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ABSTRACT

When a gravitationally lensed source crosses a caustic, a pair of images is created or destroyed. We calcu-
late the mean number of such pairs of microimages hni for a given macroimage of a gravitationally lensed
point source due to microlensing by the stars of the lensing galaxy. This quantity was calculated by Wambs-
ganss, Witt, and Schneider in 1992 for the case of zero external shear, � ¼ 0, at the location of the macro-
image. Since in realistic lens models a nonzero shear is expected to be induced by the lensing galaxy, we
extend this calculation to a general value of �. We find a complex behavior of hni as a function of � and the
normalized surface mass density in stars, �*. Specifically, we find that at high magnifications, where the aver-
age total magnification of the macroimage is hli ¼ jð1� ��Þ2 � �2j�1

41, hni becomes correspondingly large
and is proportional to hli. The ratio hni=hli is largest near the line � ¼ 1� ��, where the magnification hli
becomes infinite, and its maximal value is 0.306. We compare our semianalytic results for hni with the results
of numerical simulations and find good agreement. We find that the probability distribution for the number
of extra microimage pairs is reasonably described by a Poisson distribution with a mean value of hni and that
the width of the macroimage magnification distribution tends to be largest for hni � 1.

Subject headings: dark matter — gravitational lensing — quasars: general

1. INTRODUCTION

Gravitational microlensing by the stars of a lensing gal-
axy can have a large effect on the magnification of lensed
sources (Chang & Refsdal 1979; Young 1981; Paczyński
1986). Since the macroimages of multiply imaged sources
are typically located in relatively dense star fields of the lens-
ing galaxy, microlensing is quite common in such systems.
The typical angular separation between the microimages of
a cosmological source due to a stellar mass microlens is of
the order of 1 las, which is far too small to be resolved. For
the time being, the only observable manifestation of micro-
lensing is to change the magnification of the macroimage
relative to the average magnification that is predicted for
the smoothed-out surface mass density profile of the galaxy.

The first observational evidence for quasar microlensing
was found by Irwin et al. (1989) in the quadruple system
Q2237+0305, which has subsequently been monitored by
many groups (Corrigan et al. 1991; Burud et al. 1998; Lewis
et al. 1998, Woźniak et al. 2000a, 2000b). In particular, the
latest results show that all four quasar images vary dramati-
cally, going up and down by more than 1 mag on timescales
of less than a year. The fact that individual (caustic crossing)
events can be clearly distinguished allows us to put upper
limits on the source size (Wambsganss, Paczyński, &
Schneider 1990; Yonehara 1999, 2001;Wyithe et al. 2000).

In the double quasar Q0957+561, originally there was an
almost linear change detected in the (time shifted) bright-
ness ratio between the two images (D mA �mBð Þ � 0:25 mag
over 5 yr), which was interpreted as microlensing by solar-
type stars. However, since about 1991, this ratio has stayed

more or less ‘‘ constant ’’ within about 0.05 mag, so not
much microlensing has been going on in this system recently
(Schild 1996; Pelt et al. 1998). Nevertheless, even the ‘‘ lack
of microlensing ’’ in this system can be used to put limits on
compact dark matter in the halo of the lensing galaxy
(Wambsganss et al. 2000).

A number of other multiple-quasar systems are being
monitored more or less regularly, with some showing indi-
cations of microlensing, e.g., H1413+117 (Østensen et al.
1997), B0218+357 (Jackson, Xanthopoulos, & Browne
2000), or HE 1104�1805 (Gil-Merino, Wisotzki, &Wambs-
ganss 2002; Schechter et al. 2003). For a recent review on
quasar microlensing, seeWambsganss (2001).

Microlensing has recently been suggested as the source of
short-timescale low-level variability in the time-delayed
light curves of multiple images of quasars (Wyithe & Loeb
2002) and might help in studying the properties of broad-
line clouds in quasars. A better understanding of the micro-
lensing by stars in galaxies would provide a better handle on
the probability distribution for the microlensing of cosmo-
logical sources (Wyithe & Turner 2002) that is relevant for
gamma-ray bursts (GRBs), especially in light of a possible
microlensing event that was observed in the optical and
near-IR light curve of the afterglow of GRB 000301C (Gar-
navich, Loeb, & Stanek 2000; Gaudi, Granot, & Loeb 2001;
Koopmans &Wambsganss 2001).

