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ABSTRACT

The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron
star asteroseismology. The scarcity of giant flares makes a search for QPOs in the shorter, far more numerous
bursts from soft gamma repeaters (SGRs) desirable. In Huppenkothen et al., we developed a Bayesian method for
searching for QPOs in short magnetar bursts, taking into account the effects of the complicated burst structure,
and have shown its feasibility on a small sample of bursts. Here we apply the same method to a much larger
sample from a burst storm of 286 bursts from SGR J1550−5418. We report a candidate signal at 260 Hz in a
search of the individual bursts, which is fairly broad. We also find two QPOs at ∼93 Hz, and one at 127 Hz, when
averaging periodograms from a number of bursts in individual triggers, at frequencies close to QPOs previously
observed in magnetar giant flares. Finally, for the first time, we explore the overall burst variability in the sample and
report a weak anti-correlation between the power-law index of the broadband model characterizing aperiodic burst
variability and the burst duration: shorter bursts have steeper power-law indices than longer bursts. This indicates
that longer bursts vary over a broader range of timescales and are not simply longer versions of the short bursts.

Key words: methods: data analysis – methods: statistical – pulsars: individual (SGR J1550−5418) –
stars: magnetic field – stars: neutron – X-rays: bursts
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1. INTRODUCTION

Soft gamma repeaters (SGRs) represent a small class of
neutron stars whose slow spin periods and high spin-down rates
imply an unusually strong magnetic field in the excess of 1014 G.
Duncan & Thompson (1992) and Thompson & Duncan (1995)
predicted the existence of such objects, which they named
magnetars. SGRs are believed to be one of two observational
manifestations of neutron stars with an exceptionally strong
magnetic field; anomalous X-ray pulsars (AXPs) form the other
class of objects, although evidence suggests that there is no
clear-cut line between them, and recently a low magnetic field
source has been found (Rea et al. 2010).

The defining characteristic of SGRs are irregular bursts that
vary in duration from tens to hundreds of milliseconds and span
∼5 orders of magnitude in peak luminosity (1038 to 1043 erg s−1)
in hard X-rays <100 keV. However, there is a very rare type of
burst, the so-called giant flares, which have been only detected
three times in the past 34 yr from three different sources. These
reach peak luminosities of ∼1045 erg s−1 and are believed to be
powered by a catastrophic reordering of the magnetic field. Since
this field is coupled to the solid crust, Duncan (1998) suggested
that such large-scale reconfiguration might rupture the crust,
triggering global seismic vibrations that would be visible as
periodic modulations of the X-ray and γ -ray flux. This idea was
confirmed by the detection of quasi-periodic oscillations (QPOs,

i.e., stochastic processes that vary on a characteristic timescale)
in the expected range of frequencies (∼10–1000 Hz) in the
tails of giant flares from two different magnetars (Israel et al.
2005; Strohmayer & Watts 2005, 2006; Watts & Strohmayer
2006). SGR giant flares thus present outstanding test cases
for testing theories of neutron star structure and composition
models. Several intermediate flares, in energy and duration
between the short bursts and the giant flares, have also been
observed, but no QPOs have been found in these bursts (Watts
2012).

To date, there have been few searches for QPOs in recur-
rent bursts of magnetars. El-Mezeini & Ibrahim (2010) reported
QPO detections in a sample of bursts from SGR 1806−20
observed between 2 keV and 60 keV with the RXTE, how-
ever, a revised analysis incorporating variability in the burst
envelope showed that the reported QPOs are not significant
(Huppenkothen et al. 2013).

Finding QPOs in short SGR bursts is technically challenging:
as shown in Huppenkothen et al. (2013), standard Fourier
methods commonly used for this purpose fail when applied to
the short, highly variable burst light curves. The major difficulty
lies in the non-stationarity of magnetar bursts. The statistical
distributions generally used in Fourier analysis in astronomy
are strictly only valid for processes whose properties do not
vary over the duration of an observation. This is clearly not true
for an SGR burst: they are short events, exhibiting variability on
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timescales roughly equivalent to the periods of QPOs observed
in the giant flares. Below 100 Hz or so, many of the bursts exhibit
a wealth of variability properties: to leading order, there is the
rise and fall of the burst, i.e., a burst envelope. In most bursts, the
envelope has a high degree of temporal substructure beyond this
envelope. This substructure differs widely from burst to burst
and is poorly understood. Perhaps what we call a burst is actually
a superposition of many smaller events. Alternatively, the overall
burst shape could be composed of an envelope combined
with a stochastic process, leading to additional variability on
shorter timescales. Finally, the complexity of the burst envelopes
in general varies with energy, inserting another constraint in
our interpretation of their structure. This lack of knowledge
leads to two major problems when searching for QPOs. At
low frequencies, very few cycles of a potential oscillation are
sampled due to the short duration of the burst. A succession of
peaks may look like a quasi-periodic signal to the naked eye, but
could be a chance superposition of a stochastic process, without
the characteristic timescale implied by a QPO. The other major
difficulty is our lack of knowledge of the underlying statistical
distribution that we must test against. The statistical distributions
generally used in testing for QPOs are strictly defined for
stationary stochastic processes. The presence of a burst envelope
changes the observed distributions at low frequencies from those
we know. This makes it difficult to derive inferences about the
presence of a QPO at these frequencies.

In the absence of this knowledge, it is possible to make
reasonable assumptions. In Huppenkothen et al. (2013), we
introduced a Bayesian approach to deal with our uncertainty in
the underlying burst processes by assuming a purely stochastic
process with a power-law power spectrum, a so-called red noise
process. While this assumption is strictly not true, either, we
showed that it is a conservative choice: in practice, the presence
of the burst envelope narrows the statistical distributions at
low frequencies compared to the distribution we use to model
the process. We are thus more likely to underestimate the
significance of a signal at low frequency than overestimating
our confidence in a detection. In Huppenkothen et al. (2013),
we also analyzed a short bursting episode of the magnetar SGR
J0501+4516, where we found one candidate detection out of 27
bursts. Our results were inconclusive with regard to the origin
of this signal and showed where our method can potentially
produce ambiguous results: the significant detections were all
at integer multiple frequencies of a low-frequency signal at
∼30 Hz, which was heavily affected by red noise and thus not
significant itself. However, this signal corresponds to less than
two full cycles at 30 Hz, given the short duration of the burst.
We thus concluded that this signal was equally likely to be a
chance occurrence of two red noise peaks close together as it
was to be a QPO, and we deferred a more in-depth discussion
to a later work with a larger sample of bursts.

In this paper, we perform a comprehensive search for QPOs
in a much larger sample of bursts from a so-called burst
storm observed from SGR J1550−5418 in 2009 January. SGR
J1550−5418 (also 1E 1547.0−5408) was first observed with
the Einstein X-Ray Observatory (Lamb & Markert 1981). Later
observations with XMM-Newton revealed a soft X-ray spectrum
and a possible association with a young supernova remnant,
suggesting that it might be an AXP (Gelfand & Gaensler 2007).
The AXP nature was confirmed by the subsequent detection of
radio pulsations with a slow spin period of P = 2.096 s and a
spin-down of Ṗ = 2.318 × 10−14, implying a magnetic field of
3.2 × 1014 G (Camilo et al. 2007).

SGR J1550−5418 exhibited three major bursting episodes:
in 2008 October, 2009 January, and 2009 March/April. The
January episode was exceptional: the source showed hundreds
of bursts within a single day, observed with several X-ray
telescopes: the Swift Burst Alert Telescope (BAT; Israel et al.
2010; Scholz & Kaspi 2011), the Fermi Gamma-Ray Burst
Monitor (GBM; Kaneko et al. 2010; von Kienlin et al. 2012; van
der Horst et al. 2012), RXTE (Dib et al. 2012), and two main
instruments on board the INTEGRAL spacecraft (Mereghetti
et al. 2009; Savchenko et al. 2010).

Burst storms like the one observed from SGR J1550−5418
are rare and have been observed in only three other sources (SGR
1806−20, SGR 1900+14, and SGR 1627−41; Götz et al. 2006;
Israel et al. 2008; Mazets et al. 1999), the first two of which have
also exhibited a giant flare. During the first triggered observation
recorded with Fermi/GBM on 2009 January 22, the source also
showed an increase in persistent flux level up to ∼100 keV
(Kaneko et al. 2010) for around 150 s of intense bursting. A
subsequent search for pulsations in this plateau of hard emission
revealed a signal at the period of the neutron star, but no higher-
frequency QPOs. The bursting episode ended in 2009 April,
and there have been no subsequent bursts recorded since. A
catalogue of magnetar bursts observed with Fermi/GBM is
currently in preparation (A. C. Collazzi et al., in preparation).

Here we present the first large-scale robust QPO search from
the 2009 January burst storm, observed with Fermi/GBM. In
Section 2 we describe the sample in some detail, and in Section 3
we give a very brief overview of the Bayesian technique used in
the QPO searches. Finally, in Section 4 we present our results
and interpret both the QPO searches as well as a characterization
of broadband variability in the bursts in Section 5.

2. DATA

X-ray bursts from SGR J1550−5418 triggered Fermi/GBM
a total of 55 times between 2009 January 22 and 29, with 41
triggers on January 22 alone. Each trigger records data from 30 s
before the trigger up until 300 s after the trigger. As a result,
multiple (untriggered) bursts were observed in most triggers.
van der Horst et al. (2012) identified a total of 286 bursts in this
sample, which have time-tagged event (TTE) data available. The
TTE data type has a time resolution of 2 μs, needed for high-
precision timing studies. We use data from the 12 Na i detectors,
whose energy range of 8 keV to 4 MeV is sufficient, since SGR
bursts rarely exhibit radiation above 200 keV. Additionally, we
only used detectors with viewing angles to the source <60◦ and
checked whether the source was occulted by the spacecraft and
the other instrument, the Large Area Detector (LAT).

