52 tdaysd

�2
L28 1:97� 0:04p 1.9

8.....
11

8
� 1

2
�sa 1:98� 1011ð1þ zÞ�1=2n

1=6
0 E

1=6
52 t

�1=2
days 154ð1þ zÞ��1=4

B n
�1=12
0 E

2=3
52 d�2

L28 0.907 1.71

3:15� 1011ð1þ zÞ�1=3A
1=3
� t

�2=3
days 119ð1þ zÞ11=12��1=4

B A
�1=6
� E

3=4
52 t

1=12
daysd

�2
L28 0.893 2.29

9..... � 1

2
� p

2
�m 3:94ðp� 0:74Þ1015ð1þ zÞ1=2��� 2

e �
1=2
B E

1=2
52 t

�3=2
days 0:221ð6:27� pÞð1þ zÞ1=2��� �1

e �
�1=2
B E

1=2
52 t

1=2
daysd

�2
L28 3:34� 0:82p 4.5

3:52ðp� 0:31Þ1015ð1þ zÞ1=2��� 2
e �

1=2
B E

1=2
52 t

�3=2
days 0:165ð7:14� pÞð1þ zÞ1=2��� �1

e �
�1=2
B E

1=2
52 t

1=2
daysd

�2
L28 3:68� 0:89p 4.2

10...
11

8

1

3
�sa 1:32� 1010ð1þ zÞ�1=2�

6=5
B n

11=10
0 E

7=10
52 t

�1=2
days 3:72ð1þ zÞ�7=5B n

6=5
0 E

7=5
52 d�2

L28 1.213 5.22

. . .b . . .b . . .b . . .b

11...
1

3
� 1

2
�c 5:86� 1012ð1þ zÞ�1=2�

�3=2
B n�1

0 E
�1=2
52 t

�1=2
days 28:4ð1þ zÞ�1=2B n

1=2
0 E52d�2

L28 0.597 0.55

. . .b . . .b . . .b . . .b

Note.—First column numbers the breaks. The following two columns are the asymptotic spectral slopes below (�1) and above (�2) the break. The fourth column gives the name of the break
frequency. The following two columns are �bðpÞ and F�b ; extðpÞ. The last two columns are the parameter sðpÞ, which determines the shape of each break according to eq. (1) (except for b ¼ 4,
where it applies to eq. [3]), and the maximal relative difference (MRD) between this analytic formula and our exact numerical results. For each break frequency there are two lines; the first is for
an ISM surrounding (k ¼ 0) and the second for a stellar wind environment (k ¼ 2). The reader is reminded that ���e ¼ �eðp� 2Þ=ðp� 1Þ depends on p.

a For b ¼ 4, the values of sðpÞ and the correspondingMRD refer to eq. (3), and not to eq. (1) as for the other breaks.
b The breaks b ¼ 10; 11 involve PLS E, where the emission is dominated by the contribution from small radii for k > 23=13. This new regime is described in a separate work (J. Granot & R.

Sari 2002, in preparation).



motivated formula

F� ¼ F�1; ext 1� expð��1Þ½ ���6=5
1 ; �1 ¼

�

�1

� ��5=3

ð2Þ

provides an even better description of F� near the break
(with a maximal relative difference [MRD] of 2.63%, com-
pared to 6.78% with eq. [1]). For k ¼ 2, however, equation
(1) provides a better fit (with an MRD of 1.02%, compared
to 25% with eq. [2]), which shows that the previous success
of equation (2) was accidental.

Both equations (1) and (2) give a poor fit for b ¼ 4. This is
because the spectral slope across this break does not change
monotonically. We therefore provide an alternative formula
for this break:

F� ¼ F�4; ext �2
4 expð�s�

2=3
4 Þ þ �

5=2
4

h i
; �4 ¼

�

�4
; ð3Þ

where the values of s for b ¼ 4 that appear in Table 2 are for
this equation rather than for equation (1), as for the other
breaks.

