Lessons from the first Magnetar Wind Nebula

+

Jonathan Granot

Open University of Israel

High Energy Astrophysics Workshop,

February 28, 2017 Jerusalem

Younes et al. 2016, ApJ, 824, 138

Granot, J., Gill, R. et al. 2016, MNRAS, 464, 4895

100"

Outline of the Talk:

- Introduction: magnetars & Pulsar Wind Nebulae
- Observations: the 1st MWN discovered around Swift J1834.9–0846
- Association with SNR W41 & MWN detectability
- GeV/TeV Source: next talk by Ramandeep Gill
- Dynamics of the Nebula + SNR two main dynamical regimes
- Internal Structure of the Nebula: ideal MHD \rightarrow non-ideal low- σ flow
- X-ray synchrotron Nebula Size: electron advection, diffusion, cooling
- Steady-state X-ray emission: energy balance $\rightarrow \dot{E}_{rot}$ is insufficient
- Alternative energy source: magnetar's B-field decay
- Conclusions

Magnetars: differences from "normal" pulsars

Compared to "normal" radio pulsars, magnetars have:

- Long rotation periods: $P \approx 2 12$ s
- Large period derivatives: $\dot{P} \sim 10^{-13} 10^{-10}$ •
- Small spin-down ages $\dot{P} \propto P^{2-n}$ $P(t) = P_0 \left(1 + \frac{t}{t_0}\right)^{1/(n-1)}$ $t \approx \frac{P}{(n-1)\dot{P}} \equiv \tau_c \qquad (P_0 \ll P)$
- Lower spin-down power •

$$L_{\rm sd} = -I\Omega\dot{\Omega} = \frac{4\pi^2 I\dot{P}}{P^3} \sim 10^{30} - 10^{34} \text{ erg s}^{-1}$$

Higher inferred dipole surface magnetic fields •

$$1 + \sin^2 \theta_B$$
 force free

$$L_{\rm sd} = f \frac{B_s^2 R_{NS}^6 \Omega^4}{c^3} \to B_s = 3.2 \times 10^{19} \sqrt{P \dot{P}} \text{ G} > B_Q = \frac{m_e^2 c^3}{e \hbar} = 4.4 \times 10^{13} \text{ G}$$

High quiescent X-ray luminosities: $L_X \sim 10^{33} - 10^{36} \text{ erg s}^{-1} > L_{sd}$ •

3

Magnetars: differences from "normal" pulsars

- Magnetars (especially SGRs) show diverse bursting activity, from small bursts to giant flares
- Giant flares are rare (only 3 observed so far) & extremely luminous bursts:

 $L_{\rm pk} \sim 10^{44} - 10^{47} \ {\rm erg \ s^{-1}}$

(Woods & Thompson 2004)

- These observations led to the Thompson & Duncan (1993, 1995, 1996, 2000) magnetar model, which posits that:
 - Magnetar bursts and quiescent emission is powered by the decay of the strong internal magnetic field $B_{\rm int} \gtrsim 10^{15} {
 m G}$
 - Short bursts are related to stressing of the crust by the unwinding internal toroidal field.
 - Giant flares are produced by shearing and reconnection of the strong external magnetic field.
 - High magnetic fields in magnetars result from field amplification by a dynamo mechanism when $P_0 \lesssim 3~{
 m ms}$

Pulsar Wind Nebulae (PWNe)

- Cold ultra-relativistic MHD wind is launched from the pulsar, powered by ${\sf E}_{\rm rot}$
- This wind is decelerated & heated at the termination shock radius, R_{TS} , where its ram-pressure equals the pressure in the hot nebula that it inflates
- The hot, high-pressure nebula is bounded by the SNR & performs work on it

$$L_{\rm sd} = 4\pi R^2 cP \qquad P = \frac{e}{3} = \frac{E_{\rm neb}}{4\pi R_{\rm neb}^3} \qquad R_{TS} = \sqrt{\frac{R_{\rm neb}^3 L_{\rm sd}}{cE_{\rm neb}}}$$

The first-ever magnetar wind nebula

Swift J1834.9-0846

P = 2.48 s $\dot{P} = 7.96 \times 10^{-12} \text{ s s}^{-1}$ $\tau_c = 4.9 \text{ kyr} \quad (n = 3)$ $t = \tau_c - 10^5 \text{ yr}$ $B_s = 10^{14} \text{ G}$ $L_{sd} = 2 \times 10^{34} \text{ erg s}^{-1}$

(Younes et al. 2016) XMM-Newton observations (2-3 keV, 3-4.5 keV, 4.5-10 keV)

Association with SNR W41 & Efficiency of MWN's X-ray emission

Total emitted power (0.5 – 30 keV) $L_{\rm x,tot} = 2.74 \times 10^{33} d_4^2 \text{ erg/s}$