The sample is the same as in van der Horst et al. (2012), and
we use the burst durations, start times, and fluences from that
paper in our analysis. We extracted TTE data between 8 keV
and 200 keV around each burst, starting at tstart − 0.1 × T90 (the
burst duration, T90, is defined as the time in which the central
90% of the photons, starting at 5% and ending at 95%, reach
the detector) and ending at tstart + 1.1 × T90 in order to ensure
that the entire burst is within our data set. The sample has
a mean duration of 0.174 s and an overall asymmetric shape
with a faster rise than decay. The estimated fluences range
from 10−8 to 10−5 erg cm−2. For a more detailed description
of the data extraction process and sample definition, see van der
Horst et al. (2012). An analysis of the first trigger, including
a timing analysis of the inter-burst periods, was performed
in Kaneko et al. (2010). Time-resolved spectroscopy and the
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spectral evolution with burst flux are discussed in Younes et al.
(2014). Of the bursts in the sample, 23 have saturated parts,
where the detector cannot record all photons during periods
of very high count rates. We excluded all 23 bursts from our
analysis due to the rather complicated effect saturation has on
the timing analysis. This gives us a total sample of 263 bursts.

3. ANALYSIS METHODS

QPOs are generally found by taking the Fourier transform of
a light curve and looking for variability focused at a particular
frequency. The square of the Fourier transform of the data
is called the periodogram.10 Different types of variability
have different frequency distributions. Our task becomes to
disentangle the different components in the periodogram. While
pure photon counting noise has a flat power spectrum with
a well-behaved χ2 distribution with two degrees of freedom
about a constant mean, QPOs produce sharp coherent features.
Stochastic processes with correlated frequencies, often termed
“red noise” or “1/f noise,” are also often observed and follow
power laws or broken power laws with stronger variability at
low frequencies and decreasing power at higher frequencies.

The short duration of magnetar bursts means that this low-
frequency variability has timescales similar to those of the QPOs
observed in the giant flares. Thus, we must test for QPOs in a
periodogram consisting of complicated variability. We adopt
the method from Huppenkothen et al. (2013), first suggested
for red-noise-dominated periodograms in Vaughan (2010). This
method assumes an exponential distribution of powers about the
underlying power spectrum, which we assume to be a power law
or broken power law. To find QPOs, we fit a broadband noise
power spectrum to each burst, which is then divided out. The
highest outlier in the residuals is our candidate QPO detection.
We then simulate fake periodograms using the broadband noise
power spectrum and incorporating uncertainties in the model
parameters, and we perform the same detection procedure on
those simulations. We can thus compare the observed highest
data/model outlier with a distribution of data/model outliers
from the simulations, to infer the probability that the observed
outlier is a significant QPO.

Below, we give a very brief overview of the QPO search
strategy, and we refer the reader to Huppenkothen et al. (2013)
for a detailed description, discussion of the method’s limitations,
and tests on both simulated data and a smaller sample of
magnetar bursts.

In more detail, for each burst:
1. We fit both a power law and a broken power law, i.e., the

broadband noise model, to the periodogram of the burst
observation. We fit the unnormalized posterior predictive
distribution, consisting of a likelihood function following
a χ2 distribution around the broadband noise model and
priors that are independent of each other and of the
form p(θ ) = 1/θ (scale prior) for scale parameters (e.g.,
broadband noise amplitudes) and flat otherwise. As a
result, we obtain the so-called maximum a posteriori
(MAP) as a result of the numerical optimization step. The
MAP estimate is the Bayesian equivalent of the maximum
likelihood. For both models, we then construct the ratio of
likelihoods at the parameter values corresponding to the
MAP estimate.

10 Note that throughout this paper, we use the term periodogram to denote the
observed squared Fourier spectrum of a light curve, and we use the term power
spectrum for the underlying (potentially stochastic) process that may have
produced the observed data.

2. We sample the posterior predictive distribution of the
simpler broadband noise model—the power law—using a
Markov chain Monte Carlo (MCMC) technique, in this case
employing an affine-invariant MCMC ensemble sampler
(Goodman & Weare 2010), as implemented in python
by emcee (Foreman-Mackey et al. 2013). The resulting
ensemble of parameter values will follow the posterior
distribution of the assumed broadband model, thus allowing
for statistical inferences over this distribution.

3. We simulate Ns artificial periodograms from the MCMC
sample and fit each with the two broadband noise models
considered such that we can construct the likelihood ratio
for each of the fake periodograms. This will allow us to
construct a distribution of likelihood ratios from a sample
we know to be derived from the simpler model. If the
likelihood ratio obtained for the observed periodogram
is an outlier of the distribution of likelihood ratios, then
the observed data are unlikely to be generated from this
model. Note that this is strictly evidence against the power-
law model; it is not direct evidence in favor of the more
complex model. We use this approach to reject the simple
power-law model for cases where the posterior predictive
p-value (the ratio of samples in the posterior distribution of
likelihood ratios lying above the observed values, divided
by the total number of samples in this distribution) falls
below 0.05. If this is true, we use the broken power law
to model the broadband component of the periodogram;
otherwise, the simple power-law model is adopted. A
threshold of p < 0.05 is not very stringent, but desirable.
We would rather reject the simpler broadband noise model
in favor of a more complex one. It is preferable to overfit the
periodogram, rather than underfit, because broadband noise
features not adequately modeled by the broadband noise
model may instead be mistaken for QPOs in the subsequent
analysis.

4. We construct a second MCMC sample from the adopted
broadband noise model in the same fashion as in step 2. We
simulate Ns periodograms from this sample and fit with the
adopted broadband model. For the observed periodogram
and each fake periodogram, we divide the periodogram
by the best-fit MAP parameter estimate and define the test
statistic TR = maxj (2Ij /Sj ), where Ij is the observed power
I at frequency j and Sj is the value of model S at frequency
j. This test statistic is the maximum power in the resid-
ual periodogram after dividing out the broadband noise
model. In the ideal case where the parameters θ defining
the model S are perfectly known, 2Ij /Sj follows a χ2

2 dis-
tribution. In reality, there is an uncertainty in Sj, since the
parameters θ are not known exactly, leading to a devia-
tion in the distribution of TR from the theoretical expec-
tation. Sampling the posterior probability distribution of
the parameters given the data and the model via MCMC
allows us to construct the actual distribution of TR from
simulated periodograms, taking into account all relevant
uncertainties. We can thus construct a posterior distribu-
tion for the TR statistic under the null hypothesis that the
observed maximum power is due to a stochastic aperiodic
process. Comparing TR from the real data to this simu-
lated distribution allows us to define a posterior predictive
p-value for this null hypothesis. If the latter is small, then
the observed maximum power is unlikely to be a product
of a χ2

2 distribution.
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Although the giant flare QPOs were all very narrow, we cannot
exclude broader signals in the shorter bursts. We search for these
signals by performing exactly the same analysis as in step 4 on
periodograms that are binned in frequency, where the bin widths
are chosen from a logarithmic scale between 1 Hz and 200 Hz.
Binning a broad QPO signal makes it easier to detect, since the
QPO is grouped into a single bin, while random fluctuations
from one frequency bin to the next are suppressed. We search
for QPOs in the same way as in the unbinned periodogram:
by defining TR for the binned periodogram and comparing
to the distribution of binned TR values from the sample of
simulated periodograms. In this case the p-values for different
bins are not independent. To avoid excessive false positives,
we accept significant detections only if they are detected in at
least two different bin widths at the same frequency. In order to
conserve computation time, we set the number of simulations
Ns = 104. This implies that the significance can only be
quoted to p = 10−4 for a single trial. The detection limit we
use depends on the number of trials: the more periodograms
we search, the more likely it becomes to make a significant
detection purely by chance, even if no signal is present. We thus
require a more stringent detection limit for searching individual
bursts, where we search hundreds of periodograms, than for
searching averaged periodograms, where we only search 10.
For searching individual bursts as in Section 4.1, we require
p < 10−4 for a single trial, corresponding to p < 0.0263
or roughly 2.3σ , given the number of bursts in our sample.
For the 10 averaged periodograms we search in Sections 4.2
and 4.2.2, we choose 6 × 10−3, or roughly 3.5σ . All p-values
given below are trial-corrected: in the search of individual
bursts, we correct by the total number of those bursts, i.e., 263,
and for the averaged periodograms by the number of averaged
periodograms searched, i.e., 10. The number of frequencies and
bin widths we searched over is automatically taken into account
by our methodology, by searching over the entire frequency and
bin width range for the simulations as for the real data.

4. RESULTS

We searched light curves from 263 individual bursts for
periodic signals and QPOs. In order to be sure to include the
entire burst, we added 10% on either side of the burst duration
(T90). Additionally, we constructed averaged periodograms
from samples of bursts to explore whether a signal could be re-
excited in several bursts. Finally, we characterized broadband
variability for the sample as a whole, which may guide future
work on emission and trigger mechanisms.

4.1. Individual Burst Searches

We searched all 263 bursts for QPOs over the complete
range of available frequencies from �10 Hz to 4000 Hz. The
maximum frequency was chosen to maximize computational
efficiencies, while at the same time oscillatory modes are
unlikely to occur at a much higher frequency.