Another example in which microlensing may play an
important role is in explaining the flux ratio anomalies
observed in close pairs of images of quadruply lensed qua-
sars (Schechter &Wambsganss 2002). Such systems are usu-
ally modeled using a simple smooth surface mass density
profile for the galaxy, possibly with the addition of an exter-
nal shear. While these models successfully reproduce the
observed locations of the macroimages, the flux ratios they
predict are quite often in poor agreement with observations.
Specifically, the theoretical flux ratio for a close pair of
highly magnified macroimages is 1 : 1, while observations

1 Institute for Advanced Study, Olden Lane, Princeton, NJ 08540.
2 Department of Physics, 77 Massachusetts Avenue, Massachusetts

Institute of Technology, Cambridge, MA 02139.
3 Universität Potsdam, Institut für Physik, Am Neuen Palais 10, 14467

Potsdam, Germany.

The Astrophysical Journal, 583:575–583, 2003 February 1

# 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A.

575



show a difference of up to 1 mag. For example, MG
0414+0534 has an observed flux ratio of 2 : 1 in the optical
(Hewitt et al. 1992; Schechter & Moore 1993), while in the
radio, the flux ratio is 1 : 1 (Trotter, Winn, & Hewitt 2000).
There are also alternative explanations for these flux ratio
anomalies, such as intervening dust (Lawrence et al. 1995)
or millilensing by galactic substructure (Mao & Schneider
1998; Metcalf & Madau 2001; Dalal & Kochanek 2002;
Chiba 2002). The study of microlensing can help distinguish
between these alternative explanations and may be useful in
constraining the substructure of galaxies.

In many cases the study of microlensing cannot be done
analytically, and much of the work is done using numerical
simulations. The magnification distributions of the macro-
image (MDMs) are particularly important for understand-
ing the observed properties of lensed systems. The latter
have been calculated for a wide range of parameters using
numerical simulations (Wambsganss 1992; Rauch et al.
1992; Lewis & Irwin 1995, 1996; Schechter & Wambsganss
2002). While simulations are applicable to a wide range of
problems and are in many cases the only available tech-
nique, they are usually time consuming and do not always
provide a qualitative understanding of the results. Specifi-
cally, they do not seem to provide an explanation for the
detailed structure that is present in the MDMs that they
produce.

In a recent paper, Schechter & Wambsganss (2002)
explained the flux ratio anomalies as resulting from a differ-
ent qualitative behavior of the MDMs for macrominima
and macro–saddle points in the arrival-time surface that
results in a larger probability for demagnification (relative
to the average magnification) of saddle points compared to
minima. This is in agreement with the observations of MG
0414+0534 and four other recently discovered quadruple
systems (Reimers et al. 2002; Inada et al. 2002; S. Burles et
al. 2003, in preparation; P. L. Schechter et al. 2003, in prepa-
ration), in all of which the fainter image in a pair corre-
sponds to a saddle point, while the brighter image
corresponds to a minimum.

The structure of the MDMs seems to be tightly related to
the probability distribution for the number of extra micro-
image pairs (EIPs) corresponding to a given macroimage
(Rauch et al. 1992). This can be expected, since the magnifi-
cation of the macroimage is simply the sum of the magnifi-
cations of all the microimages that it is composed of. An
analytic expression for the mean number of EIPs was
derived by Wambsganss, Witt, & Schneider (1992, hereafter
WWS92) for the case of zero external shear. In x 2 we gener-
alize this result for arbitrary values of the external shear and
obtain a semianalytic expression. More detailed expressions
are provided in the Appendix, along with an analytic result
for the case of equal shear and convergence in stars. In x 3
we compare our analytic results with numerical simulations
and find good agreement. We also show that the probability
distribution for the number of EIPs is reasonably described
by a Poisson distribution. The possible implications of our
results are discussed in x 4.

