What we could learn from **Cherenkov Telescope Array observations of Gamma-Ray Bursts Jonathan Granot** Hebrew Univ., Tel Aviv Univ., Univ. of Hertfordshire (Royal Society Wolfson Research Merit Award Holder) (with help from Susumu Inoue & Paul O' Brien) 12th Annual High Energy Astrophysics Division Meeting (HEAD2011), Newport, Rhode Island, September 7, 2011

Outline of the Talk:

GRB high-energy emission: what we know & how CTA could improve their high-energy coverage **GRB detection prospects** with CTA **GRB physics:** how CTA could help • Outflow bulk Lorentz factor Γ & emission radius R Prompt emission: emission mechanism, outflow composition, prospects for high-energy cosmic rays & v's Afterglow: particle acceleration in collisionless shocks Observational cosmology: EBL, pair echoes Fundamental physics: testing Lorentz Invariance Conclusions

GRB High energy emission (Fermi, EGRET): ~ 30 GRBs have been detected so far at >100 MeV 2 GRBs have been detected at >30 GeV (one photon) each from the short GRB 090510 & the long GRB 090902B) The >100 MeV emission usually starts later and lasts longer than the ≤ 1 MeV emission (up to $\sim 10^{2}$ - $10^{3.5}$ s) A distinct high-energy spectral component – common Lower limits on the Lorentz factor $\Gamma_{\rm min} \sim 10^{2.5} - 10^3$

How CTA could improve GRB observations: Improved low-energy threshold: E_{ph,min} < 20 GeV</p> \Rightarrow less $\gamma\gamma$ absorption on the EBL – higher z possible Fast slewing: 180° in 20 s for LST (similar to MAGIC2) \Rightarrow could catch the prompt emission of long GRBs Huge effective area: $>10^4$ m² (a) 30 GeV ($>10^4 \times$ Fermi) $\Rightarrow > 10^3$ photons above ~ 10 GeV instead of only $1 \Rightarrow$ improve constraints on VHE variability & spectrum Could detect up to higher HAWC (1 min) GLAST (1 min) 10^{-7} sec⁻¹) energies than Fermi/LAT 10⁻⁸

A bigger difference for transient sources

Expected CTA GRB detection rate:

Mission to alert CTA	GRBs /year	Sun anti- correlation factor	Fraction of GRBs in FoV	Duty cycle	Good enough location	Detection efficiency	CTA GRBs / year	CTA GRBs / year
Swift BAT	95	1.4	0.35	0.1-0.15	100%	~ 0.25	~ 0.8-1.2	0.6 - 0.9 0.1, 1
Fermi GBM	250	1	0.25	0.1-0.15	~ 50%	~ 0.5	~ 1.6 - 2.3	0.4 - 0.5 ~ 0.1, 1
SVOM	80	1.6	0.40	0.1-0.15	100%	~ 0.25	~ 0.8-1.2	~0.6-0.9 ~0.1, 1

× 2 sites / hemispheres: optimistic ~ 8 GRB/yr, more realistic (Bouvier et al.) ~ 4 GRB/yr, pessimistic (Inoue et al.) ~ 0.6 prompt GRB/yr (~ 6 afterglow/yr)
 Bouvier et al. – 10% of ~ MeV fluence + flat vF_v
 Inoue et al. – t⁰ Band extrapolation (AG F_v ∝ v⁻¹t^{-1.5})

Constraints on Γ for Fermi/LAT GRBs: CTA?

Lack of a high-energy cutoff due to intrinsic pair production
 ⇒ lower limit Γ_{min} on the Lorentz factor of the emitting region
 For bright LAT GRBs (long/short): Γ ≥ 10³ for simple model (steady-state, uniform, isotropic) but Γ ≥ 10^{2.5} for more realistic time-dependent self-consistent thin shell model (JG et al. 2008)

 GRB 090926A: high-energy cutoff – if due to intrinsic pair production then Γ ~ 200 - 700

Constraints on Γ for Fermi/LAT GRBs: CTA?