Four bursts show detections significant with p < 10−4

(single-trial) or p < 0.0263 corrected for Nb = 263 trials.
Three candidates are significantly affected by dead time and
pileup, that is, their count rate is close to the saturation count
rate. This is the case when a significant number of photons
arrive within less than 2.6 μs of each other (the dead time of
the GBM recoding system) and are consequently recorded as a
single photon. Here we used the highest intrinsic time resolution
data from GBM: TTE data with 2 μs resolution. While 2.6 μs

correspond to a higher frequency than we are interested in,
the above effects can nevertheless influence the periodogram in
nontrivial detector-dependent ways, which are not retrievable or
quantifiable. A proper treatment of affected bursts is beyond the
scope of this work; we thus consider the QPO search on these
bursts as inconclusive and make no further statements about
their properties.

The remaining burst, one of several in TTE data of trigger
090122218 with a burst duration of 0.49 s, has a significant
detection of a broad feature at 260 Hz with p < 0.0263 (trial-
corrected; also includes an uncertainty in the parameters of the
broadband model). We plot the light curve and periodogram of
this candidate in Figure 1. While there might be some red noise
power left at these frequencies, the signal is largely dominated
by white noise. We use the traditional (analytical) test against
white noise for an upper limit on the detection probability (Groth
1975; van der Klis 1989). This would be a precise estimate if
there was no red noise in the signal, but as we cannot exclude
some contamination from red noise, this must be regarded as
an upper limit instead. We find that the probability that the
observed peak in the periodogram is due to Poisson counting
noise alone is p = 5.26 × 10−6. The fractional rms amplitude
is high, rmsfrac = 21% ± 3%, as estimated from integrating
over the noise-level-subtracted periodogram. We estimated the
error following Heil et al. (2012). This error calculation is
somewhat too simplistic for the periodogram we consider here:
there may be a residual contribution of aperiodic variability
contaminating the powers we integrate over, which is not taken
into account properly. However, our lack of knowledge about the
burst processes involved precludes us from running simulations
to establish the error to a higher degree of precision.

We measured the Q-value, defined as the centroid frequency
divided by the width of the signal, by comparing the p-values
for periodograms of this burst binned at several frequency
resolutions and picking the frequency resolution that yielded
the lowest p-value to reflect the most likely width of the signal.
The QPO is extremely broad: the Q-value is Q = ν0/Δν = 2.9.
This is at the lower boundary of what one would call a QPO
(Q > 2) as opposed to a broadband noise feature. Due to the
single occurrence of this signal in the sample, it is not possible
to average periodograms, as is usually done to improve signal-
to-noise ratio and estimate errors, such that a Lorentzian fit to
the feature is possible for a precise estimate of the width and the
rms amplitude (van der Klis 2006).

The periodogram of the same burst also shows a broad feature
at 20 Hz. In order to understand the origin of this feature and
its connection to the QPO at 260 Hz, we fit two fast-rise, slow-
decay profiles to the light curve. We used the skew-normal
distribution, a generalization of a simple Gaussian profile that
allows for skewness and has the form

f (t) = 2

σ
φ

(
t − μ

σ

)
Φ

(
α

(
t − μ

σ

))
, (1)

where

φ

(
t − μ

σ

)
= 1

σ
√

2π
exp − (t − μ)2

2σ 2

and

Φ
(

α

(
t − μ

σ

))
= 0.5

[
1 + erf

(
α

t − μ√
2σ

)]
. (2)

Here μ is the location in time of the peak of the profile, σ
is the width, and α is a skewness parameter (Azzalini 1985).
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Figure 1. Light curve (left) and periodogram (right) at two different frequency resolutions for a burst in TTE data of trigger 090122218. There is a feature at ∼20 Hz,
which can be explained by the superposition of two individual peaks, modeled with the skew-normal function of Equation (1). A second feature at ∼260 Hz is
significant (p < 0.0263) in the binned periodogram (in cyan on the same plot), but very broad, with a Q-value Q = ν/Δν = 2.9. We added arrows to guide the eye.

(A color version of this figure is available in the online journal.)

We find that the signal at 20 Hz is easily reproduced by a
superposition of two skewed peaks with a separation of 0.04 s
and widths σ1 = 0.02 s and σ2 = 0.016 s. While the feature is
easily reproduced by two non-periodic functions, there are too
few cycles observed to make a strong statement about its nature
(see Huppenkothen et al. 2013, for a similar feature). However, it
cannot explain the highly significant signal at 260 Hz: the power
spectrum of the two skew-normal functions fitted to the data
turns over at lower frequencies and becomes negligible above
200 Hz. Beyond this frequency, there is very little power in this
model, and the power spectrum at higher frequencies should be
dominated by Poisson noise only. This implies that the QPO is
not easily reproduced by a burst envelope and is likely a separate
process producing variability at these frequencies. In order to
confirm this observation, we have fit the observed light curve
with both standard Gaussian profiles and Lorentzian profiles.
Both alternatives give results very similar to the one presented
above: a near-perfect fit to the low-frequency feature and a sharp
drop in power around 200 Hz.

The sensitivity limits for signal detection vary strongly from
burst to burst and with frequency, especially for the low-
frequency part of the periodogram, where the contamination by
broadband variability is strong. Below ∼100 Hz, sensitivities
range from ∼50% fractional rms amplitude at 30 Hz to ∼10%
fractional rms amplitude at 100 Hz. Above ∼150 Hz, the bursts
are almost all dominated by photon detector noise, and a QPO
should be the only source of non-white-noise variability in
this regime. Our method converges toward standard Fourier
methods in this frequency range. Instrumental effects such as
dead time can still be an issue; neither method is equipped to
deal with these effects without a large number of dedicated
simulations. Above 150 Hz, sensitivities are generally in the
range of 5%–10% fractional rms amplitude.

4.2. Averaged Periodograms

To increase sensitivity, we average the periodograms of a
number of bursts. This assumes that the short bursts always

excite the same star quakes, which has also been seen in giant
flares, where QPOs are detected to be present over many cycles.

4.2.1. Signal Grouped by Burst Duration

We sorted the bursts by duration (T90) into five groups:
<50 ms, 50–100 ms, 100–250 ms, 250–500 ms, and >500 ms.
To average periodograms, we picked the longest burst in each
group and extracted light curves of the same duration for
each burst in the sample, so that each periodogram would
have the same number of frequencies. We then averaged the
periodograms within a group to get the final periodogram.
Since we use light curves of equal duration within each
group, the shorter bursts in each group add noise into the
final averaged periodogram, which reduces the QPO detection
threshold somewhat. Limiting this effect is our main reason for
dividing the bursts into groups, so that we can search for QPOs
in the longest bursts without a strong noise component added
by including the shortest bursts in the same sample.

There are no QPOs detected in the first four averaged
periodograms. We report a candidate detection in the averaged
periodogram of the longest bursts (T90 > 0.5 s, Nbursts = 47;
see Figure 2 for the averaged periodogram). The strongest signal
with p < 2.5 × 10−3 occurs at 10 Hz, with a width of ∼5 Hz.
Note that 10 Hz corresponds to a timescale of 0.1 s, close to
the peak of the distribution of burst durations. However, we
cannot exclude that this feature is actually an artifact caused
by an inadequate characterization of the underlying power
spectrum. Another process, such as a doubly broken power law
or a combination of Lorentzians as often used in broadband
noise modeling of X-ray binaries, may represent the shape of
the power spectrum better, but requires more intricate model
selection criteria than implemented here.

4.2.2. Averaged Periodograms per Trigger

We also search for QPOs in trigger data sets with high-
resolution TTE data. Since data sets obtained with Fermi/GBM
from an individual trigger are roughly 330 s, we searched those
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Table 1
Signals from the Five Averaged Triggers, and Detection Sensitivities for Different Frequencies

Trigger ID Nbursts Min T90 Max T90 ν0 Δν Posterior Simulated Sensitivities in Fractional rms Amplitude

(s) (s) (Hz) (Hz) p-value p-value 40 Hz 70 Hz 100 Hz 1000 Hz

090122037 32 0.0322 1.0724 99 27 <4 × 10−4 0.107 3.6 2.4 · · · 1.4
090122052 28 0.0364 1.4952 127 10 <4 × 10−4 0.016 4.8 2.5 1.9 1.5
090122194 20 0.0364 1.2124 93 12 <4 × 10−4 0.013 6.5 3.8 2.7 1.8
090122218 21 0.1176 1.3496 91 10 1.2 × 10−3 0.009 5.2 3.0 2.3 1.6
090122283 30 0.0504 2.4724 61 20 8 × 10−3 · · · 2.9 1.7 1.2 0.9

Notes. This table summarizes the results from the averaged periodograms of five triggers. The significant detections are shown in Figure 3. The last, 090122283,
had no significant detections with p < 6 × 10−3, single trial probability. The second column gives the number of bursts averaged together, which equals the number
of bursts in the trigger, excluding those that have saturated parts. The third and fourth columns give the minimum and maximum burst durations in the sample,
respectively. Columns five and six present the centroid frequency ν0 of the observed signal and the corresponding frequency bin width Δν in which the signal is
detected, respectively. We quote the detection threshold sensitivities where no detection has been made. The posterior p-value is estimated from simulations derived
from the MCMC sample of the broadband model for each periodogram. The second p-value is derived from averaging random subsets of burst periodograms and
extracting the highest outlier from the data-model residuals for each averaged periodogram, as described in the text.

Figure 2. Top: averaged periodogram (blue) of the 47 longest bursts, and MAP
fit of a broken power law to the periodogram (orange). The Leahy power is
defined as 2|aj |2/Nph, where aj is the Fourier amplitude at frequency νj and
Nph is the number of photons in a time series. Bottom: data/model residuals.
The significant (p < 2.5 × 10−3) signal is at 10 Hz, with a width of ∼5 Hz.