2. ANALYTIC RESULTS

In this section we calculate the mean number of positive
parity microimages hNi and the mean number of extra
microimage pairs (EIPs) hni that are induced by the random
star field of the lensing galaxy near the location of a macro-

image. The macroimages are located at stationary points
(i.e., minima, saddle points, or maxima) of the time-delay
(Fermat) surface of the smoothed-out surface mass density
distribution of the lensing galaxy. The source size is
assumed to be small compared to the Einstein radius of the
stars in the galaxy and compared to the typical distance
between caustics, so that we can assume a point source. In
this limit the probability distribution of the random shear
caused by the star field and the resulting distributions of the
number of microimages and total magnification of the macro-
image are independent of the mass spectrum of the stars
(Schneider & Weiss 1988). The remaining parameters on
which the microlensing characteristics in this case might still
depend are the normalized surface mass density in the stars,
�*, and in a smooth component (dark matter), �c, as well as
the large-scale shear of the galaxy �. However, Paczyński
(1986) has shown that such a model is always equivalent to
a model with effective convergence and shear given by

�eff� ¼ ��
1� �c

; �eff ¼ �

1� �c
ð1Þ

and with no smooth component (�eff
c � 0). The effective

magnification in this model is related to the true magnifica-
tion by leff ¼ lð1� �cÞ2. Therefore, without loss of general-
ity, we restrict ourselves to �c ¼ 0 while letting �* and �
vary.

Each pair of microimages (EIPs) consists of a saddle
point and a minimum and thereby includes one positive-
parity image. For a macrominimum there is also an addi-
tional positive-parity microimage corresponding to the
global minimum. Therefore, n ¼ N � 1 for a macro-
minimum and n ¼ N otherwise, where n is the number of
EIPs and N is the number of positive-parity microimages.
This also carries through to the average values of these
quantities:

hni ¼
hNi � 1; �� þ � < 1 ;

hNi; �� þ � > 1 :

�
ð2Þ

It is therefore sufficient to calculate one of these quantities
in order to determine the other. The values of hNi and hni
for the case of zero external shear (� ¼ 0) were calculated by
WWS92. In this work we follow their analysis and general-
ize their result to the case of a nonzero shear �. The average
total magnification of the macroimage is given by

hli ¼ 1

jð1� ��Þ2 � �2j
: ð3Þ

Since the magnification is solely due to area distortion, flux
conservation implies that a sufficiently large area Ad in the
deflector plane will be (backward) mapped onto an area
As ¼ Ad=hli in the source plane (when projected onto the
deflector plane, so that it extends to the same solid angle as
seen from the observer). The mean number of positive-
parity microimages hNi is equal to the multiplicity q by
which regions of positive parity within Ad , when mapped
ontoAs, coverAs.

The probability distribution of the random shear pro-
duced by the stars is given by

pð��; S1; S2Þ ¼
��

2� �2� þ S2
1 þ S2

2

� �3=2 ð4Þ
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(Nityananda & Ostriker 1984; Schneider, Ehlers, & Falco
1992, p. 329), where S1 and S2 are the two components of
the internal shear. Since we assume that �c ¼ 0 and that the
stars are point masses, the convergence vanishes everywhere
(except at the locations of the stars, where it is infinite,
but these form a set of measure zero for any finite area on
the deflector plane), and the local magnification at a
given location in the star field is just due to the shear at that
point:

lð�; S1; S2Þ ¼
1

1� � þ S1ð Þ2�S2
2

; ð5Þ

where for convenience we have chosen S1 to lie in the
direction of the external shear �. The area dad ¼
Adpð��; S1; S2Þ dS1 dS2 within Ad , where the shear
lies between ð� þ S1; S2Þ and ð� þ S1 þ dS1; S2 þ dS2Þ,
is mapped onto the area das ¼ dad=lð�; S1; S2Þ.