The spin-down power $L_{\rm sd} = 2.05 \times 10^{34} \ {\rm erg/s}$

X-ray efficiency of MWN $\eta_X = \frac{L_{\rm X,tot}}{L_{\rm sd}} = 0.13 d_4^2$

7

Association with SNR W41 & Efficiency of MWN's X-ray emission

Total emitted power (0.5 – 30 keV) $L_{\rm x,tot} = 2.74 \times 10^{33} d_4^2 \ {\rm erg/s}$

The spin-down power $L_{
m sd}=2.05 imes10^{34}~{
m erg/s}$

X-ray efficiency of MWN $\eta_X = \frac{L_{\rm X,tot}}{L_{\rm sd}} = 0.13 d_4^2$

The Detectability of Magnetar Wind Nebulae

- Is Swift J1846.9–0846 really unique (J1935)? What helps make a MWN detectable?
- It is currently ~1-2 MWNe around ~30 known magnetars (small number statistics)
- What makes the difference? Intrinsic vs. External properties:
- Current spin-down power L_{sd}
- Initial spin period P_0 & rotational energy E_0
- Initial surface dipole field B₀
- Pair multiplicity & wind Lorentz factor
- Natal kick velocity

Small kick velocity: magnetar remains inside its SNR, which confines a MWN (traps the outflows & results in a relatively bright, easier to detect emission) $offset \leq (0.05 - 0.1)R_{SNR} \Longrightarrow v_{\perp,SGR} \leq (30 - 60)d_4(t_{SNR}/10^{4.5} \text{ yr})^{-1} \text{ km s}^{-1}.$

Large kick velocity: magnetar exits its SNR & forms a bow-shock containing much less energy (most of the outflow escapes, leading to weaker, harder to detect emission) SGR 1806-20: $v_{\perp,SGR} \approx 580d_{15} \text{ km s}^{-1}$, SGR 1900+14 $v_{\perp,SGR} = 130 \pm 30 \text{ km s}^{-1}$ SGR 0501+4516: $v_{\perp,SGR} \sim 3000 \text{ km s}^{-1}$, SGR 0526-66 $v_{\perp,SGR} \approx 1100 \text{ km s}^{-1}$

• External density (SNR & MWN evolution) + composition (bow shock X-ray efficiency)

Dynamics of the MWN + SNR

Core crossing time by MWN: t_c

$$t_0 < t_c: \quad P_0 > 4.1 \left[\frac{n-1}{2} E_{\text{SN},51}\right]^{-1/2} \text{ms} \quad E_0 < 1.2 \times 10^{51} \left(\frac{n-1}{2}\right) E_{\text{SN},51} \text{ erg}$$

$$t_{\rm ST} = 519 M_3^{5/6} E_{\rm tot,51}^{-1/2} n_0^{-1/3} \text{ yr} \qquad E_{\rm tot} = E_0 + E_{\rm SN}$$

= $116 M_3^{5/6} E_{\rm tot,52.3}^{-1/2} n_0^{-1/3} \text{ yr} \qquad E_0 = \frac{n-1}{2} L_0 t_0 = \frac{1}{2} I \Omega_0^2 \simeq 2 \times 10^{52} P_{0,\rm ms}^{-2} \text{ erg}$
$$R_{\rm ST} = 3.07 M_3^{1/3} n_0^{-1/3} \text{ pc} \qquad t_0 = 1.3 \times 10^5 \frac{2}{n-1} f^{-1} B_{14}^{-2} P_{0,\rm ms}^2 \text{ s}$$

Evolution of MWN & SNR Radii

Evolution of MWN & SNR Energies

The MWN internal flow structure

- In contrast with the usual ideal MHD assumption (Kennel & Coroniti 84') motivated by recent 3D RMHD simulations we assume a non-ideal low- σ flow (MHD \rightarrow HD; BM76)
- In the inner-nebula there is a quasi-steady flow:

$$\frac{\partial}{\partial t}(\tilde{n}\gamma) + \frac{c}{r^2}\frac{\partial}{\partial r}(r^2\tilde{n}\gamma\beta) = 0 , \quad \frac{d}{dt}P\tilde{n}^{4/3} = 0 , \quad \frac{d}{dt}(P\gamma^4) = \gamma^2\frac{\partial P}{\partial t} \implies \beta(r) \approx \frac{1}{3}\left(\frac{r}{R_{\rm TS}}\right)^{-2}$$

• Velocity continuity with $v_{_{SNR}}$ at the outer radius R & equating the wind ram pressure to the nebula's thermal pressure at $R_{_{TS}}$ implies a uniformly expanding outer region

Observed Size & Spectral Softening: Roles of Diffusion & Cooling

 $\log[v(t)]$

c/3

aR(t)