(A color version of this figure is available in the online journal.)

triggers with a large number of bursts (see Table 1 for an
overview) in a short time span for long-lived signals. As for
the duration-averaged periodograms, we extracted light curves
around all bursts in those five triggers of the duration of the
longest burst in that trigger data set. We then constructed the
periodograms of these light curves and computed the average
periodogram of the sample. The resulting periodograms do
not all have the same frequency resolution; for those with a
frequency resolution less than 1 Hz, we averaged neighboring
frequency bins to achieve a resolution close to 1 Hz.

We searched data sets from five triggers with 20 to 32 bursts
per trigger and excluded long-timescale variability below 60 Hz
from the range of frequencies searched. Below 60 Hz, there
will be a significant contribution from the overall shape of the
short bursts (as in the 20 Hz feature discussed in Section 4.1),
and thus our estimates are unreliable. We search both the
unbinned periodogram and periodograms binned to different
frequency resolutions between 1 Hz and 200 Hz, but considered
only candidate signals with Q > 7. This is necessary, because
at low frequencies, a candidate signal in a frequency bin that
is wider than 0.2ν0 likely incorporates power from the part
of the periodogram below 60 Hz, where we believe estimates

to be unreliable. We find candidate detections in three of the
triggers. The results are summarized in Table 1. The signals, at
93 Hz (trigger ID 090122194), 91 Hz (trigger ID 090122218),
and 127 Hz (trigger ID 090122052), are fairly narrow, Q ≈ 7
and Q ≈ 13, respectively. Two of the signals are significant to
p < 4 × 10−4 (roughly 3.7σ ), and the third has a p-value of
p = 1.2 × 10−3 (3.4σ ). A fourth signal (trigger ID 090122037)
is significant to p < 4 × 10−4, but fails to fulfill our criterion of
Q > 7. At the same time, this signal is at a frequency of 99 Hz,
close to the frequency where significant detections were made
in two of the other triggers. We plot the periodograms for all
three triggers in Figure 3.

The periodogram shape may change between different bursts,
largely due to the wide spread in burst duration, fluence,
and burst shape. The effects this may have on the averaged
periodogram are hard to quantify without a large number of
dedicated simulations of the overall burst variability, which is
beyond the scope of this work. In order to test whether the
observed QPOs could be due to the differences in duration,
fluence, and shape in the averaged samples, we constructed
a large number (Ns = 103) of averaged periodograms from
randomly selected subsets of the burst sample, excluding the
four triggers where candidates were observed. If the QPOs
are due to effects of the varying burst properties, then these
signals should appear in a large number of these simulations.
We searched these periodograms in the same way we did for
the averaged periodograms from individual trigger data and
compared the resulting distribution of maximum powers >60 Hz
from the data-model residuals to the maximum powers from
the averaged periodograms of individual triggers. Column 8 in
Table 1 shows the p-values of observing the candidate signals
presented above from a random subset of bursts.

In Table 1, we also show the detection sensitivities for all five
averaged periodograms for various frequencies, for the ∼1 Hz
resolution of the periodogram. Note that we are even more
sensitive to broader signals, as averaging neighboring frequency
bins increases the signal-to-noise ratio. The numbers quoted
here are upper limits for the most coherent signal we could have
observed and were calculated for each quoted frequency from
the distribution of maximum powers of the MCMC-derived
sample of periodograms. The frequency dependence of the
sensitivity is due to the fact that the low-frequency part of the
periodogram is dominated by aperiodic red noise variability, and
any quasi-periodic signal needs to introduce strong variations
in order to be visible. Sensitivities for fractional rms amplitudes
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Figure 3. Periodograms (blue, upper panels), MAP fits of a broken power law
(orange), and data/model residuals (blue, lower panels) for the three triggers
with candidate detections. Significant signals listed in Table 1 are indicated with
black arrows.

(A color version of this figure is available in the online journal.)

are between 3% and 6% for the lowest frequencies and drop to
0.9%–1.7% at high frequencies. The differences in sensitivities
between triggers are due to a combination of number of averaged
bursts, number of averaged frequencies, and the average count
rates of bursts included.

4.3. Broadband Variability

Magnetar bursts are a class of events with very diverse light
curves: they differ vastly in duration and peak count rates, but
also in overall burst shape (see Huppenkothen et al. 2013, for
examples of burst light curves). How exactly this variability is
produced is not well understood. Are all bursts a realization of
fundamentally the same process? Are there characteristic rise
or decay timescales? It is useful to characterize the variability
properties of a large sample, which may answer some of these
questions.

In the following, we give an overview of the broadband
variability observed in the whole sample of bursts. Out of 263
burst periodograms, 193 were adequately fit with a simple power
law plus a constant to account for the white-noise component;
the remaining 70 rejected the null hypothesis to p < 0.05, and
we thus adopted a broken power law for these periodograms.
Burst duration and burst fluence could influence whether a
simple power law or a broken power law fits the broadband
noise. For example, for dim bursts, variability observed in the
bright bursts may be hidden in the noise. In order to test this
idea, we plot the fluence and burst duration distributions for
bursts modeled with a power law and a broken power law in
Figure 4.

Burst duration (T90) shows only a marginal difference in
the T90 distribution (p = 4.6 × 10−4 for a two-sample
Kolmogorov–Smirnov (K-S) test). There is an appreciable
difference in fluence between the samples (two-sample K-S
test: p = 9.32 × 10−11): bursts with broken power-law power
spectra have higher fluence than bursts modeled with a simple
power law. Note that the threshold for rejecting the power-law
broadband model is not very high, p < 0.05. This is desirable
for the main objective of our analysis, the search for QPOs: if
the broadband noise is not adequately represented by the model,
then broadband features may be attributed to QPOs instead,
leading to false-positive detections. Setting a threshold of 5%
is a compromise between reliability of QPO detection at the
expense ofpotentially contaminating our sample of bursts fit
with a broken power law with bursts that are consistent with a
simple power law. In practice, this decreases the probability for
rejecting the null hypothesis when performing the K-S test: the
difference between the two distributions may be stronger than
we report here.

As well as studying the overall properties of bursts with dif-
ferent broadband noise models, we can also study the broadband
noise properties of the sample and see whether the noise prop-
erties change with fluence or burst duration. In Figure 5, we
show the distribution of power-law indices for the various com-
ponents. For the bursts modeled by a simple power law, the dis-
tribution of power-law indices varies between 1.5 and 4, with a
median at μγ = 2.42. The average low-frequency component of
the two-component broken power law is flatter than for a single
power law (μγ0 = 1.49), while the higher frequency component
is much steeper (μγ1 = 6.16). Note that for several bursts, the
second component is extremely steep. This may be caused by
the contamination of this sample with bursts that were incor-
rectly classified as too complex for the simple power law. In this
case, the second power-law index is often not well constrained
and tends to high values. In Figure 5, we also plot the break
frequency between the two components of the broken power
law for those burst periodograms for which the simple power
law was rejected. The distribution peaks around 100 Hz, below
which the power-law index is fairly flat. At higher frequencies,
it steepens considerably, as shown in panel 3 of Figure 5. The
distribution is fairly broad, with the bulk of burst periodograms
breaking between 30 Hz and 400 Hz.

We correlated the power-law indices with various burst
properties to see whether there is a systematic effect due to
burst duration or brightness, similarly to the reasoning for why
some bursts require a more complex model than a simple power
law. There is an indication of a correlation of the burst duration
with the power-law index γ for bursts modeled with a simple
power law (see Figure 6): shorter bursts seem to have slightly
steeper power-law indices. A Spearman rank coefficient yields
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Figure 4. Distributions of burst fluence and burst duration for the sample of bursts modeled by a simple power law (blue) and a broken power law (red). The burst
duration is defined as the photon count T90. While there is only a marginal difference in T90 distributions between the two samples, there is a significant difference
between the fluence distributions, p = 9.32 × 10−11: more complex bursts seem to have a higher fluence.

(A color version of this figure is available in the online journal.)

R = −0.51, indicating an anti-correlation with a probability
for the null hypothesis (no correlation) of p = 8.65 × 10−16. In
order to compute the slope of the correlation and incorporate the
errors on the measurements of the power-law index, we binned
the data set logarithmically into seven bins and computed the
mean power-law index within each bin (following work in, e.g.,
X-ray binaries and active galactic nuclei, Gleissner et al. 2004).
We estimated the error on the mean as a standard error, σ/

√
n,

where σ is the standard deviation of the sample and n is the
number of data points in each bin. The correlation can be fit
with a power law, with index α = −0.1027 ± 0.00523.

In order to test whether the results presented in this section
could be artifacts of systematic effects that we failed to take into
account, we sampled randomly from the posterior distributions
of the parameters of the broken power-law model from all bursts
where the null hypothesis was rejected. We then sampled the
distributions of T90 and fluence from the observed ensemble
of bursts and created fake light curves with the power spectral
properties of the broken power-law model with the randomly
sampled parameter sets and combinations of burst T90 and
burst fluence taken from the real sample. We simulated light
curves following Timmer & Koenig (1995) and included Poisson
statistics in the simulated light curves. For 1000 such fake
bursts, we fit the periodograms and performed model selection
between the power-law and broken power-law models. A total
of 707 periodograms simulated from the broken power-law
model were actually adequately fit with a simple power law
instead, whereas only 293 bursts rejected the null hypothesis.
This indicates that the fit is strongly dependent on burst duration
and fluence. Especially for short bursts, where there are few
frequencies below 100 Hz, there may not be enough data points
to require a more complex model. The power-law and broken
power-law samples are well separated in terms of both burst T90
and burst fluence. A two-sided K-S test reveals a separation in
burst duration, p = 1.0 × 10−40, much stronger than observed
in the data. The separation between the two samples in terms
of the fluence distribution is comparable to that observed from
the sample, p = 2.2 × 10−10. This indicates the possibility

that separating bursts by their preferred broadband model may
not be meaningful: perhaps all bursts follow a broadband noise
process that is closer to a broken power law than a simple power
law, but for short bursts, there are not enough data points at low
frequencies to confidently reject a simple power-law model.