4. PRESCRIPTION FOR THE BROADBAND SPECTRA

The values and the shape of the break frequencies, as
given in the previous section, are strictly valid only when the
break frequencies are far away from each other. Although,
in principle, our formalism is adequate to describe the gen-
eral spectrum, for arbitrary values of the break frequencies,
such a description would require a new calculation for any
ratio of the break frequencies and is therefore not practical.
Instead, we choose to give a heuristic prescription that uses
the shapes from the previous section to construct a broad-
band spectrum, which includes all the breaks for an arbi-
trary ratio of the break frequencies. Once again, we stress
that this is not a rigorous derivation of such a spectrum but
simply an analytic equation that gives a smooth spectrum
when the break frequencies are close to each other and
approaches the rigorous shape of each break in the asymp-
totic situation in which the break frequencies are far apart.
Such an equation is useful for fitting afterglow data.

One can readily construct such a formula for any one of
the five different possible spectra shown in Figure 1. Let us
label these spectra 1–5, from top to bottom, and denote the
corresponding flux densities by F

ðiÞ
� , where i ¼ 1; . . . ; 5.

We also label the flux density near the 11 spectral breaks by
Fb, where b ¼ 1; . . . ; 11. The fluxes, Fb, are given by equa-
tion (1) (for break b ¼ 4, eq. [3] gives a more accurate
description). Now, let us define a quantity ~FFb by

~FFb ¼ 1þ �

�b

� �sð�1��2Þ
" #�1=s

: ð4Þ

The formulas for the rounded shape of the spectrum for the
five spectra that are shown in Figure 1, from top to bottom,
are given by

F
ð1Þ
� ¼F1

~FF2
~FF3 ; ð5Þ

F
ð2Þ
� ¼F4

~FF5
~FF3 ; ð6Þ

F
ð3Þ
� ¼F4

~FF6 ; ð7Þ

F
ð4Þ
� ¼F7

~FF8
~FF9 ; ð8Þ

F
ð5Þ
� ¼F7

~FF10
~FF11

~FF9 : ð9Þ

The first term, Fb, provides the normalization and the shape
of the spectrum near the lowest break frequency, while each
consecutive term, ~FFb, represents the next break frequency
from low to high frequencies and provides the shape of the
spectrum near that break frequency and the appropriate
change in the spectral slope across the break. The number of
free parameters in each spectrum generally equals the num-
ber of break frequencies plus 2, since other than the values
of the break frequencies, one has to specify the value of p
and of the flux normalization. The bottom panel of Figure 1
is an exception, and F

ð5Þ
� has only five free parameters, since

there is a closure relation between the four break frequen-
cies (Granot et al. 2000):

�10
�7

�11
�9

� �4=5

¼ hðpÞ � 1 k ¼ 0ð Þ : ð10Þ

Our prescription for constructing the broadband spec-
trum uses F�b; ext from only one of the break frequencies in
each spectrum and thus avoids the problem of the slight
inconsistencies within Table 2 (which arise because of the
independent fits for the p dependence; e.g., x 3).

5. DISCUSSION

We have used the BM solution to obtain more accurate
expressions for the flux density. Under the assumptions that
the initial electron distribution is a strict power law with a
low-energy cutoff, and that the magnetic field is amplified
immediately behind the shock, we derived exact expressions
for the values of the break frequencies, as well as the shape
of the spectrum around each break. We have given a com-
plete general description of the broadband spectrum. Since
our analysis is general, it also includes exotic spectra that
may be relevant only in very early phases or for extreme
parameters. Our main results are summarized in Figure 1
and Tables 1 and 2.

In general, the spectrum of GRB afterglows evolves from
fast to slow cooling.4 For example, for an ISM with stand-
ard parameters (e.g., n0 ffi 1, E52 ffi 1, �B ffi 0:01), the initial
spectrum is 5, then �m crosses �c and the spectrum turns into
spectrum 1, and finally, when �m crosses �sa, the spectrum
turns into spectrum 2. The transition times between the vari-
ous spectra of Figure 1 can be worked out by equating the
various frequencies as given in Table 3. It follows that there
are two types of evolution depending on the parameters, as
given in the chart below:

ISM ¼
5 ! 1 ! 2 n0E

4=7
52 �

9=7
B < 18 ;