 $aR_b(t)$

t

 $r \propto t^{1/3}$ fluid element $\ r \propto t^a$

Non-steady

Uniform expansion

Fluid injected before

current dynamic time

Steady-state

Fluid injected in the

last dynamical time

 $v \propto r^{-2}$

Synchrotron **cooling time** of X-ray emitting electrons (at $2E_2$ keV) is << system's age \Rightarrow quasi-steady state:

$$t_{\rm syn} = \frac{6\pi m_e c}{\sigma_T B^2 \gamma_e} \simeq 1.02 B_{15\mu \rm G}^{-3/2} E_2^{-1/2} \,\,\mathrm{kyr} \,\,.$$

Diffusion dominates over advection in whole MWN

$$r_{c,\mathrm{dif}} \approx \sqrt{2\lambda_{\mathrm{def}} c t_{\mathrm{syn}}(\gamma_e)} \approx 1.57 \, B_{15\mu\mathrm{G}}^{-3/2} \zeta^{1/2} \,\mathrm{pc}$$

 $\zeta \equiv \lambda_{\rm def}/R_L \gtrsim 1 \ (\zeta = 1 \text{ corresponds to Bohm diffusion})$

The Synchrotron X-Ray Nebula around Swift 1834.9–0846

• Magnetic field in the X-ray emitting region is:

$$B = \left(\frac{L_X \sigma_e}{\mathcal{A}V} \frac{\Gamma - 2}{\Gamma - 1.5} \frac{\nu_1^{1.5 - \Gamma} - \nu_2^{1.5 - \Gamma}}{\nu_m^{2 - \Gamma} - \nu_M^{2 - \Gamma}}\right)^{2/7} \\ \simeq \begin{cases} 4.0\xi \sigma_e^{2/7} d_4^{-2/7} \ \mu \text{G} & \text{(whole nebula)}, \\ 5.0\xi_{\text{in}} \sigma_e^{2/7} d_4^{-2/7} \ \mu \text{G} & \text{(inner nebula)}. \end{cases}$$

Observation: XMM (0.5 - 10 keV) $L_x = 2.5 \times 10^{33} d_4^2 \text{ erg s}^{-1}$ $\Gamma = 2.2 \pm 0.2$ $\Gamma_{\rm in} = 1.3 \pm 0.3$ $\Gamma_{\rm out} = 2.5 \pm 0.2$

NuSTAR detected inner nebula up to 30 keV

XMM + NuSTAR (0.5–30 keV) joint fit results: $L_{\rm in} = 5.0 \times 10^{32} d_4^2 \text{ erg s}^{-1}$ $\Gamma_{\rm in} = 1.41 \pm 0.12$

X-ray efficiency of MWN

Assuming:

- Power-law electron distribution: $\frac{dN_e}{d\gamma_e} \propto \gamma_e^{-p}$ $\gamma_1 < \gamma_e < \gamma_2$
- Electrons emitting in observed range: $\gamma_1 < \gamma_m < \gamma_e < \gamma_M < \gamma_2$ $\eta_X = \frac{L_{\rm X,tot}}{L_{\rm sd}} = 0.13d_4^2$
- Magnetization: $\sigma = \frac{B^2}{4\pi w} = \frac{3}{2} \frac{B^2}{8\pi e} = \frac{3}{2} \frac{E_B}{E_m} = \frac{3}{2} \sigma_e \epsilon_e$ Emission volume: $V = \frac{4}{3} \pi R_x^3$ $\sigma_e \equiv E_B/E_e$ $E_e = \epsilon_e E_m$ $(E_m = \text{total energy in matter})$

ating $\left(\nu_{M}^{1.5-1} - \nu_{m}^{1.5-1}\right)$ in the observed frequency range

$$\xi^{7/2}(\nu_1,\nu_2) = \left(\frac{\nu_2^{1.5-\Gamma} - \nu_1^{1.5-\Gamma}}{1.5-\Gamma}\right)$$
 = ratio of energy in all electrons to that in those radia

$$\frac{B^2}{2} = \frac{3}{2} \frac{E_B}{E} = \frac{3}{2} \sigma_e \epsilon_e$$

Constraints From Maximum Electron Lorentz Factor

What powers the MWN? Rotational energy is not enough

In terms of the observed X-ray efficiency:

Estimate

$$g = \frac{L_{X,\text{tot}}}{L_{\text{sd}}} \frac{(1+\sigma)\xi^{7/2}}{\epsilon_e} = \frac{\eta_X(1+\sigma)\xi^{7/2}}{\epsilon_e}$$

Estimate of ξ_{in} from the inner nebula yields:
$$\frac{g\sigma}{1+\sigma} > 3.07d_4^3 E_{M,30}^{7/2} f^{7/2}$$

 ϵ_e = fraction of that going into power-law energy dist. of electrons $\epsilon_X = \xi^{-7/2}$ = fraction of that going into electrons radiating observed X-rays

(the rest goes into the B-field)

Can the decaying dipole field power the MWN?

