Relativistic Jet Acceleration, Collimation & Stability

Jonathan Granot

Open University of Israel

The Strongest Magnetic Fields in the Universe, ISSI, Bern, 6 Feb. 2014

Outline of the talk:

- Magnetic vs. thermal acceleration
- Role of external confinement
- Standard collimation-induced magnetic acceleration: steady, ideal MHD, axi-symmetric
- Problems with this standard picture \Rightarrow alternatives
- Impulsive magnetic acceleration (JG, Spitkovsky & Komissarov 2011; JG 2012)
- Poynting dominated GRB jet propagating in a star (Bromberg, JG, Lyubarsky & Piran 2014)
- Conclusions

Relativistic Magnetic Acceleration:
 Relativistic (v≈c) outflows/jets are very common in astrophysics & involve strong gravity at the source: PWN (NS), GRBs, AGN (SMBH), μ-quasars (BH/NS)
 Most models assume a steady flow for simplicity, despite observational evidence for time variability

Crab Nebula: X-ray in blue, optical in red

Circinus X-1: an accreting neutron star (shows orbital modulation & Type I X-ray bursts)

Relativistic Magnetic Acceleration: Is the acceleration magnetic? ? ? ? ? PWN (NS), GRBs, AGN (SMBH), μ-quasars (BH/NS) Most models assume a steady flow for simplicity, despite observational evidence for time variability

Crab Nebula: X-ray in blue, optical in red

Circinus X-1: an accreting neutron star (shows orbital modulation & Type I X-ray bursts) All these sources likely share a common basic mechanism, in which relativistic outflows are launched hydromagnetically

A rapidly spinning central body twists up the magnetic field into a toroidal component & plasma is ejected by the magnetic tension.

Magnetic vs. Thermal Acceleration:

 Hydromagnetic launching naturally helps avoid a high baryon loading, which can greatly limit the maximal possible asymptotic Lorentz factor Γ_∞

Key difference between thermal and magnetic steady state acceleration of relativistic supersonic flows:

Thermal: fast, robust & efficient
 Magnetic: slow, delicate & less efficient

Force balance in Poynting dominated flows:

Does the huge tension of wound up magnetic field (hoop stress) compress the flow towards the axis?

No!

In the current closure region, the force is decollimating.

The flow as a whole cannot be collimated without external confinement!

Force balance in Poynting dominated flows:

Total EM force:
$$\mathbf{f} = \rho_e \mathbf{E} + \frac{1}{c} \mathbf{j} \times \mathbf{B} \approx 0$$

 $\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} = 0$ $\rho_e = \frac{1}{4\pi} \nabla \cdot \mathbf{E}$

Magnetic hoop stress

In the far zone, $v \rightarrow c$ and $E \rightarrow B$.

In highly relativistic flows, the Lorentz and electric forces nearly cancel each other.

Acceleration & collimation are only due to a small residual force!

Ideal MHD acceleration: numerical + analytic results (Komissarov+ 09; Lyubarsky 09; Tchekhovskoy+10)

■ Unconfined flows quickly lose lateral causal contact, become radial & stop accelerating when $\Gamma_{\infty} \sim \sigma_0^{1/3} \quad \& \quad \sigma_{\infty} \sim \sigma_0^{2/3} \gg 1$ (Goldreich & Julian 1970; Tomimatsu 1994; Beskin et al. 1998)

- Weak confinement: $p_{ext} \propto z^{-\alpha}$ with $\alpha > 2 \Rightarrow$ lose lateral causal contact, become conical & stop accelerating later: loss of causal contact: $\Gamma_{\infty} \sim \sigma_0^{1/3} \theta_{jet}^{-2/3} = \sigma_{\infty} \sim (\sigma_0 \theta_{jet})^{2/3}$ efficient conversion: $\Gamma_{\infty} \theta_{jet} < 1$
- Strong confinement: $p_{ext} \propto z^{-\alpha}$ with $\alpha < 2 \Rightarrow$ stay in causal contact $\Gamma \propto z^{\alpha/4}$ and reach $\Gamma_{\infty} \sim \sigma_0$, $\sigma_{\infty} \sim 1$ $\Gamma_{\infty} \theta_{jet} \leq 1$

The "σ-problem": for a "standard" steady ideal MHD axisymmetric flow $\Gamma_{\infty} \sim \sigma_0^{1/3} \& \sigma_{\infty} \sim \sigma_0^{2/3} \gg 1$ for a spherical flow; $\sigma_0 = B_0^2 / 4\pi \rho_0 c^2$ ◆ In PWN the solution is dissipation of the striped wind However, this doesn't work in relativistic jet sources ■ Jet collimation helps, but not enough: $\Gamma_{\infty} \sim \sigma_0^{1/3} \theta_{\text{iet}}^{-2/3}$, $\sigma_{\infty} \sim (\sigma_0 \theta_{\text{iet}})^{2/3} \& \Gamma \theta_{\text{iet}} \leq \sigma^{1/2} (\sim 1 \text{ for } \Gamma_{\infty} \sim \Gamma_{\text{max}} \sim \sigma_0)$ Still $\sigma_{\infty} \ge 1 \Rightarrow$ inefficient internal shocks, $\Gamma_{\infty} \theta_{jet} \gg 1$ in GRBs Sudden drop in external pressure can give $\Gamma_{\infty} \theta_{iet} \gg 1$ but still $\sigma_{\infty} \ge 1$ (Tchekhovskoy et al. 2009) \Rightarrow inefficient internal shocks

Alternatives to the "standard" model

Axisymmetry: non-axisymmetric instabilities (e.g. the current-driven kink instability) can tangle-up the magnetic field & lead to significant dissipation (Begelman; Spruit; Eichler; Lyubarsky; Giannios;...)