4 ! 3 ! 2 n0E
4=7
52 �

9=7
B > 18 ;

(

wind ¼
4 ! 5 ! 1 ! 2 A�����1

e E
�3=7
52 �

2=7
B > 100 ;

4 ! 3 ! 2 A�����1
e E

�3=7
52 �

2=7
B < 100 :

(

The weakest link in our formalism is the assumption of a
sharp lower cutoff in the electron distribution. This would
affect breaks b ¼ 1, 2, 4, 7, 9 (although for b ¼ 1, the shape
of the break will not be effected, while �1 and F�1; ext may
change). Nevertheless, our calculation provides the first
self-consistent description of all these breaks. The values

4 This holds for k < 4, which includes the cases relevant for the after-
glow, k ¼ 0; 2.
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and shapes of the rest of the breaks depend only on the
assumption of a power-law distribution well above the low-
energy cutoff and on the electron cooling. Our description
of these breaks (b ¼ 3, 5, 6, 8, 10, 11) is therefore more
robust. These breaks may still be somewhat affected by the
assumption of the magnetic field evolution. In previous
papers (GPS99a; GPS99b), however, we have shown that
this dependence is relatively weak (F�2; ext and �2 change by
up to �50%, while F�1; ext and �1 change only by up to a few
percent, where in both cases the shape of the break does not
change considerably).

We give a complete description of all possible PLSs and
provide exact expressions for the flux density away from the
break frequencies. These expression are useful when partial
information for the afterglow exists. In general, a spectral
slope and a flux at some frequency are sufficient to give some
constraint on the afterglow parameters (in PLSs G and H, p
would also be needed). For example, if only X-ray data
exists, PLS H can be used to extract some information on
the underlying parameters, and if only radio data exists,
PLS B can be used even if the self-absorption frequency is
not observed (i.e., it is above the observed radio frequency).

Expressions for some of the break frequencies and corre-
sponding flux densities already exist in the literature
(Waxman 1997; Sari et al. 1998; Wijers & Galama 1999;
GPS99a; GPS99b; Granot et al. 2000; Chevalier & Li 2000;
Panaitescu & Kumar 2000). Most of these works address
the spectrum shown in the upper panel of Figure 1 (spec-
trum 1). Some works consider emission from one represen-
tative point (Waxman 1997; Sari et al. 1998; Wijers &
Galama 1999; Granot et al. 2000), while others (Chevalier &
Li 2000; Panaitescu & Kumar 2000) use such an assumption
to obtain analytic expressions for the break frequencies
while using integration over equal arrival time surfaces for
detailed calculations of the light curve (GPS99a and
GPS99b consider the emission from the entire volume
behind the shock for an equal photon arrival time, the same
as in this paper).

The values we obtain for the break frequencies and corre-
sponding flux densities are in some cases significantly differ-
ent than previous estimates (by up to a factor of �70) and
are typically different by a factor of a few. For k ¼ 0 and
p ¼ 2:5, our value for �2 (F�2; ext), which is better known as
�m F�mð Þ, is a factor of 1.3 (4.2) larger (smaller) than Sari et
al. (1998), a factor of 1.5 (3.0) smaller (larger) thanWijers &
Galama (1999), a factor of 2.3 (for �2) larger than Panai-
tescu &Kumar (2000), and a factor of 15 (8) smaller (larger)
than Waxman (1997). For p ¼ 2:2, our value for �2 is a fac-
tor of 70 smaller than Waxman (1997).5 Our values for �2
and F�2; ext are only slightly different (by �5.1% and +1.6%,
respectively) than GPS99a, the result of a small approxima-
tion they made for the local emissivity. Our value for �3 (�c)
is a factor of 2.6 larger than Sari et al. (1998), a factor of 6.4
larger than Wijers & Galama (1999), and a factor of 6.1
larger than Panaitescu & Kumar (2000). Our value for �1
(�sa) is a factor of 1.9 larger than Waxman (1997), a factor
of 3.7 smaller than Wijers & Galama (1999), a factor of 2.1
smaller than GPS99b,6 and almost identical to Panaitescu &
Kumar (2000). For k ¼ 2 (and p ¼ 2:5), our values of �1, �2,
and �3 are smaller by factors of 2.5, 1.4, and 1.4, respec-
tively, than Chevalier & Li (2000), while our value for F�2; ext

is larger by a factor of 3.2. Compared to Panaitescu &
Kumar (2000), our values for �1, �2, and �3 are larger by
only 18%, 21%, and 16%, respectively. Our expressions for