We also tested for the presence of a correlation between burst
T90 and power-law index for the sample of fake periodograms
that accepted a power-law model. While there still seems to
be a correlation (Spearman rank coefficient p-value for no
correlation: p = 1.35 × 10−10), this correlation is completely
flat, with a power-law slope of α = 1.77 × 10−10, centered
around a mean power-law index of 〈γ 〉 = 2.56.

5. DISCUSSION

We have searched both individual bursts and averaged peri-
odograms from samples of bursts for QPOs. Our analysis is the
most precise to date for fast transients while taking into account
the effects of aperiodic variability, but it is also conservative:
at low frequencies, real quasi-periodic features may be missed
because we assume that the burst is a purely stochastic process,
when it is not. Additionally, we do not model several effects
that can significantly affect the outcome of a QPO search. Dead
time can significantly affect especially the bright bursts and
thus render inferences invalid even at high frequencies. At low
frequencies, we have demonstrated that some of the power con-
centrated in broad bumps, which can be classified as QPOs with
broad widths by the detection algorithm, can easily be modeled
with a simple estimate of a burst envelope consisting of two
functions with a faster rise than decay. We must hence be very
careful when interpreting signals at frequencies comparable to
the lowest QPO frequencies seen in the giant flares (18 Hz and
36 Hz).

5.1. Individual Bursts

We find no indication in individual bursts for QPOs at the
frequencies and coherences seen in the giant flares. We detected
one significant signal at 260 Hz, in the same burst where we
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Figure 5. Distributions for the power-law index for bursts modeled with a simple
power law (top), the low-frequency power-law index for bursts modeled with
the broken power law (second from top), the high-frequency power-law index
for the latter model (third from top), and the break frequency between the low-
frequency and high-frequency power law (bottom). Note that the high-frequency
power-law indices plotted here are the means of their posterior distributions,
which, for some of the bursts, have a high variance. For the bursts where the
high-frequency power-law index is largely unconstrained, we include the 5%
quantile in the sample instead and include the fraction of these bursts in panel
3 in orange.

(A color version of this figure is available in the online journal.)

Figure 6. Burst duration (T90) vs. power-law index for all bursts modeled with
a simple power law. Errors on the power-law index are estimated from the
marginalized posterior distribution approximated with the MCMC sample. We
show the data binned logarithmically and averaged within each bin in orange.
We tested for correlation using a Spearman rank coefficient, R = −0.51. The
dashed, light blue line indicates a power-law fit (α = −0.1) to the binned data
points, as explained in the text.

(A color version of this figure is available in the online journal.)

found the broad feature at 20 Hz that the algorithm flagged
as significant. The latter is just as likely to be caused by a
superposition of two burst envelope profiles as it is to be a QPO.
With less than two full cycles, it is impossible to tell both models
apart. This is reminiscent of the candidate detection reported in
Huppenkothen et al. (2013), where we noted that this candidate
could be due to a chance occurrence of two such peaks close
together. With a Q-value of 2.9, the signal at 260 Hz is far
broader than anything seen in the giant flare QPOs (Q > 10),
but very strong, with a fractional rms amplitude of 21% ± 3%.
The burst is longer than average, T90 = 0.48 s, with a fluence
at the lower end of the sample, F = 3.94 × 10−7 erg cm−2. The
detected QPO at 260 Hz is not present in any other burst in the
entire sample, nor is it seen in the averaged periodogram of all
bursts in this trigger, as described in Section 4.2.2.

5.2. Averaged Bursts

We find a candidate detection in the averaged periodogram
of the longest bursts with durations T90 > 0.5 s. These bursts
are highly structured and generally have multiple peaks. The
detected signal at 10 Hz is quite broad and matches the
position of the maximum in the distribution of burst durations
in van der Horst et al. (2012). This suggests a characteristic
timescale for individual peaks within highly structured bursts,
rather than a crustal mode. This in turn raises the question of
whether these many-peaked bursts are causally connected single
events, or instead individual bursts that happen to appear close
to each other. While our results favor the latter explanation,
it has been argued that these should be causally connected
events. One argument is based on the distribution of waiting
times between bursts: while the waiting times between bursts
generally follow a lognormal distribution, an excess of short
waiting times has been observed when regarding each peak
as an individual burst, rather than grouping these peaks into
causally connected events (Göǧüş et al. 1999, 2000). However,
at this point, we cannot exclude that this candidate detection
arose from an inadequate broadband noise model fit to the data.
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A more complex periodogram shape, with additional power-
law components, could explain the observed excess power. To
check this would require a somewhat more complex setup of
the model selection procedure, or should ideally be done with
methods better suited to model broadband variability. We thus
defer this task to a future work.

The most interesting results stem from averaging peri-
odograms in individual triggers. This allows us to probe
timescales on which QPOs were observed in the giant flares
(tens to hundreds of seconds). We find signals in two of the
averaged periodograms of five triggers, at a frequency of 93 Hz,
very close to the strongest QPO reported in the 2004 giant flare
at 92 Hz (Israel et al. 2005). In the periodogram of bursts from a
third trigger, we find a significant detection at a slightly higher
frequency, ν0 = 127 Hz, where no giant flare QPO has been
observed.

When deriving inferences from an averaged periodogram,
one makes the implicit assumption that all periodograms used
to construct the average are realizations of the same underlying
process. This need not be true for SGR bursts: we are averaging
periodograms from bursts with vastly different durations and
morphologies. While most bursts are described well by simple
power laws or broken power laws in the Fourier domain, the
parameters of these broadband noise models vary from burst to
burst, as does the range of frequencies over which variability is
observed (as seen, e.g., by the correlation between burst duration
and power-law index reported in Section 4.3). Additionally, the
results reported in Section 4.1 show that at low frequencies
the burst envelope may dominate the power spectrum, which
significantly alters both the shape and statistical distribution of
the periodogram. In order to test this effect, we created averaged
periodograms from randomly selected bursts of the sample,
excluding the triggers where we detected a significant signal in
the averaged periodograms. If we see many significant signals
of the observed strength in these averaged periodograms from
randomly selected bursts, then either the QPO we are interested
in is re-excited in many of the bursts, or there are effects due
to averaging vastly different bursts that our broadband noise
model cannot take into account properly. The former case is
unlikely: if a QPO at 93 Hz were present in many bursts, we
would have likely observed it when averaging by duration, as in
Section 4.2. All three signals observed at ∼93 Hz and 127 Hz are
fairly narrow and at comparatively high frequency. At ∼90 Hz,
the contribution by the burst envelope should be small (see
Figure 1) and not cluster around a single frequency, but rather
follow a power law. While the chance to observe one such signal
is still too high to claim a strong detection (p ≈ 0.01 for all
three narrow candidates), the fact that it is observed twice out
of five trials, at a frequency close to that observed in the 2004
giant flare (ν = 92 Hz), strengthens the claim for a detection.

We note that even for those frequencies for which we do not
detect any signal, we can quote stringent sensitivities that set
quite tight upper limits on a signal that could have been there
and go undetected by our algorithm. In the white-noise regime
above ∼150 Hz or so, where our algorithm approaches classical
Fourier methods, the variability is lowest, and thus we have the
highest sensitivity to weak signals. We can confidently exclude
high-frequency QPOs at 625 Hz and 1840 Hz that have been
observed in the giant flares (Strohmayer & Watts 2006; Watts
& Strohmayer 2006). The QPO at 625 Hz was observed over
a large fraction of the tail of the giant flare (>150 s) in two
different energy ranges, with a high fractional rms amplitude
of 8.5%. Conversely, the QPO at 1840 Hz is seen only in two

cycles, but with high significance and a large fractional rms
amplitude of 18%. Since our sensitivities for all five averaged
periodograms are much lower at these frequencies (<1.7%), we
can exclude a QPO of this type in the smaller flares from the
burst storm to a high degree of confidence.

5.3. Aperiodic Variability

While the aperiodic variability in short magnetar bursts is
a hindrance when searching for QPOs, it is interesting in
its own right. Each burst has a unique temporal structure,
which can sometimes be quite complex. Nevertheless, most
burst periodograms can be modeled fairly well with simple
empirical models, which allows us to draw a number of general
conclusions and give indications where further work is required.
The simplest question one can ask about is the separation
between bursts modeled with simple power laws and those that
require a more complex model, in our case a broken power law.
Our results indicate that the differences between the two samples
are largely due to systematic effects: for short bursts, fewer data
points in the low-frequency part of the periodogram make it
more difficult to constrain the shape of the power spectrum, and
these bursts are thus more likely to accept a simple power law
as a model for the underlying power spectrum. Similarly, a burst
with a lower fluence will be more strongly affected by photon
detector noise, rendering inferences about the shape of the power
spectrum more difficult. This idea is strengthened by the fact
that the fractions of bursts fit by a broken power law in both the
observed sample and the sample of fake periodograms simulated
from the broken power law are very close: 27% of observed
bursts are fit by a broken power law, versus 28% bursts in the
simulated sample. There is one striking discrepancy between
the data and the simulations: in the simulated ensemble, the
samples fit by the different models are very strongly separated
in burst duration, whereas there is only mild evidence for this
separation in the observed ensemble. One reason may lie in
the lower number of bursts in the observed sample. Another
reason may lie in the nature of our simulations: we simulated
light curves from the posterior distributions of broken power-
law parameters inferred for the real bursts following the method
of Timmer & Koenig (1995). This method provides pure red-
noise light curves, which are only an approximation to the real
data, as discussed in Huppenkothen et al. (2013). It is possible
that the separation in the simulated samples in burst duration is
due to effects that are not adequately captured by this model.
Without better knowledge of the underlying processes involved,
however, we cannot construct a model more representative
of the observed data, in order to increase confidence in our
inferences.

