GRB Jets from Compact Binary Mergers in the Era of Gravitational Wave Astronomy

Jonathan Granot

Open University of Israel & George Washington University

Collaborators: Gill, Beniamini, De Colle, Ramirez-Ruiz, Piran, Königl, Guetta, Kumar, Loeb

Astrophysics in the Next Decade: From the First Stars to Intelligent Life In celebration of Avi Loeb's 60th birthday, 7.6.22, Martha's Vineyard, MA

GW 170817 / GRB 170817A: D ≈ 40 Mpc

- First GW detection of a NS-NS merger
- First electromagnetic counterpart to a GW event
 - ♦ The short GRB 170817A (very under-luminous, 1.74 s γ-GW delay;
 ⇒ $|v_{GW}/c 1| \le 4 \cdot 10^{-16}$)

◆ First clear-cut kilonova, in IR to UV, lasting a few weeks ⇒ NS-NS mergers may dominate the r-process nucleosynthesis
 ◆ X-ray to radio afterglow
 ■ First direct association of a sGRB & NS-NS merger (Eichler+ 1989; Narayan+ 1992)

GW 170817 / GRB 170817A: D ~ 40 Mpc

GRB 170817A: afterglow observations

GRB 170817A: afterglow observations

GRB170817 outflow structure: the afterglow

■ A structured jet explanation (Lazzati+17; Margutti+18; Gill & JG 18;...):

 Simulation of jet breaking out of the Newtonian ejecta near a NS-NS merger site: the cocoon energizes the jet's sides/wings

Outflow structure: breaking the degeneracy (Gill & JG 18)

- The lightcurves leave a lot of degeneracy between models
- The degeneracy may be lifted by calculation the afterglow images & polarization (e.g. Nakar & Piran 2018; Nakar et al. 2018)
- We considered 4 different models including both main types
- ♦ Sph+E_{inj}: Spherical with energy injection $E(>u=\Gamma\beta) \propto u^{-6}$, 1.5 < u < 4
- ♦ QSph+E_{inj}: Quasi-Spherical+energy injection $E(>u) \propto u^{-5.5}$, 1.8<u<4
- GJ: Gaussian Jet (in $\varepsilon = dE/d\Omega$, $\Gamma_0 1$) $\Gamma_c = 600$, $\theta_c = 4.7^{\circ}$
- ◆ PLJ: Power-Law Jet; ε = ε_cΘ^{-a}, Γ₀−1 = (Γ_c−1)Θ^{-b}, Θ = $[1+(θ/θ_c)^2]^{1/2}$ Γ_c = 100, θ_c=5°, a=4.5, b=2.5

The outflow structure: breaking the degeneracy Tentative fit to GRB170817A afterglow data (radio to X-ray)

The outflow structure: breaking the degeneracy New data that came out established a peak at t_p ~150 days

The outflow structure: breaking the degeneracy The jet models decay faster (closer to post-peak data ~t^{-2.2})

Afterglow Images:

Afterglow Images + Polarization maps: GJ, PLJ

GW170817/GRB170817A Afterglow (Gill & JG 18) • Assuming a shock-produce B-field with $b \equiv 2\langle B_{\parallel}^2 \rangle / \langle B_{\perp}^2 \rangle$ • Weibel instability suggests $b \approx 0$ (Medvedev & Loeb 1999) **GW170817/GRB170817A Afterglow (Gill & JG 18)** • Assuming a shock-produce B-field with $b \equiv 2\langle B_{\parallel}^2 \rangle / \langle B_{\perp}^2 \rangle$ • Data favor two core-dominated jet models with similar P(t) • P(t) depends on the jet structure, θ_{obs} & B-field structure

GW170817/GRB170817A Afterglow (Gill & JG 19) More realistic assumptions ⇒ B-field in collisionless shocks:
2D emitting shell → 3D emitting volume (local BM76 radial profile)
B-field evolution by faster radial expansion: L'_r/L'_{θ,φ} ∝ χ^{(7-2k)/(8-2k)} B-field isotropic in 3D with B'_r → ζB'_r (Sari 1999); ζ = ζ_f χ^{(7-2k)/(8-2k)}

Predicted Off-Axis Lightcurves from Structured Jets (Beniamini, JG & 2020; Beniamini, Gill & JG 2022)

A general investigation of **Power-Law** (+Gaussian) **Jets**

- Provide detailed analytic lightcurves
- We find two main lightcurve types: double or single peaked

 $\theta_*\Gamma_0(\theta_*) = 1$

Predicted Off-Axis Lightcurves from Structured Jets (Beniamini, JG & 2020; Beniamini, Gill & JG 2022)

- Map the most relevant parameter space from simulations of long / short GRB jets breaking out of the star / merger ejecta

 → Consider different external density profiles
- Consider both shallow & steep jet angular profiles

Happy Birthday Avi!!!