TABLE 3

Transition Times between the Different Spectra

i ! j Possible Definitions k

Transition Time (ti!j)

(days)

5 ! 1 ... �2 ¼ �3, �9 ¼ �11, �7 ¼ �10 0 7:3� 102 1:7� 103ð Þ � ð1þ zÞ���2e�2Bn0E52

2 2:0� 102 7:0� 102ð Þ � ð1þ zÞ���e�BA�
1 ! 2 ... �1 ¼ �2, �4 ¼ �5 0 6:1� 104 1:2� 106ð Þ � ð1þ zÞ���2e�1=5B n

�2=5
0 E

1=5
52

2 1:2� 107 3:9� 109ð Þ � ð1þ zÞ���10=3e �
1=3
B A

�4=3
� E52

4 ! 5 ... �10 ¼ �11
a 2 9:3ð1þ zÞ�9=7B A2�E

�3=7
52

4 ! 3 ... �4 ¼ �6, �7 ¼ �8 ¼ �9 0 2:2� 104 6:3� 105ð Þ � ð1þ zÞ���2e�1=2B n
�1=6
0 E

1=3
52

2 1:5� 105 1:1� 107ð Þ � ð1þ zÞ���12=5e �
3=5
B A

�2=5
� E

3=5
52

3 ! 2 ... �3 ¼ �5 0 5:1� 108 1:2� 109ð Þ � ð1þ zÞ���2e�
2pþ7ð Þ= p�1ð Þ
B n

pþ6ð Þ= p�1ð Þ
2 E

pþ3ð Þ= p�1ð Þ
52

2 8:0 24ð Þ � ð1þ zÞ���2 p�1ð Þ= 2pþ5ð Þ
e �

2pþ7ð Þ= 2pþ5ð Þ
B A

2 pþ6ð Þ= 2pþ5ð Þ
� E

�3= 2pþ5ð Þ
52

Note.—First column indicates the transition at hand, from spectrum i to spectrum j. The second column lists possi-
ble conditions that may be used to define the transition time. The third column is k, which is either 0 or 2, for an ISM
or stellar wind environment, respectively. The last column is the transition time, ti!j . There are several different ways
to define most of most transition times (see second column), resulting in numerical coefficients that differ by a factor of
order unity. The p dependence also varies the numerical coefficients by a factor of order unity. We specify the range of
the numerical coefficients for 2:2 < p < 3 and for the different definitions of each transition (in parentheses).

a Expressions for �10 and �11 for k ¼ 2 that we used in order to calculate t4!5 are taken from J. Granot & R. Sari
2002, in preparation.

6 The reason for this difference is as follows: eq. (18) of GPS99b, which is
essentially eq. (6.52) of Rybicki & Lightman (1979), misses the term associ-
ated with the discontinuity at the lower edge of the electron distribution (at
�min) when derived from eq. (6.50) of Rybicki & Lightman. This missing
term caused an overestimation of the of the absorption coefficient by a
factor of f ¼ 3ðpþ 2Þ=4 and a corresponding overestimation of �1 and
F�1 ; ext, by factors of f

3=5 and f 1=5, respectively. However, this missing term
does not effect the shape of the break, which is given in eqs. (1) or (2) (i.e.,
eq. [24] of GPS99b).

5 This large difference is mainly the result of the fact that Waxman used
�e instead of our ���e ¼ �eðp� 2Þ=ðp� 1Þ.
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the break frequencies and corresponding flux densities of
spectra 4 and 5 (bottom two panels of Fig. 1) for k ¼ 0; 2
are different by up to a factor of 3 from those given in
Granot et al. (2000).