We also extracted the distributions of broadband model pa-
rameters from the means of the MCMC samples of each indi-
vidual bursts. Note that the mean is a very simple estimate of the
posterior probability distribution of the parameter. It can encode
neither a skewness in the distribution nor correlations between
parameters. The only way to encode the full information of both
marginalized distributions of parameters and potential correla-
tions between parameters is to plot the full posterior probability
distribution, which, for three or more parameters, is impossible.
For the purpose of this study, we accept the simple estimate
and its limitations and refer a more nuanced analysis to future
work. In general, the power-law index for bursts modeled by
a simple power law is confined between 1.5 and 4. While the
distribution is fairly broad, it peaks around μγ = 2.42. This
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is much higher than seen, for example, in gamma-ray bursts,
where a similar analysis yields indices of 1.7 to 2.0 (Guidorzi
et al. 2012; Beloborodov et al. 2000).

The search for correlations reveals two interesting observa-
tions. There is no correlation between power-law index and
fluence for the bursts that can be modeled with a simple power
law. This is not surprising: the highest-fluence bursts prefer-
entially reject the simpler model and are consequently in the
sample of bursts modeled with a broken power law. Secondly,
we find an anti-correlation of power-law indices with burst dura-
tion: shorter bursts have steeper power laws. The anti-correlation
can be modeled with a simple power law with α = −0.1. The
observed correlation is unlikely due to systematic effects: simu-
lated periodograms indicate a distribution of power-law indices
centered around 〈γ 〉 = 2.56, which does not change with burst
duration or fluence. This observed anti-correlation would im-
ply that magnetar bursts are not self-similar in burst duration:
shorter bursts are not simply shorter copies of longer bursts.
In the latter case, the power-law index would be the same, but
shifted to higher frequencies. Shorter bursts are also not simply
shorter snapshots of the same process. Instead, it implies that
the relevant variability timescales in each burst depend on the
duration of the burst. Longer bursts are variable over a larger
range of timescales and variable at higher frequencies. Exactly
how this difference between short and long bursts manifests,
and what implications it might have for magnetar burst emis-
sion models, is unclear. Again, more nuanced methods are re-
quired to better understand the broadband variability in magne-
tar bursts. Understanding this variability, in turn, is valuable for
performing QPO searches with more precision than is currently
possible.

6. THEORETICAL DISCUSSION

The QPOs in the tail of the giant flare from SGR 1900+14 lie
in the range 28–155 Hz (Strohmayer & Watts 2005). For the tail
of the giant flare from SGR 1806−20, there are several QPOs in
the range 18–150 Hz, and two isolated higher frequency signals
at 625 Hz and 1840 Hz (Israel et al. 2005; Watts & Strohmayer
2006; Strohmayer & Watts 2006). Widths (FWHM) are in the
range 1–20 Hz.

The most plausible explanation advanced for the giant flare
QPOs is that they represent global seismic oscillations of the
star, and it was swiftly realized that this would be a novel
means of constraining not only the interior field strength
(which is hard to measure directly) but also the dense matter
equation of state (Samuelsson & Andersson 2007; Watts &
Reddy 2007). The question of mode identification is therefore
crucial.

In the original discovery papers, the QPOs were tentatively
identified with torsional shear modes of the neutron star crust
and torsional Alfvén modes of the highly magnetized fluid
core. These identifications were based on the expected mode
frequencies, which are set by both the size of the resonant
volume and the relevant wave speed. For crustal shear modes,
the appropriate speed is the shear speed vs = (μs/ρ)1/2, where
μs is the shear modulus and ρ the density. The shear modulus
is of the order of the Coulomb potential energy ∼ Z2e2/r per
unit volume r3, where r ∼ (ρ/Amp)−1/3 is the inter-ion spacing,
while Z and A are the effective atomic number and mass number,
respectively, of the ions in the crust. Using the shear modulus
computed by Strohmayer et al. (1991) and scaling by typical
values for the inner crust (Douchin & Haensel 2001), the shear

velocity as shown by Piro (2005) is

vs = 1.1 × 108 cm s−1
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where Xn is the fraction of neutrons. This yields a rough estimate
for the frequency for the fundamental crustal shear mode of
ν ∼ vs/2πR = 18 (10 km/R) Hz. Full-mode calculations find
similar values, but with additional dependencies on the mass and
radius of the star due to relativistic effects (see, e.g., Samuelsson
& Andersson (2007)); it is this dependence that makes the modes
potentially powerful diagnostics of the dense matter equation
of state (Lattimer & Prakash 2007). Many of the lower QPO
frequencies could be explained as angular harmonics with no
radial nodes, while the two highest frequencies in the SGR
1806−20 giant flare were identified as radial overtones of these
crustal modes.

For torsional Alfvén modes of the core, the appropriate wave
speed is the Alfvén speed vA = B/

√
4πρ, where B is the

magnetic field strength, giving

vA = 108 cm s−1
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This yields a very rough estimate for the frequency of the
fundamental torsional Alfvén mode of ν ∼ vA/4R = 25
(10 km/R) Hz (Thompson & Duncan 2001). Note, however,
that the value of the field strength B in magnetar cores is
highly uncertain, as is the appropriate value of the density ρ.
In principle, only the charged component (∼5%–10% of the
core mass) should participate in Alfvén oscillations, reducing
ρ; however, there are mechanisms associated with superfluidity
and superconductivity that can couple the charged and neutral
components, leading to additional mass loading. As above, full-
mode calculations that take into account relativistic effects lead
to additional dependencies on neutron star mass and radius
(see, e.g., Sotani et al. 2008). It should also be noted that
the Alfvén modes constitute continua rather than a set of
discrete frequencies, since the field lines within the core have a
continuum of lengths. It has been suggested that the observed
QPOs might be associated with a turning point in the continuum
of Alfvén modes (Levin 2007; Sotani et al. 2008).

In fact, for a star with a magnetar strength field, crustal
vibrations and core vibrations should couple together on very
short timescales (Levin 2006, 2007). Considering them in
isolation, as described above, is therefore not appropriate. The
current viewpoint, based on more detailed modeling that takes
into account the magnetic coupling between crust and core,
is that the QPOs are in fact associated with global magneto-
elastic axial (torsional) oscillations of the star (Glampedakis
et al. 2006; Andersson et al. 2009; Steiner & Watts 2009; van
Hoven & Levin 2011, 2012; Colaiuda & Kokkotas 2011, 2012;
Gabler et al. 2012, 2013; Passamonti & Lander 2014, 2013;
Glampedakis & Jones 2014).

Since magneto-elastic oscillations depend on the same
physics described above, albeit now in a coupled system, they
have frequencies in the same broad range as the simple estimates
given above. The frequencies are set by many factors, including
the dense matter equation of state (which sets mass and radius),
field strength and geometry, superfluidity, superconductivity,
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and crust composition. Current magneto-elastic torsional oscil-
lation models have had some success in explaining the presence
of oscillations at frequencies of 155 Hz and below. However,
they struggle to explain the presence of the highest frequency os-
cillations, which should damp very rapidly (van Hoven & Levin
2012; Gabler et al. 2012). Various solutions to this problem are
under investigation, including coupling to polar modes (Lander
et al. 2010; Lander & Jones 2011; Colaiuda & Kokkotas 2012),
and resonances between crust and core that might develop as
a result of superfluid effects (Gabler et al. 2013; Passamonti &
Lander 2014). However, until these issues are resolved, precise
identification of the giant flare frequencies with specific global
magneto-elastic modes remains a challenge.

The detection of frequencies in the smaller flares provides an
entirely new viewpoint on this very difficult theoretical problem.
It is therefore important to compare the properties of the giant
flare QPOs to those detected in this study. We begin with the
frequencies detected by averaging together multiple bursts from
highly active episodes, at 93 Hz and 127 Hz. These frequencies
are in the range found in the giant flares (indeed the strongest
frequency found in the SGR 1806−20 giant flare was at 92 Hz).
The widths are also comparable to the range observed in the
tails of the giant flares. It therefore seems plausible that they
are instances of the same phenomenon. If these frequencies
do indeed represent global magneto-elastic oscillations, the
implication is that such vibrations are excited not only by giant
flares but also by trains of shorter bursts. This is important
information for future theoretical studies of mode excitation.

The 260 Hz signal identified in one of the individual bursts is
rather different. It is found in a frequency range where no signals
were found in the giant flares. It is much broader than any of
the oscillations seen in the tails of the giant flares and has very
high fractional amplitude. Whether it is the same phenomenon
as was observed in the giant flares is therefore far from clear.
If it is the same phenomenon, and we are seeing a magneto-
elastic oscillation mode, then a detection in this frequency
range would be valuable. Magneto-elastic oscillation models,
as outlined above, have difficulty in explaining the lifetime of
higher frequency signals in the giant flares. This detection, with
a much lower coherence, in a burst whose duration is comparable
to the predicted lifetimes, provides a fresh perspective on this
problem.