Therefore,

hNi ¼ q ¼ 1

As

Z
l>0

dad
l

¼ hli
Z Z

l>0

pð��; S1; S2Þ dS1 dS2

lð�; S1; S2Þ

¼ ��
2�j 1� ��ð Þ2��2j

Z 1��

�1��

dS1

�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �þS1ð Þ2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �þS1ð Þ2

p dS2
1� � þ S1ð Þ2�S2

2

�2� þ S2
1 þ S2

2

� �3=2 : ð6Þ

This integral can be evaluated analytically. However, the
resulting expression is long and cumbersome, so we prefer
not to write it down explicitly. Instead, we show contour
plots of hni and hni=hli in Figure 1 and provide the values

Fig. 1.—Contour plots of log10ðhniÞ (top) and log10ðhni=hliÞ (bottom) in the �*-� plane. The dashed line in the bottom panel shows the line of infinite magni-
fication � ¼ 1� �� along which there is a ‘‘ ridge ’’ in hni=hli, while the three plus symbols in both panels mark the values used in our three simulations:
�� ¼ � ¼ 0:333, 0.400, and 0.666.
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of hNi=hli at representative points of (�*, �) in Table 1. In
the Appendix we reduce the expression in equation (6) to a
one-dimensional integral in two different ways (so that hNi
can be easily evaluated numerically) and provide an analytic
expression for the case in which � ¼ ��. For � ¼ 0, equation
(6) reduces to a simple analytic expression (WWS92):

hNi
hli ¼ hNið1� ��Þ2 ¼ 1þ 2�2� � 2��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2�

q
: ð7Þ

For �� ¼ 0, there are no extra images due to stars, and we
have either one positive-parity image for a macrominimum
(N ¼ hNi ¼ 1 for � < 1) or none for a macro–saddle point
(N ¼ hNi ¼ 0 for � > 1). Hence, for �� ¼ 0, we have

hNi
hli ¼ hNið1� �2Þ ¼

1� �2 ; � < 1 ;

0 ; � � 1 :

�
ð8Þ

As can be seen from equation (6), the ratio hNi=hli
remains finite and varies smoothly with � and �* near the
lines of infinite average total magnification hli in the �-�*
plane (i.e., � ¼ j1� ��j). Together with equation (2), this
implies the same for the ratio hni=hli along the line
� ¼ �� � 1, while along the line � ¼ 1� �� it is continuous,
but its derivative is discontinuous in any direction that is
not along this line (as can be seen in Fig. 1 [bottom]).

Furthermore, hni=hli decreases on either side of the
line � ¼ 1� �� and therefore attains its maximal value
along this line: ðhni=hliÞmax ¼ 0:306136 at ð��; �Þ ¼
ð0:37895; 0:62105Þ. For hli41 (� � j1� ��j), small
changes in � or �* can cause large changes in hli and hni,
while the ratios hni=hli or hNi=hli remain approximately
constant. In this region, when crossing the line of infinite
magnification � ¼ 1� �� from a macrominimum
(� < 1� ��) to a macro–saddle point (� > 1� ��), hNi
decreases by 1 (corresponding to the macrominimum that
disappears), but since hNi is infinite at this line, this
amounts to a zero fractional change in hNi.

3. COMPARISON WITH NUMERICAL SIMULATIONS

In this section we compare the analytic results of x 2 with
the results of numerical simulations. Combining a ray-

shooting code (Wambsganss 1990, 1999) with a program
that detects the location of the caustics (Witt 1993) as in
WWS92, we extract additional information on image multi-
plicity and magnification. Whenever the source crosses a
caustic, a pair of images consisting of a micro–saddle point
and a microminimum are created or destroyed. Each simu-
lation is based on a particular realization of the random star
field that determines a caustic network in the source plane
and in principle determines the number of such EIPs at any
point in the source plane. In order to calculate the average
number of EIPs hni from the results of a simulation, we
identify the regions with different numbers of EIPs n on the
source plane and calculate the fraction fn of the source plane
that they cover, which is equal to the probability pn of hav-
ing n EIPs at a random location on the source plane. This is
illustrated in Figure 2. Pixels in the source plane that are
crossed by caustics (which are colored in yellow in Fig. 2)
are attributed to the corresponding higher image number.
There are also parts of the source plane for which it is very
difficult to uniquely identify n (corresponding to the black
regions in Fig. 2) because of the occasionally complex caus-
tic structure, combined with the finite pixel size of the simu-
lation. These regions are left out when calculating fn. The
‘‘ unidentified ’’ regions correspond to �1% of the source
plane, and a large fraction of these regions probably corre-
spond to relatively high values of n. However, as we do not
know exactly what distribution of multiplicity n we should
assign to these regions, and lacking a better option, we sim-
ply assign to them the same distribution as the identified
regions:

pn ¼
fnP
n0 fn0

: ð9Þ

This is equivalent to leaving out the unidentified regions
entirely and normalizing the probability distribution of pn.
The average number of EIPs for the simulation is then given
by

hnisim ¼
X
n

npn : ð10Þ

Since we have simple analytic expressions for hni for
� ¼ 0 (WWS92; eq. [7]) and for �� ¼ 0 (eq. [8]), we chose

TABLE 1

The Ratio hN i/hli

hNi/hli

� �* = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.5

0...... 1 0.8190 0.6721 0.5536 0.4584 0.3820 0.3206 0.2711 0.2310 0.1983 0.1716 0.1311 0.0917

0.1... 0.99 0.8105 0.6650 0.5478 0.4537 0.3782 0.3176 0.2687 0.2292 0.1969 0.1704 0.1303 0.0913

0.2... 0.96 0.7850 0.6438 0.5305 0.4398 0.3672 0.3089 0.2618 0.2237 0.1926 0.1670 0.1281 0.0901

0.3... 0.91 0.7428 0.6089 0.5022 0.4171 0.3492 0.2947 0.2507 0.2149 0.1856 0.1615 0.1246 0.0882

0.4... 0.84 0.6841 0.5608 0.4635 0.3864 0.3250 0.2756 0.2357 0.2031 0.1763 0.1540 0.1198 0.0856

0.5... 0.75 0.6095 0.5005 0.4156 0.3487 0.2955 0.2526 0.2176 0.1889 0.1650 0.1450 0.1140 0.0824

0.6... 0.64 0.5200 0.4296 0.3602 0.3058 0.2621 0.2266 0.1973 0.1728 0.1522 0.1348 0.1073 0.0787

0.7... 0.51 0.4173 0.3505 0.2999 0.2596 0.2266 0.1989 0.1756 0.1557 0.1386 0.1239 0.1001 0.0746

0.8... 0.36 0.3048 0.2678 0.2383 0.2131 0.1908 0.1711 0.1536 0.1382 0.1245 0.1125 0.0925 0.0702

0.9... 0.19 0.1907 0.1886 0.1805 0.1692 0.1568 0.1444 0.1323 0.1211 0.1107 0.1012 0.0848 0.0657

1...... 0 0.0974 0.1236 0.1314 0.1310 0.1265 0.1200 0.1126 0.1049 0.0974 0.0902 0.0771 0.0611

1.2... 0 0.0303 0.0534 0.0682 0.0764 0.0801 0.0808 0.0795 0.0770 0.0739 0.0703 0.0628 0.0521

1.5... 0 0.0111 0.0212 0.0298 0.0366 0.0415 0.0448 0.0468 0.0477 0.0478 0.0472 0.0449 0.0400

Notes.—The ratio of the mean number of positive-parity microimages hNi and the mean total magnification hli for different values of the normalized
surface mass density in stars �* and the external shear �, calculated using eqs. (6), (A1), (A3), and (A5).
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values of (�*, �) along the line �� ¼ � for the simulations,
so they would serve as a good check for our analytic results.
An additional advantage of this choice is that it corresponds
to the interesting case of a singular isothermal sphere (for
�c ¼ 0). We performed three simulations, two for macromin-
ima (�� ¼ � ¼ 0:333, 0.400 with hli ’ 3, 5) and one for a
macro–saddle point (�� ¼ � ¼ 0:666 with hli ’ 3). The
results of the simulations are shown in Tables 2 and 3. For
�� ¼ � ¼ 0:333, 0.400, and 0.666, hnisim is 3.7%, 3.3%, and
7.7%, respectively, lower than the analytic result hni from x 2
(denoted by hnith in Table 2). The values of hnisim in Table 2
were calculated according to equation (10), which assigns
the pn distribution of the regions with identified imagemulti-
plicity n in the source plane to the unidentified regions.
However, as mentioned above, the unidentified regions are
typically related to complicated caustic structures and are
hence more likely to contribute to larger values of n com-
pared to the identified regions. If the average n of the
unidentified regions is, for instance, 5, this would make
hnisim 1.1% higher, 2.6% higher, and 1.1% lower than hni for
�� ¼ � ¼ 0:333, 0.400, and 0.666, respectively. The latter