When using our results to determine the afterglow para-
meters (E52, n0 orA�, �e, �B, and p) through fits to the obser-
vational data, the values of these parameters may differ
from previous estimates both because of the different shape
of the spectrum and because of the different values of the
break frequencies and corresponding flux densities. In order
to illustrate the quantitative differences our results may
induce when determining the afterglow parameters from
such fits, we will use the results of Wijers & Galama (1999)
for GRB 970508. They used the values of the break frequen-
cies and peak flux of this afterglow 12.1 days after the burst
to determine the afterglow parameters. Replacing their the-
oretical values for the break frequencies and flux density
with ours and keeping their observational values, we find
that E52 decreases by a factor of 30 (from 3.5 to 0.12), �e
increases by a factor of 4.8 (from 0.12 to 0.57) , �B decreases
by a factor of 7.6 (from 0.089 to 0.012), and n0 increases by a
factor of 730 (!) from 0.03 to 22. Using our broadband spec-
trum in which the PLSs join smoothly at the break frequen-
cies instead of the broken power-law theoretical spectrum
used by Wijers & Galama will also change the values of the
break frequencies and peak flux that are inferred from the
data. The resulting changes to the values of the afterglow
parameters are expected to be of the same order as those
quoted above. Therefore, in order to determine the after-

glow parameters with reasonable accuracy, one needs to
perform a fit to all the available observational data using
the prescription for the broadband spectrum that is outlined
in x 4. Such a fit, however, is beyond the scope of this paper.

Our equations do not include the effects of inverse Comp-
ton scattering on the cooling of the electrons. This effect is
known to be important when �B5 �e (Sari, Narayan, &
Piran 1996; Panaitescu & Kumar 2000; Sari & Esin 2001).
Following the prescription of Sari & Esin, we can include
the effects of inverse Compton by inserting appropriate
powers of ð1þ Y Þ into the values of the break frequencies
or the PLSs (whereY is the Compton y-parameter). PLSs C,
E, F, and H should be multiplied by ð1þ Y Þ�3=8,
ð1þ Y Þ2=3, ð1þ YÞ�1, and ð1þ YÞ�1, respectively.

Preliminary results from this work have already been
used successfully in fitting the data of several afterglows
(e.g., Galama et al. 2000; Harrison et al. 2001). In the latter
case, the first evidence for inverse Compton emission was
found. A special effort has been made to present the results
of our model in a way that is simple to implement and would
provide the most accurate results to date for spherical after-
glows or jetted afterglows within their quasi-spherical phase
(before any significant lateral spreading).

J. G. thanks the Horowitz foundation for support. R. S.
thanks the Sherman Fairchild foundation for support. This
research was partially supported by NSF grant PHY-
0070928 (J. G.) and by a NASAATP grant.

APPENDIX

The energy density e, number density n, magnetic field B, and random Lorentz factor of the electrons �e are measured in the
local rest frame of the fluid in addition to all the primed quantities. The remaining quantities are measured in the lab frame,
i.e., the rest frame of the ambient medium in which the flow is spherical. We use a spherical coordinate system in this rest
frame, where the z-axis points at the observer. The time, t, measured in this rest frame is called the coordinate time and is to be
distinguished from the time, t0, measured in the local rest frame of the fluid and from the observer (or observed) time, tobs, at
which the emitted photons reach the observer. The subscript 0 denotes the value of a quantity just behind the shock.

The initial electron distribution just behind the shock is given by

Nð�eÞ ¼ K0�
�p
e for �e � �min; 0 ¼

���ee0
n0mec2

; ðA1Þ

where me is the electron rest mass and K0 ¼ ðp� 1Þn0�p�1
min; 0. Note that the above equation is usually written using

�e ¼ ���eðp� 1Þ=ðp� 2Þ, which is the fraction of the internal energy given to the electrons. The advantage of using ���e is that it
makes most equations somewhat simpler. Furthermore, it will apply also for the case p < 2 as long as the minimal Lorentz
factor is proportional to the shock Lorentz factor. The magnetic field is assumed to hold a constant fraction, �B, of the internal
energy, everywhere:

B2 ¼ 8	�Be : ðA2Þ

The evolution of the Lorentz factor of each electron is described by

d�e
dt0

¼ � 
TB
2

6	mec
�2e þ

�e
3n

dn

dt0
: ðA3Þ

The first term on the right-hand side of equation (A3) represents the radiative losses, while the second term represents adia-
batic cooling. The radiative term includes only synchrotron losses. A simple prescription of how to include the effects of
enhanced electron cooling caused by inverse Compton scattering on the observed synchrotron emission is given in x 5.