• A potential energy source is the decay of the super-strong magnetar dipole magnetic field

ipole Field Decay:
$$B_s(t) = B_0 \left(1 + \frac{t}{t_B}\right)^{-1/\alpha} \equiv B_0 \tau^{-1/\alpha}$$

$$\dot{E}_{\rm dip} = \frac{d}{dt} \left(\frac{B_s^2 R_{\rm NS}^3}{6} \right) = -\frac{2}{\alpha} \frac{E_{B,\rm dip}(t)}{t_B \tau}$$

Since t_B is not well constrained, we find which decay timescale maximizes the the power

$$\dot{E}_{B,\mathrm{dip}}|_{\mathrm{max}} = \frac{2}{2+\alpha} \frac{E_{B,\mathrm{dip}}(t)}{t}$$

 $t_B = 2t/\alpha$ $\tau_{\mathrm{max}} = 1 + \alpha/2$

Comparison of this power with that required to power the nebula gives

$$\frac{|\dot{E}_{B,\text{dip}}|_{\text{max}}}{gL_{\text{sd}}} = 1.25 \times 10^{-3} g_{50}^{-1} f^{-1} t_{4.5}^{-1}$$
$$g = 50g_{50} \quad t_{\text{SNR}} = 10^{4.5} t_{4.5} \text{ yr} \quad \alpha = 3/2$$

Decay of dipole field alone cannot supply the requisite power $\langle \dot{E} \rangle = g L_{\rm sd}$

(motivated by Dall'Osso, JG & Piran 2012)

Decay of the stronger internal magnetic field B_{int} is needed

Internal Field Decay: We demand that the maximum field decay power slightly exceeds the required power due to inefficiencies in power transfer to particles

$$\dot{E}_{B,\text{int}}|_{\text{max}} = \frac{2}{2+\alpha} \frac{E_{B,\text{int}}(t)}{t} \ge gL_{\text{sd}} \longrightarrow B_{\text{int}}(t) \ge 3.3 \times 10^{15} g_{50}^{1/2} t_{4.5}^{1/2} \text{ G}$$

• Stability requires that B_{int}/B_{dip} cannot be too large; Simulations find (Braithwaite 2009):

(I) the configuration is stable when both poloidal & toroidal components exist(II) the ratio of the two components is constrained

 $|\mathcal{A}E_{\rm B,int}/E_G \simeq 10^{-3} \lesssim E_{\rm B,dip}/E_{\rm B,int} \lesssim 0.8|$

The lower limit yields the maximum internal field

 $E_G \simeq 3 \times 10^{53} \text{ erg}$ (Gravitational binding energy) $\mathcal{A} \sim 10^3$ (for NSs)

• Consistent with the results of Dall'Osso et al. (2012), which favor a young age $t \lesssim 10^{4.5}$ yr $B_{\rm int,0} \sim (1-3) \times 10^{16} \,\mathrm{G}$, $\alpha_{\rm int} \sim 1 - 1.5$, $t_{B_{\rm int}} \sim 7 - 10 \,\mathrm{kyr}$ 19

$g - \sigma$ plane

Assuming the fiducial age: $t_{\rm SNR} = 10^{4.5} {
m yr}$

Energy injection through bursts & flares

• A natural mechanism for additional energy injection into the MWN is through bursts and giant flares, but how many bursts are required?

- Energy distribution of magnetar bursts appear to follow a power-law: $E^2 \frac{dN}{dE} \propto E^{-s+2}$ s = 1.4 - 1.8
- Similar distribution is found for Earth quakes and in simulations of stressed elastic medium, which suggests that magnetar bursts are "star quakes" and may indeed be a self-critical phenomena.

$$\frac{E}{\langle \dot{E} \rangle} \sim 100 g_{50}^{-1} E_{45.5} \text{ yr}$$

Conclusions:

- A small natal kick might help MWN detectability
- Possible new internal nebula flow structure (for non-ideal low- σ flow)
- X-ray Nebula Size: may be ~ the diffusion dominated cooling length
- Steady-state X-ray emission: energy balance → \dot{E}_{rot} is insufficient $g = \frac{\langle \dot{E} \rangle}{L_{sd}} > g_{min} = 3.07 \left(\frac{1+\sigma}{\sigma}\right) d_4^3 E_{M,30}^{7/2} f^{7/2}$
- An alternative **energy source** is needed:
 - ◆ magnetar's dipole B-field decay is not enough ×
 - magnetar's internal B-field decay is enough \checkmark
- Energy from the B-field decay may be injected into the MWN via outflows associated with regular busts or giant flares