should assume values of 3.96, 3.19, and 5.70 for
�� ¼ � ¼ 0:333, 0.400, and 0.666, respectively, in order for
hnisim to be exactly equal to hni. One should also keep in
mind the ‘‘ cosmic ’’ variance, i.e., the fluctuations between
the results of different simulations for the same �* and � due
to different statistical realizations of the star field over a

Fig. 2.—Map of the number of EIPs n in the source plane, for the simulation with � ¼ �� ¼ 0:666. The regions in dark blue, turquoise, green, red, and
orange correspond to n ¼ 0, 1, 2, 3, and 4, respectively. The yellow lines represent the caustics, while regions for which n could not be determined are in black.

TABLE 2

Numerical Simulations versus Theory

�* = � hnisim hnith hlisim hlith

0.333 ...... 0.367 0.3806 2.902 2.994

0.400 ...... 0.901 0.9320 4.992 5.000

0.666 ...... 0.531 0.5759 2.907 3.012

Notes.—The first column labels the simulation through the values of
the normalized surface mass density in stars �* and the external shear �.
The next two columns provide the average number of EIPs calculated
from the simulation (according to eq. [10]) hnisim and the theoretical
prediction for this quantity hnith, calculated using eqs. (2) and (6). The
last two columns are the average magnification of the simulation hlisim
and the theoretical averagemagnification hlith (from eq. [3]).
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finite region in the deflector plane. We therefore conclude
that there is good agreement between the results of the
numerical simulations and our analytic results for the aver-
age number of EIPs hni.

The average total magnifications from the simulations,
hlisim, are 3.1%, 0.16%, and 3.5% lower than their theoretical
values for �� ¼ � ¼ 0:333, 0.400, and 0.666, respectively.
The scatter in hlisim can be attributed to the ‘‘ cosmic ’’ var-
iance. The fact that hlisim is on average slightly lower than its
theoretical value arises since we consider finite regions in the
deflector plane and in the source plane. Rays that fall very
close to a star in our deflector field suffer very large deflection
angles, whichmay take them outside of our source field; these
are not compensated for by rays with large deflection angles
from stars outside of our deflector field that should have been
deflected into our source field (see Katz, Balbus, & Paczyński
1986; Schneider &Weiss 1987).We conclude that the numeri-
cal simulations are in good agreement with the theory on the
value of hli as well.

The magnification distribution of the macroimage
(MDM) pðlÞ, where pðlÞ dl is the probability that the total
magnification of the macroimage is between l and lþ dl,
can be expressed as a sum over the contributions from
regions with different numbers of EIPs n,

pðlÞ ¼
X1
n¼0

pnðlÞ ; ð11Þ

where pnðlÞ dl ¼ ðdpn=dlÞ dl is the probability of having n
EIPs and a total magnification between l and lþ dl, with
the normalizationZ 1

0

pnðlÞ dl ¼ pn;

Z 1

0

pðlÞ dl ¼ 1 : ð12Þ

In Figure 3 we show the results for pn from our simula-
tions (which are given in Table 2), along with a Poisson

distribution,

pn ¼
e�aan

n!
; ð13Þ

where the solid line is for a ¼ hni and the dashed line is for
a ¼ hnisim, calculated according to equation (10). A Poisson
distribution provides a reasonable fit to the results of all our
simulations. For large values of n there is a relatively larger
deviation from a Poisson distribution. This results, in part,
from the difficulty in identifying regions with large n in the
source plane. One should also keep in mind that the ‘‘ cos-
mic ’’ variance in pn becomes larger with increasing n. There
still seem to be some systematic deviations from a Poisson
distribution; however, they appear to be small for relatively
low values of n, which cover most of the source plane. We
therefore consider a Poisson distribution for pn to be a rea-
sonable approximation.