We use the BM spherical self-similar solution for an impulsive explosion, where the external medium is cold, and its density
changes as a power law of the distance from the center, �extðrÞ ¼ Ar�k, k < 4 (extensions for k > 4 are given in Best & Sari
2000, but were not used in this paper). The derivations are made for a general value of k < 4 and are then used for k ¼ 0 and
k ¼ 2, which are of special physical interest. According to this solution, the proper energy density, Lorentz factor, and proper
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number density of the shocked fluid are given by

e ¼2�2�extc
2��ð17�4kÞ=3ð4�kÞ ; ðA4Þ

� ¼2�1=2���1=2 ; ðA5Þ
n ¼23=2�next�

�ð10�3kÞ=2ð4�kÞ ; ðA6Þ

where C is the Lorentz factor of the shock, and

� ¼ 1þ 2ð4� kÞ�2
� �

1� r

ct

� �
: ðA7Þ

The v coordinate of a fluid element is given by

� ¼ R

R0

� �4�k

¼ t

t0

� �4�k

; ðA8Þ

where R0 and t0 are the shock radius and coordinate time, respectively, when the fluid element crosses the shock. Since
�2 / tk�3, we obtain

�

�0
¼ ��ð7�2kÞ=2ð4�kÞ ;

n

n0
¼ ��ð13�2kÞ=2ð4�kÞ ;

e

e0
¼ B

B0

� �2

¼ ��2ð13�2kÞ=3ð4�kÞ : ðA9Þ

Using equation (A9) and the relation dt0 ¼ dt=�, we can write equation (A3) in terms of v:

d�e
d�

¼ �

TB

2
0t0�

�ð49�8kÞ=6ð4�kÞ�2e
6ð4� kÞ	mec�0

� ð13� 2kÞ
6ð4� kÞ

�e
�

: ðA10Þ

Solving equation (A10), we obtain

�eð�e; 0; �Þ ¼ �e; 0
�ð13�2kÞ=6ð4�kÞ þ �e;0=�maxð�Þ

; ðA11Þ

where �e; 0 	 �eð� ¼ 1Þ is the initial Lorentz factor of the electron just behind the shock, and �maxð�Þ is the maximal Lorentz
factor at � > 1, which corresponds to an electron with �e; 0 ! 1, and is given by

�maxð�Þ ¼
2ð19� 2kÞ	mec�0


TB2
0t0

�ð25�2kÞ=6ð4�kÞ

�ð19�2kÞ=3ð4�kÞ � 1
: ðA12Þ

The fraction of electrons with a Lorentz factor within the interval ½�e; �e þ d�e� is given by Nð�eÞd�e=n and remains constant
as all these quantities evolve with increasing v. The electron distribution is therefore given by

Nð�e; �Þ ¼ K0�
ð2k�13Þðpþ2Þ=6ð4�kÞ�

�p
e 1� �e

�maxð�Þ

� �p�2

ðA13Þ

for �minð�Þ 
 �e 
 �maxð�Þ, where �minð�Þ ¼ �eð�min; 0; �Þ.
We now have explicit expressions for both the hydrodynamical quantities and the electron distribution over all relevant

spacetime, and we can calculate the flux density near the various break frequencies. For breaks that are in the optically thin
regime (b ¼ 2, 3, 9, 11), one may use the equation

F�ðtobsÞ ¼
2ð4� kÞR3

l ð1þ zÞ
d2
L

Z 1

0

dy

Z yk�4

1

d�
�y2ð5�kÞP0

�0 ðy; �; tobsÞ
1þ ð7� 2kÞ�y4�k½ �2

; ðA14Þ

which is a generalization of equation (13) of GPS99a, where dL and z are the luminosity distance and cosmological redshift of
the source, respectively, P0