We may, however, be seeing something quite different. The
giant flares consist of a short impulsive spike, followed by a long
decaying tail as a trapped pair-plasma fireball slowly evaporates.
In the smaller bursts, it is not clear whether a fireball forms:
what we see may be more analogous to the impulsive spike of
the giant flares. The variability that we have found in the short
bursts in SGR 1550 (particularly the 260 Hz signal that appears
to differ in properties) may instead be associated directly with
the burst trigger process, be that a magnetospheric instability or
the yielding of the crust. It is worth noting that there are tentative
claims of variability at 43 Hz in the first 200 ms of the 1979 giant
flare from SGR 0526−66 (Barat et al. 1983) and at 50 Hz in the
first 500 ms of the SGR 1806−20 giant flare (Terasawa et al.
2006; Geotail paper). However, timing analysis of the peaks of
the giant flares is heavily affected by dead time and saturation. In
this respect the smaller flares, which are typically not saturated,
may be more useful despite the lower count rates. However,
the variability that would be expected in the initial trigger and
yielding phase of a magnetar burst has not been studied in detail.
There are nonetheless plausible mechanisms that might lead to
quasi-periodic behavior.

If the burst trigger is magnetospheric, there may arise via
variability may rise via plasma instabilities associated with
magnetic reconnection (see, e.g., Kliem et al. 2000). If instead
the trigger is crustal yielding, local effects and resonances may
be significant. It is not clear, for example, whether locally excited
shear waves would immediately couple to the entire crust (and
from there to the core) rather than resonating, with low Q-value,
in a smaller cavity that is temporarily coupled very poorly to
the rest of the crust during the yielding process. Such local
resonances would have frequencies quite different from those
of global magneto-elastic oscillations. More detailed theoretical
studies of the trigger process will be required to resolve both
this question and the length of time required to establish global
modes of any kind. However, the possibility that the 260 Hz
signal is a new and direct signature of the trigger process is an
exciting one.

7. CONCLUSIONS
We have searched 263 bursts from SGR J1550−5418 for

QPOs. We find one candidate QPO in the individual burst
searches. The signal is broad, but highly significant, and not
close to any frequency observed in the giant flares. It is unclear
whether this signal could come from the same phenomenon as
the QPOs observed in the giant flares, or whether it may be
associated directly with the burst trigger process.

Searching averaged periodograms reveals a significant signal
at ∼10 Hz in an averaged periodogram of all bursts with dura-
tions T90 > 0.5. This signal is comparable to the characteristic
duration of a magnetar burst T90max = 0.1 s, but may be due to
an inadequate broadband model for the periodogram. We find
evidence for QPOs in periodograms averaging bursts from in-
dividual triggers, which are unlikely due to effects of averaging
together bursts with vastly different timing properties. Two of
these signals are located at 93 Hz, where QPOs in the giant flares
have been observed. The third is at a higher frequency, 127 Hz.
We consider these signals to be the best candidates of neutron
star oscillations from short magnetar bursts to date. All three
signals can be interpreted in the framework of magneto-elastic
oscillations invoked to explain QPOs in magnetar giant flares.
The possibility that not only giant flares but also smaller flares
may excite these oscillations also provides an important new
piece of information for future theoretical studies of mode ex-
citation. For averaged periodograms, we can put constraints on
weak signals that could have been there and would likely have
been missed by our methods. For all but the lowest frequencies,
our sensitivity to QPOs is lower than the observed fractional
rms amplitudes in the giant flares. This is especially prominent
for the high-frequency QPOs observed at 625 Hz and higher.
We thus conclude that except for the signals at 93 Hz and 127
Hz, there are no giant-flare-like QPOs in this sample of small
bursts.

Here we also characterized overall burst variability for the first
time. We find a correlation between power-law index and burst
duration. This implies that longer SGR bursts are variable over a
broader range of timescales than short bursts and are not simply
longer versions of the short bursts. Further work is required
to disentangle overall variability in magnetar bursts. This is
unlikely to be possible with Fourier methods, but would be very
rewarding in terms of both understanding emission mechanisms
and untangling possible QPO signals from the overall burst
morphology.
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Kaneko, Y., Göǧüş, E., Kouveliotou, C., et al. 2010, ApJ, 710, 1335
Kliem, B., Karlicky, M., & Benz, A. O. 2000, A&A, 360, 715
Lamb, R. C., & Markert, T. H. 1981, ApJ, 244, 94
Lander, S. K., & Jones, D. I. 2011, MNRAS, 412, 1730
Lander, S. K., Jones, D. I., & Passamonti, A. 2010, MNRAS, 405, 318
Lattimer, J. M., & Prakash, M. 2007, PhR, 442, 109
Levin, Y. 2006, MNRAS, 368, L35
Levin, Y. 2007, MNRAS, 377, 159
Mazets, E. P., Aptekar, R. L., Butterworth, P. S., et al. 1999, ApJL, 519, L151
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den Heuvel (New York, NY: Kluwer), 27
van der Klis, M. 2006, in Compact Stellar X-ray Sources, ed. W. H. G. Lewin

& M. van der Klis (Cambridge: Cambridge Univ. Press), 39
van Hoven, M., & Levin, Y. 2011, MNRAS, 410, 1036
van Hoven, M., & Levin, Y. 2012, MNRAS, 420, 3035
Vaughan, S. 2010, MNRAS, 402, 307
von Kienlin, A., Gruber, D., Kouveliotou, C., et al. 2012, ApJ, 755, 150
Watts, A. L. 2012, in Neutron Star Crust, ed. C. Bertulani & J. Piekarewicz

(Hauppauge, NY: Nova Science Publishers), 265
Watts, A. L., & Reddy, S. 2007, MNRAS, 379, L63
Watts, A. L., & Strohmayer, T. E. 2006, ApJL, 637, L117
Younes, G., Kouveliotou, C., van der Horst, A., et al. 2014, ApJ, 785, 52