Figure 4 shows plots of lpðlÞ and lpnðlÞ from our simu-
lations. The shapes of pnðlÞ for different n seem quite simi-
lar, while the average magnification

hlin ¼
1

pn

Z 1

0

pnðlÞl dl ð14Þ

and the normalization pn are different.

TABLE 3

Results of Numerical Simulations

�* = � n fn
Pn

i¼0 fi pn hlin

0.333 ..... 0 0.690800 0.690800 0.693511 1.780

1 0.251230 0.942030 0.252216 4.903

2 0.049298 0.991328 0.049492 6.999

3 0.003878 0.995206 0.003893 11.62

4 0.000777 0.995983 0.000780 15.07

5 0.000108 0.996091 0.000108 17.14

0.400 ..... 0 0.362692 0.362692 0.367695 2.387

1 0.412717 0.775409 0.418409 5.352

2 0.164497 0.939906 0.166766 7.726

3 0.039863 0.979769 0.040413 10.51

4 0.005832 0.985601 0.005912 13.16

5 0.000749 0.986350 0.000759 16.65

6 0.000045 0.986395 0.000046 26.33

0.666 ..... 0 0.584765 0.584765 0.589852 1.239

1 0.300253 0.885018 0.302865 4.497

2 0.093123 0.978141 0.093933 6.807

3 0.012753 0.990894 0.012864 9.935

4 0.000482 0.991376 0.000486 14.90

Notes.—The first column labels the simulation through the values
of �� ¼ �. The remaining five columns are the number of EIPs n, the
corresponding fraction of the source plane fn, its cumulative value up to
n, its normalized value pn calculated according to eq. (9), and the mean
magnification of regions with n EIPs, hlin (which are marked by
inverted triangles in Fig. 4).
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Fig. 3.—Bars show the probability pn of having n EIPs, calculated from
our simulations (�� ¼ � ¼ 0:333, 0.400, and 0.666) using eq. (9). The lines
correspond to a Poisson distribution (eq. [13]), where the solid line is for the
analytical (theoretical) mean value hni and the dashed line is for the mean
value from the simulation hnisim, calculated according to eq. (10). The theo-
retical values of pn for integer values of n are shown by the asterisks and
circles. The panels on the left are linear representations of pn, while those on
the right are logarithmic.

580 GRANOT, SCHECHTER, & WAMBSGANSS Vol. 583



4. DISCUSSION

We have calculated the mean number of extra micro-
image pairs (EIPs) hni of a point source as a function of �*
and �. The results are shown in Figure 1 and Table 1. One-
dimensional integrals for general values of (�*, �) and an
analytic result for the case � ¼ �� are presented in the
Appendix. Near the lines of infinite magnification in the �-
�* plane (� ¼ j1� ��j), hni diverges and is proportional to
the mean macromagnification hli. The ratio hni=hli is con-
tinuous along these lines and varies smoothly along the line
� ¼ �� � 1, while its derivative is discontinuous along the
line � ¼ 1� �� in directions that are not along this line.
This creates a ‘‘ ridge ’’ in hni=hli along the line
� ¼ 1� ��, where it also peaks at ð��; �Þ ¼
ð0:379; 0:621Þ with ðhni=hliÞmax ¼ 0:306. The analytic
results for hni are in good agreement with the results of

numerical simulations we performed for �� ¼ � ¼ 0:333,
0.400, and 0.666 (as can be seen in Table 2).