�0 is the radiated power per unit volume per unit frequency in the local rest frame of the fluid and
should be taken at the coordinate time t ¼ tz þ rl=c, where tz 	 tobs=ð1þ zÞ,

Rl ¼ ð17� 4kÞð4� kÞEtz
4	Ac

� �1=ð4�kÞ
;

�l ¼ ð17� 4kÞE
45�kð4� kÞ3�k	Ac5�kt3�k

z

" #1=2ð4�kÞ

; ðA15Þ

E is the energy of the blast wave, y 	 R=Rl (e.g., GPS99a),

l 	 cosð�Þ ffi 1� 1� �y4�k

4ð4� kÞ�2l y
; ðA16Þ
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and7 �0 ¼ ��ð1� �lÞð1þ zÞ. The spectral emissivity of a single electron (in the fluid rest frame) is given by

P0
�0; e ¼

ffiffiffi
3

p
q3eB sin�

mec2
F

�0

�0syn

� �
; �0syn ¼

3qeB�2e sin�

4	mec
; ðA17Þ

where qe is the electric charge of the electron, � is the pitch angle between the direction of the electron’s velocity and the mag-
netic field in the local rest frame of the fluid, and F is the standard synchrotron function (e.g., Rybicki & Lightman 1979). In
order to obtain an expression for P0

�0 (which appears in eq. [A14]), we average P0
�0; e over �, assuming an isotropic distribution

of electrons in the local rest frame:

P0
�0; e; iso ¼

Z 	=2

0

d� sin�P0
�0; eðsin�Þ ; ðA18Þ

and then integrate over the electron distribution:

P0
�0 ¼

Z �max

�min

d�eNð�eÞP0
�0; e; isoð�eÞ : ðA19Þ

For the remaining spectral breaks (b ¼ 1, 4, 5, 6, 7, 8, 10), where the system is not always optically thin, we follow the for-
malism of GPS99b. Since the emission is isotropic in the local rest frame of the fluid, the emission coefficient is simply
j0�0 ¼ P0

�0=4	, where P
0
�0 is given by equation (A19). The absorption coefficient is given by

�0
�0 ¼

1

8	me�02

Z �max

�min

d�e
Nð�eÞ
�2e

@

@�e
�2eP

0
�0; e; isoð�eÞ

� �
: ðA20Þ

Since the flow is spherically symmetric, the afterglow image is circular, with physical radius of

R?;max ¼
ð5� kÞ k�5ð Þ=2ð4�kÞffiffiffi

2
p Rl

�l
¼ 22�kð17� 4kÞð4� kÞ5�kEc3�kt5�k

z

	ð5� kÞ5�kA

" #1=2ð4�kÞ

; ðA21Þ

and for a given observer time, tobs, the specific intensity (or brightness), I�, depends only on the normalized radius from the
center of the image:

x 	 R?
R?;max

¼ ð4� kÞ�1=2ð5� kÞ 5�kð Þ=2 4�kð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� �y5�k

p
; ðA22Þ

where x ¼ 0 at the center of the image and x ¼ 1 at the outer edge of the image. As discussed in GPS99b, I�ðxÞ may be
obtained by solving the radiative transfer equation:

dI�
ds

¼ j� � ��I� ; ðA23Þ

where s is the distance along the trajectory of a photon to the observer, and the flux density is given by

F�ðtobsÞ ¼ 2	ð1þ zÞ R?;maxðtobsÞ
dL

� �2Z 1

0

x dx I�ðx; tobsÞ : ðA24Þ

We note that I�ðxÞ provides the surface brightness profile of the afterglow image that is necessary for detailed calculations
of microlensing or scintillation. The surface brightness profiles that were calculated according to this formalism have already
been used to study the microlensing of GRB afterglows (Granot & Loeb 2001; Gaudi, Granot, & Loeb 2001) and are presented
therein.

When a break frequency is sufficiently far from other break frequencies, the spectrum near this break frequency assumes a
self-similar form. These self-similar forms of the spectrum near the different break frequencies are presented in x 3.
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