Lack of a high-energy cutoff due to intrinsic pair production
 ⇒ lower limit Γ_{min} on the Lorentz factor of the emitting region
 For bright LAT GRBs (long/short): Γ ≥ 10³ for simple model (steady-state, uniform, isotropic) but Γ ≥ 10^{2.5} for more realistic time-dependent self-consistent thin shell model (JG et al. 2008)

 GRB 090926A: high-energy cutoff – if due to intrinsic pair production then Γ ~ 200 - 700

Prompt emission: Possible Origin – Fermi \rightarrow CTA **Leptonic**: inverse-Compton or synchrotron self-Compton ? **Hadronic**: e.g. pair cascades, proton synchrotron? • Hard to produce a delayed onset longer than spike widths (the seed photon field builds-up on the dynamical time) \rightarrow Late onset: time to accelerate protons+develop cascades? but hard to also produce spikes coincident with low energies • Often requires very large total energies Low-energy power-law: hard; synchrotron of secondary e[±] \diamond **Both**: gradual increase in HE photon index β is not natural **CTA** could help distinguish between leptonic/hadronic origin Physics probed: particle acceleration in extreme conditions, the role of GRBs as possible sources of UHECRs & HE v's

Long lived high-energy emission: afterglow? Long lived HE emission is very common in Fermi/LAT GRBs (originally detected by EGRET; Hurley et al. 94) Possible origins:

Afterglow synchrotron: likely at t > T_{GRB}; but: detection CTA detection could exceed E_{syn,max}

Afterglow SSC emission: maybe but no observational support yet – CTA might capture the SSC peak at high energies

★ X-ray flare photons IC scattered by afterglow electrons: should be variable – CTA could test this
 ★ Long lived cascade induced by ultra-relativistic ions (t_{ad,cool} ~ t_{var})
 ★ Pair echo: TeV + EBL γγ → e⁺e⁻, & the e⁺e⁻ IC scatter the CMB
 ■ Physics probed: particle acceleration in collisionless shocks intra-cluster / intergalactic B-field strengths, GRB physics

Constraining the opacity of the Universe

γ-rays from distant sources can pair produce $(\gamma \gamma \rightarrow e^+e^-)$ with the extragalactic background light (EBL) on the way to us This can test the transparency of the Universe and constrain EBL models (or the massive star formation rate at $z \ge 1$) **GRBs** are already competitive with AGN, & probe higher z **CTA'** s much larger effective area compared to Fermi would be especially helpful for GRBs

Limits on Lorentz Invariance Violation Some QG models violate Lorentz invariance: $v_{ph}(E_{ph}) \neq c$ $\blacksquare \Rightarrow$ time delays in the arrival of the high-energy photons Fermi/LAT's best & most conservative limit on linear vacuum energy dispersion (GRB090510): M_{QG,1}>1.2 M_{Planck} **Method 1:** assuming HE γ 's are not emitted before < MeV γ 's CTA: Fermi's best limit, $|\Delta t/\Delta E| < 30 \text{ ms/GeV}$, is hard to beat \Rightarrow requires $E_h > 1$ TeV for a 30 s response time, but fewer γ' s emitted at > 1 TeV + EBL \Rightarrow need to catch a GRB in the FoV Method 2: DisCan (dispersion cancelation; very robust) – lack of smearing of narrow spikes in high-energy light-curve CTA: might work best – sharp bright spikes are observed up to high energies also late within long GRBs: $t_{var} \sim 0.1 \text{ s \& } E_{h}$ ~ 0.1 TeV could do ~ 30 times better than Fermi/LAT limit ■ short GRB in FoV (survey mode): 10 ms, 1 TeV: > $10^3 \times \text{LAT}$

Conclusions:

 \sim CTA GRB detection rate is still uncertain (~ 0.6 - 8 yr⁻¹) Despite a modest detection rate they could teach us a lot: Improve lower limits on GRB outflow Lorentz factor help detect HE cutoff (determine Γ) & determine its origin Prompt emission: help determine the emission mechanism & distinguish between leptonic & hadronic models \Rightarrow constrain outflow composition, particle acceleration & prospects for UHECRs & HE neutrinos 2 Long lived emission \Rightarrow particle acceleration in relativistic collisionless shocks, inter-galactic magnetic fields EBL: higher z; perhaps finally clearly detect its signatures LIV: good prospects; helps if GRB in FoV (survey mode)