We find that the probability distribution pn for the number
of EIPs n, which is calculated from numerical simulations,
can be reasonably described by a Poisson distribution. This
result holds for both the numerical simulations performed in
this paper (e.g., Table 3 and Figs. 2 and 3) and numerical
simulations from previous works (Rauch et al. 1992). Fur-
thermore, the shape of the magnification distribution pnðlÞ
of regions with a given n appears to be similar for different
values of n, where only the overall normalization pn and
meanmagnification hlin depend on n (see Fig. 4).

The mean number of EIPs hni can serve as a rough mea-
sure for the width of pðlÞ, the magnification distribution for
the macroimage (MDM). For hni5 1 there is little contribu-
tion to the MDM from regions in the source plane with
n > 0, since these regions cover only a small fraction of the
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Fig. 4.—A log-log plot of the magnification distribution for the macroimage (MDM) lpðlÞ (top line) for our simulations and its decomposition lpnðlÞ to
the contributions from regions with different numbers of extra microimage pairs (EIPs) n. The alternating thin and thick solid lines, from left to right, are for
n ¼ 0–6. The inverted triangles represent the averagemagnification from regions with nEIPs, hlin.
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source plane. For hni41 the Poisson distribution pn for n
approaches a Gaussian distribution with a mean value of
hni and a standard deviation of � ¼ hni1=2, so that only
�hni1=2 different values of n around n � hni have a notice-
able contribution to the MDM. We also note that the aver-
age magnification from regions with n EIPs, hlin, is
approximately linear in n (see Table 3), so we expect
Dl=hli � hni�1=2

5 1. Therefore, the width of the MDM is
expected to be largest for hni � 1. This seems to be in rough
agreement with the results of numerical simulations

(Wambsganss 1992; Lewis & Irwin 1995; Schechter &
Wambsganss 2002).
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APPENDIX

ANALYTIC EXPRESSIONS FOR PRIVATE CASES

The inner integral in equation (6) can be solved analytically, reducing it to a single integral:

hNi
hli ¼ ��

2�

Z 1��

�1��

dS1 ln
A� B

Aþ B

� �
þ 2AB

�2� þ S2
1

� �
" #

; ðA1Þ

where hli ¼ jð1� ��Þ2 � �2j�1 (see eq. [3]) and

A �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2� � � 2S1 þ �ð Þ

q
; B �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� S1 þ �ð Þ2

q
: ðA2Þ

This integral can be easily evaluated numerically. Alternatively, changing variables in equation (6) to r and �, where
x ¼ � þ S1, y ¼ S2, r2 ¼ x2 þ y2, and tanð�Þ ¼ y=x, gives

hNi
hli ¼ ��

2�

Z 1

0

dr

Z 2�

0

d�
r 1� r2ð Þ

�2� þ �2 þ r2 � 2�r cos�ð Þ3=2
¼ 2��

�

Z 1

0

dr
rð1� r2ÞE �=2; �4�r= �2� þ ðr� �Þ2

h i� �
�2� þ ðrþ �Þ2
h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2� þ ðr� �Þ2
q ; ðA3Þ

where

Eð�; xÞ �
Z �

0

d� ð1� x sin2 �Þ1=2 : ðA4Þ

For the case of � ¼ ��, corresponding to a singular isothermal sphere, we obtain an analytic result:

hNi
hli ¼ 1ffiffiffi

�
p

�

�
� 6�2E arcsinðCÞ; C�2

� �
� 3ð1� �Þ�2F arcsinðCÞ; C�2

� �
þ C �ð2�2 � 1ÞKðC2Þ þD� E ;C2

� �
þD�� E�; C2

� �	 
�
; ðA5Þ

where

C �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�

1þ 2� þ 2�2

s
; D � i þ ð1� iÞ� þ ð2� iÞ�2 � ð1þ 3iÞ�3

4
; E � 2

1þ ð1þ iÞ� ; ðA6Þ

D* and E* are the complex conjugates ofD and E, and

Fð�; xÞ �
Z �

0

d� 1� x sin2 �
� ��1=2

; KðxÞ � F
�

2
; x

� �
;

�ðx; yÞ �
Z �=2

0

d� 1� x sin2 �
� ��1

1� y sin2 �
� ��1=2

: ðA7Þ
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