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Outline of the Talk: 
n GRB high-energy emission: what we know & how  

CTA could improve their high-energy coverage 
n GRB detection prospects with CTA  
n GRB physics: how CTA could help 

n  Outflow bulk Lorentz factor Γ & emission radius R 
n  Prompt emission: emission mechanism, outflow 

composition, prospects for high-energy cosmic rays & ν’s 
n  Afterglow: particle acceleration in collisionless shocks 

n Observational cosmology: EBL, pair echoes 
n Fundamental physics: testing Lorentz Invariance 
n Conclusions 



GRB High energy emission (Fermi, EGRET): 
n ~30 GRBs have been detected so far at >100 MeV 
n 2 GRBs have been detected at >30 GeV (one photon 

each from the short GRB 090510 & the long GRB 090902B) 
n The >100 MeV emission usually starts later and lasts 

longer than the ≲ 1 MeV emission (up to ~102
 -103.5 s) 

n A distinct high-energy spectral component – common 
n Lower limits on the Lorentz factor Γmin ~ 102.5 - 103  

(long GRB090902B; 
Abdo et al. 2009, 
ApJ, 706, L138) 

(short GRB090510 ; Ackermann et al. 2010, 
ApJ, 716, 1178) 



How CTA could improve GRB observations: 
n Improved low-energy threshold: Eph,min < 20 GeV    
⇒ less γγ absorption on the EBL –  higher z possible 

n Fast slewing: 180° in 20 s for LST (similar to MAGIC2) 
⇒ could catch the prompt emission of long GRBs 

n Huge effective area: >104 m2 @ 30 GeV (>104 ✕ Fermi) 
⇒ >103 photons above ~10 GeV instead of only 1 ⇒ 
improve constraints on VHE variability & spectrum 

n Could detect up to higher 
   energies than Fermi/LAT 

(Falcone et al. 2009) 
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 Expected CTA GRB detection rate: 

n × 2 sites / hemispheres: optimistic ~ 8 GRB/yr , more 
realistic (Bouvier et al.) ~ 4 GRB/yr, pessimistic 
(Inoue et al.) ~ 0.6 prompt GRB/yr (~ 6 afterglow/yr) 

n Bouvier et al. – 10% of ~ MeV fluence + flat νFν 
n Inoue et al. – t0 Band extrapolation (AG Fν ∝ ν-1t-1.5) 
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Swift
BAT 95 1.4 0.35 0.1 - 0.15 100% ~ 0.25 ~ 0.8 - 1.2 0.6 - 0.9

0.1, 1

Fermi
GBM 250 1 0.25 0.1 - 0.15 ~ 50% ~ 0.5 ~ 1.6 - 2.3 0.4 - 0.5

~ 0.1, 1

SVOM 80 1.6 0.40 0.1 - 0.15 100% ~ 0.25 ~ 0.8 - 1.2 ~ 0.6-0.9
~ 0.1, 1



Constraints on Γ for Fermi/LAT GRBs: CTA? 
n  Lack of a high-energy cutoff due to intrinsic pair production 
⇒ lower limit Γmin on the Lorentz factor of the emitting region 
n  For bright LAT GRBs (long/short): Γ ≳ 103 for simple model 
(steady-state, uniform, isotropic) but Γ ≳ 102.5 for more realistic 
time-dependent self-consistent thin shell model (JG et al. 2008) 
n  GRB 090926A: high-energy cutoff – if due to intrinsic pair 
production then Γ ~ 200 - 700  

(GRB090926A;   Ackermann  
et al. 2011, ApJ, 729, 114) 



Constraints on Γ for Fermi/LAT GRBs: CTA? 
n  Lack of a high-energy cutoff due to intrinsic pair production 
⇒ lower limit Γmin on the Lorentz factor of the emitting region 
n  For bright LAT GRBs (long/short): Γ ≳ 103 for simple model 
(steady-state, uniform, isotropic) but Γ ≳ 102.5 for more realistic 
time-dependent self-consistent thin shell model (JG et al. 2008) 
n  GRB 090926A: high-energy cutoff – if due to intrinsic pair 
production then Γ ~ 200 - 700  

(GRB090926A;   Ackermann  
et al. 2011, ApJ, 729, 114) 

CTA could: 1. provide stricter lower limits, 2. determine 
Γ (detect cutoff) in more GRBs, 3. provide evidence that 
an observed cutoff is indeed due to intrinsic pair opacity 