13

http://dx.doi.org/10.1111/j.1365-2966.2009.14734.x
http://adsabs.harvard.edu/abs/2009MNRAS.396..894A
http://adsabs.harvard.edu/abs/2009MNRAS.396..894A
http://adsabs.harvard.edu/abs/1983A&A...126..400B
http://adsabs.harvard.edu/abs/1983A&A...126..400B
http://dx.doi.org/10.1086/308836
http://adsabs.harvard.edu/abs/2000ApJ...535..158B
http://adsabs.harvard.edu/abs/2000ApJ...535..158B
http://dx.doi.org/10.1086/521826
http://adsabs.harvard.edu/abs/2007ApJ...666L..93C
http://adsabs.harvard.edu/abs/2007ApJ...666L..93C
http://dx.doi.org/10.1111/j.1365-2966.2011.18602.x
http://adsabs.harvard.edu/abs/2011MNRAS.414.3014C
http://adsabs.harvard.edu/abs/2011MNRAS.414.3014C
http://dx.doi.org/10.1111/j.1365-2966.2012.20919.x
http://adsabs.harvard.edu/abs/2012MNRAS.423..811C
http://adsabs.harvard.edu/abs/2012MNRAS.423..811C
http://dx.doi.org/10.1088/0004-637X/748/1/3
http://adsabs.harvard.edu/abs/2012ApJ...748....3D
http://adsabs.harvard.edu/abs/2012ApJ...748....3D
http://dx.doi.org/10.1051/0004-6361:20011402
http://adsabs.harvard.edu/abs/2001A&A...380..151D
http://adsabs.harvard.edu/abs/2001A&A...380..151D
http://dx.doi.org/10.1086/311303
http://adsabs.harvard.edu/abs/1998ApJ...498L..45D
http://adsabs.harvard.edu/abs/1998ApJ...498L..45D
http://dx.doi.org/10.1086/186413
http://adsabs.harvard.edu/abs/1992ApJ...392L...9D
http://adsabs.harvard.edu/abs/1992ApJ...392L...9D
http://dx.doi.org/10.1088/2041-8205/721/2/L121
http://adsabs.harvard.edu/abs/2010ApJ...721L.121E
http://adsabs.harvard.edu/abs/2010ApJ...721L.121E
http://dx.doi.org/10.1086/670067
http://adsabs.harvard.edu/abs/2013PASP..125..306F
http://adsabs.harvard.edu/abs/2013PASP..125..306F
http://dx.doi.org/10.1093/mnras/sts721
http://adsabs.harvard.edu/abs/2013MNRAS.430.1811G
http://adsabs.harvard.edu/abs/2013MNRAS.430.1811G
http://dx.doi.org/10.1111/j.1365-2966.2012.20454.x
http://adsabs.harvard.edu/abs/2012MNRAS.421.2054G
http://adsabs.harvard.edu/abs/2012MNRAS.421.2054G
http://dx.doi.org/10.1086/520526
http://adsabs.harvard.edu/abs/2007ApJ...667.1111G
http://adsabs.harvard.edu/abs/2007ApJ...667.1111G
http://dx.doi.org/10.1093/mnras/stu017
http://adsabs.harvard.edu/abs/2014MNRAS.439.1522G
http://adsabs.harvard.edu/abs/2014MNRAS.439.1522G
http://dx.doi.org/10.1111/j.1745-3933.2006.00211.x
http://adsabs.harvard.edu/abs/2006MNRAS.371L..74G
http://adsabs.harvard.edu/abs/2006MNRAS.371L..74G
http://dx.doi.org/10.1051/0004-6361:20031684
http://adsabs.harvard.edu/abs/2004A&A...414.1091G
http://adsabs.harvard.edu/abs/2004A&A...414.1091G
http://dx.doi.org/10.1086/312380
http://adsabs.harvard.edu/abs/1999ApJ...526L..93G
http://adsabs.harvard.edu/abs/1999ApJ...526L..93G
http://dx.doi.org/10.1086/312583
http://adsabs.harvard.edu/abs/2000ApJ...532L.121G
http://adsabs.harvard.edu/abs/2000ApJ...532L.121G
http://dx.doi.org/10.2140/camcos.2010.5.65
http://dx.doi.org/10.1051/0004-6361:20053648
http://adsabs.harvard.edu/abs/2006A&A...445..313G
http://adsabs.harvard.edu/abs/2006A&A...445..313G
http://dx.doi.org/10.1086/190343
http://adsabs.harvard.edu/abs/1975ApJS...29..285G
http://adsabs.harvard.edu/abs/1975ApJS...29..285G
http://dx.doi.org/10.1111/j.1365-2966.2012.20758.x
http://adsabs.harvard.edu/abs/2012MNRAS.422.1785G
http://adsabs.harvard.edu/abs/2012MNRAS.422.1785G
http://dx.doi.org/10.1111/j.1365-2966.2012.20824.x
http://adsabs.harvard.edu/abs/2012MNRAS.422.2620H
http://adsabs.harvard.edu/abs/2012MNRAS.422.2620H
http://dx.doi.org/10.1088/0004-637X/768/1/87
http://adsabs.harvard.edu/abs/2013ApJ...768...87H
http://adsabs.harvard.edu/abs/2013ApJ...768...87H
http://dx.doi.org/10.1086/432615
http://adsabs.harvard.edu/abs/2005ApJ...628L..53I
http://adsabs.harvard.edu/abs/2005ApJ...628L..53I
http://dx.doi.org/10.1111/j.1365-2966.2010.17001.x
http://adsabs.harvard.edu/abs/2010MNRAS.408.1387I
http://adsabs.harvard.edu/abs/2010MNRAS.408.1387I
http://dx.doi.org/10.1086/590486
http://adsabs.harvard.edu/abs/2008ApJ...685.1114I
http://adsabs.harvard.edu/abs/2008ApJ...685.1114I
http://dx.doi.org/10.1088/0004-637X/710/2/1335
http://adsabs.harvard.edu/abs/2010ApJ...710.1335K
http://adsabs.harvard.edu/abs/2010ApJ...710.1335K
http://adsabs.harvard.edu/abs/2000A&A...360..715K
http://adsabs.harvard.edu/abs/2000A&A...360..715K
http://dx.doi.org/10.1086/158688
http://adsabs.harvard.edu/abs/1981ApJ...244...94L
http://adsabs.harvard.edu/abs/1981ApJ...244...94L
http://dx.doi.org/10.1111/j.1365-2966.2010.18009.x
http://adsabs.harvard.edu/abs/2011MNRAS.412.1730L
http://adsabs.harvard.edu/abs/2011MNRAS.412.1730L
http://dx.doi.org/10.1111/j.1365-2966.2010.16435.x
http://adsabs.harvard.edu/abs/2010MNRAS.405..318L
http://adsabs.harvard.edu/abs/2010MNRAS.405..318L
http://dx.doi.org/10.1016/j.physrep.2007.02.003
http://adsabs.harvard.edu/abs/2007PhR...442..109L
http://adsabs.harvard.edu/abs/2007PhR...442..109L
http://dx.doi.org/10.1111/j.1745-3933.2006.00155.x
http://adsabs.harvard.edu/abs/2006MNRAS.368L..35L
http://adsabs.harvard.edu/abs/2006MNRAS.368L..35L
http://dx.doi.org/10.1111/j.1365-2966.2007.11582.x
http://adsabs.harvard.edu/abs/2007MNRAS.377..159L
http://adsabs.harvard.edu/abs/2007MNRAS.377..159L
http://dx.doi.org/10.1086/312118
http://adsabs.harvard.edu/abs/1999ApJ...519L.151M
http://adsabs.harvard.edu/abs/1999ApJ...519L.151M
http://dx.doi.org/10.1088/0004-637X/696/1/L74
http://adsabs.harvard.edu/abs/2009ApJ...696L..74M
http://adsabs.harvard.edu/abs/2009ApJ...696L..74M
http://dx.doi.org/10.1093/mnras/sts372
http://adsabs.harvard.edu/abs/2013MNRAS.429..767P
http://adsabs.harvard.edu/abs/2013MNRAS.429..767P
http://dx.doi.org/10.1093/mnras/stt2134
http://adsabs.harvard.edu/abs/2014MNRAS.438..156P
http://adsabs.harvard.edu/abs/2014MNRAS.438..156P
http://dx.doi.org/10.1086/499049
http://adsabs.harvard.edu/abs/2005ApJ...634L.153P
http://adsabs.harvard.edu/abs/2005ApJ...634L.153P
http://dx.doi.org/10.1126/science.1196088
http://adsabs.harvard.edu/abs/2010Sci...330..944R
http://adsabs.harvard.edu/abs/2010Sci...330..944R
http://dx.doi.org/10.1111/j.1365-2966.2006.11147.x
http://adsabs.harvard.edu/abs/2007MNRAS.374..256S
http://adsabs.harvard.edu/abs/2007MNRAS.374..256S
http://dx.doi.org/10.1051/0004-6361/200911988
http://adsabs.harvard.edu/abs/2010A&A...510A..77S
http://adsabs.harvard.edu/abs/2010A&A...510A..77S
http://dx.doi.org/10.1088/0004-637X/739/2/94
http://adsabs.harvard.edu/abs/2011ApJ...739...94S
http://adsabs.harvard.edu/abs/2011ApJ...739...94S
http://dx.doi.org/10.1111/j.1745-3933.2007.00420.x
http://adsabs.harvard.edu/abs/2008MNRAS.385L...5S
http://adsabs.harvard.edu/abs/2008MNRAS.385L...5S
http://adsabs.harvard.edu/abs/2009PhRvL.103r1101S
http://adsabs.harvard.edu/abs/2009PhRvL.103r1101S
http://dx.doi.org/10.1086/170231
http://adsabs.harvard.edu/abs/1991ApJ...375..679S
http://adsabs.harvard.edu/abs/1991ApJ...375..679S
http://dx.doi.org/10.1086/497911
http://adsabs.harvard.edu/abs/2005ApJ...632L.111S
http://adsabs.harvard.edu/abs/2005ApJ...632L.111S
http://dx.doi.org/10.1086/508703
http://adsabs.harvard.edu/abs/2006ApJ...653..593S
http://adsabs.harvard.edu/abs/2006ApJ...653..593S
http://dx.doi.org/10.1088/1742-6596/31/1/012
http://adsabs.harvard.edu/abs/2006JPhCS..31...76T
http://adsabs.harvard.edu/abs/2006JPhCS..31...76T
http://adsabs.harvard.edu/abs/1995MNRAS.275..255T
http://adsabs.harvard.edu/abs/1995MNRAS.275..255T
http://dx.doi.org/10.1086/323256
http://adsabs.harvard.edu/abs/2001ApJ...561..980T
http://adsabs.harvard.edu/abs/2001ApJ...561..980T
http://adsabs.harvard.edu/abs/1995A&A...300..707T
http://adsabs.harvard.edu/abs/1995A&A...300..707T
http://dx.doi.org/10.1088/0004-637X/749/2/122
http://adsabs.harvard.edu/abs/2012ApJ...749..122V
http://adsabs.harvard.edu/abs/2012ApJ...749..122V
http://adsabs.harvard.edu/abs/1989tns..conf...27V
http://dx.doi.org/10.1111/j.1365-2966.2010.17499.x
http://adsabs.harvard.edu/abs/2011MNRAS.410.1036V
http://adsabs.harvard.edu/abs/2011MNRAS.410.1036V
http://dx.doi.org/10.1111/j.1365-2966.2011.20177.x
http://adsabs.harvard.edu/abs/2012MNRAS.420.3035V
http://adsabs.harvard.edu/abs/2012MNRAS.420.3035V
http://dx.doi.org/10.1111/j.1365-2966.2009.15868.x
http://adsabs.harvard.edu/abs/2010MNRAS.402..307V
http://adsabs.harvard.edu/abs/2010MNRAS.402..307V
http://dx.doi.org/10.1088/0004-637X/755/2/150
http://adsabs.harvard.edu/abs/2012ApJ...755..150V
http://adsabs.harvard.edu/abs/2012ApJ...755..150V
http://dx.doi.org/10.1111/j.1745-3933.2007.00336.x
http://adsabs.harvard.edu/abs/2007MNRAS.379L..63W
http://adsabs.harvard.edu/abs/2007MNRAS.379L..63W
http://dx.doi.org/10.1086/500735
http://adsabs.harvard.edu/abs/2006ApJ...637L.117W
http://adsabs.harvard.edu/abs/2006ApJ...637L.117W
http://dx.doi.org/10.1088/0004-637X/785/1/52
http://adsabs.harvard.edu/abs/2014ApJ...785...52Y
http://adsabs.harvard.edu/abs/2014ApJ...785...52Y

	1. INTRODUCTION
	2. DATA
	3. ANALYSIS METHODS
	4. RESULTS
	4.1. Individual Burst Searches
	4.2. Averaged Periodograms
	4.3. Broadband Variability

	5. DISCUSSION
	5.1. Individual Bursts
	5.2. Averaged Bursts
	5.3. Aperiodic Variability

	6. THEORETICAL DISCUSSION
	7. CONCLUSIONS
	REFERENCES