Prompt emission: Possible Origin – Fermi → CTA 
n Leptonic: inverse-Compton or synchrotron self-Compton ? 
n Hadronic: e.g. pair cascades, proton synchrotron ? 
u Hard to produce a delayed onset longer than spike widths 

(the seed photon field builds-up on the dynamical time) 
u Late onset: time to accelerate protons + develop cascades?  

but hard to also produce spikes coincident with low energies 
u Often requires very large total energies 
u Low-energy power-law: hard; synchrotron of secondary e± 
u Both: gradual increase in HE photon index β is not natural 

n CTA could help distinguish between leptonic/hadronic origin 
n Physics probed: particle acceleration in extreme conditions, 

the role of GRBs as possible sources of UHECRs & HE ν’s 



Long lived high-energy emission: afterglow? 
n Long lived HE emission is very common in Fermi/LAT GRBs 

(originally detected by EGRET; Hurley et al. 94) Possible origins: 

LAT (prompt) 
GBM, BAT, XRT, UVOT 

t 
−0.7 

t 
−2 

GRB090510 

u X-ray flare photons IC scattered 
   by afterglow electrons: should be variable – CTA could test this 
u Long lived cascade induced by ultra-relativistic ions (tad,cool ~ tvar) 
u Pair echo: TeV + EBL γγ → e+e−, & the e+e− IC scatter the CMB 
 Physics probed: particle acceleration in collisionless shocks 
intra-cluster / intergalactic B-field strengths, GRB physics 

t 
−1.37±0.08 u Afterglow synchrotron: likely 

at t ≫ TGRB; but: detection CTA 
detection could exceed Esyn,max 

u Afterglow SSC emission: maybe 
but no observational support 
yet – CTA might capture the 
SSC peak at high energies (De Pasquale et  al. 

2011, ApJ, 709, L146) 



Constraining the opacity of the Universe 
n  γ-rays from distant sources can 

pair produce (γγ → e+e−) with 
the extragalactic background 
light (EBL) on the way to us 

n  This can test the transparency 
of the Universe and constrain 
EBL models (or the massive 
star formation rate at z ≳ 1) 

n  GRBs are already competitive 
with AGN, & probe higher z 

n  CTA’s much larger effective 
area compared to Fermi would 
be especially helpful for GRBs 

(Abdo et al. 2010, ApJ, 723, 1082) 

τγγ = 1 

τγγ = 3 



Limits on Lorentz Invariance Violation 
n  Some QG models violate Lorentz invariance: vph(Eph) ≠ c 
n ⇒ time delays in the arrival of the high-energy photons 
n Fermi/LAT’s best & most conservative limit on linear 

vacuum energy dispersion (GRB090510): MQG,1 > 1.2MPlanck  
n Method 1: assuming HE γ’s are not emitted before < MeV γ’s 

CTA: Fermi’s best limit, |Δt/ΔE| < 30 ms/GeV, is hard to beat 
⇒ requires Eh > 1 TeV for a 30 s response time, but fewer γ’s 
emitted at > 1 TeV + EBL ⇒ need to catch a GRB in the FoV 

n Method 2: DisCan (dispersion cancelation; very robust) – 
lack of smearing of narrow spikes in high-energy light-curve 
CTA: might work best – sharp bright spikes are observed up 
to high energies also late within long GRBs: tvar ~ 0.1 s & Eh 
~ 0.1 TeV could do ~30 times better than Fermi/LAT limit 

n  short GRB in FoV (survey mode): 10 ms, 1 TeV: >103 ✕ LAT 



Conclusions: 
n CTA GRB detection rate is still uncertain (~ 0.6 – 8 yr−1) 
n Despite a modest detection rate they could teach us a lot: 
v Improve lower limits on GRB outflow Lorentz factor Γ  + 

help detect HE cutoff (determine Γ) & determine its origin 

v Prompt emission: help determine the emission mechanism 
& distinguish between leptonic & hadronic models ⇒ 
constrain outflow composition, particle acceleration & 
prospects for UHECRs & HE neutrinos 

v Long lived emission ⇒ particle acceleration in relativistic 
collisionless shocks, inter-galactic magnetic fields 

v EBL: higher z; perhaps finally clearly detect its signatures 

v LIV: good prospects; helps if GRB in FoV (survey mode) 
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