■ Ideal MHD: a striped wind can dissipate its energy magnetic energy → heat (+radiation) → kinetic energy (Drenkham & Spruit 2002; Lyubarsky 2010)

Steady-state: effects of strong time dependence (JG, Komissarov & Spitkovsky 2011; JG 2012a, 2012b)

Impulsive Magnetic Acceleration: $\Gamma \propto \mathbb{R}^{1/3}$

2. ⟨Γ⟩_E ∝ R^{1/3} between R₀~Δ₀ & R_c~σ₀²R₀ and then ⟨Γ⟩_E ≈ σ₀
3. At R > R_c the sell spreads as Δ ∝ R & σ ~ R_c/R rapidly drops
Complete conversion of magnetic to kinetic energy!
This allows efficient dissipation by shocks at large radii

1st Steady then Impulsive Acceleration

Our test case problem has no central engine: it may be, e.g., directly applicable for giant flares in SGRs; however:
 In most astrophysical relativistic (jet) sources (GRBs, AGN, μ-quasars) the variability timescale (t_v≈R₀/c) is long enough (>R_{ms}/c) that steady acceleration operates & saturates (at R_s)
 Then the impulsive acceleration kicks in & leads to σ < 1 Log(Γ)₄

Many sub-shells: acceleration, collisions (JG 2012b)

For a long lived variable source (e.g. AGN), each sub shell can expand by 1+Δ_{gap}/Δ₀ ⇒ σ_∞ = (E_{total}/E_{EM,∞}-1)⁻¹ ~ Δ₀/Δ_{gap}
 For a finite # of sub-shells the merged shell can still expand
 Sub-shells in GRBs can lead to a low-magnetization thick shell & enable the outflow to reach higher Lorentz factors

Hydrodynamic GRB Jet in its parent star

- The Jet develops a slow-moving 'head', were there is a pressure balance between the shocked jet material & external medium
- At the head jet matter decelerates by a reverse shock, flows sideways & forms a high-pressure cocoon that collimates the jet
- To propagate the head must be fed by jet material & the jet would fail if engine stops before $z_h \cong R(1-\beta)$

Breakout time (Bromberg et al. 2011)

Hydrodynamic GRB Jet in its parent star

The Jet develops a slow-moving 'head', were there is a pressure balance between the shocked jet material & external medium

- At the head jet matter decelerates by a reverse shock, flows sideways & forms a high-pressure cocoon that collimates the jet
- To propagate the head must be fed by jet material & the jet would fail if engine stops before $z_h \approx R(1-\beta)$

Breakout time (Bromberg et al. 2011)

GRB Jet propagation in its parent star: highly magnetized vs. hydrodynamic jets

- The flow must decelerate to match it's head velocity, but for high- σ a shock can't do it \Rightarrow the jet converges near its head
- Narrower head \Rightarrow larger head velocity \Rightarrow faster jet breakout
- Relativistic head \Rightarrow less energy into cocoon & supernova
- The head velocity is independent of the detailed jet structure simplifies the model & allows (semi-) analytic solutions

(Bromberg, JG, Lyubarsky & Piran 2014)

GRB Jet propagation in its parent star: highly magnetized vs. hydrodynamic jets

- The flow must decelerate to match it's head velocity, but for high- σ a shock can't do it \Rightarrow the jet converges near its head
- Narrower head \Rightarrow larger head velocity \Rightarrow faster jet breakout
- Relativistic head \Rightarrow less energy into cocoon & supernova
- The head velocity is independent of the detailed jet structure simplifies the model & allows (semi-) analytic solutions
- Levinson & Begelman (2013): current-driven instabilities dissipate most of the magnetic field → a hydrodynamic jet
 This is still unclear & strongly affects the jet dynamics

Hydrodynamic Jet Propagation (Bromberg+ 2011)

Magneticic Jet Propagation

(Bromberg, JG, Lyubarsky & Piran 2014)

Magneticic Jet Propagation

Magneticic Jet Propagation

Stability of the jet

Purely toroidal fields suffer from the kink instability

But as the jet is in lateral equilibrium, $B'_{g} \sim B'_{p}$ and this helps to make it more stable

Our analysis shows the the jet is at most only mildly unstable and is likely crosses the star largely intact.

Comparison with Simulations

(Bromberg & Tchekhovskoy 2014 in prep)

Magnetic jet breakout time

- The jet becomes relativistic deep in the star.
- It crosses the star at a time comparable to R/c
- The engine minimal activity time in this case:

$$t_b \approx \left(\frac{R}{\beta c}\right)(1-\beta) \approx \frac{R}{2\Gamma^2 c}$$

(Bromberg, JG, Lyubarsky & Piran 2014b)

(Bromberg & Tchekhovskoy 2014 in prep)

Magnetic jet breakout time

- The jet becomes relativistic deep in the star.
- It crosses the star at a time comparable to R/c
- The engine minimal activity time in this case:

(Bromberg & Tchekhovskoy 2014 in prep)

(Bromberg, JG, Lyubarsky & Piran 2014b)

Breakout times comparison:

Bromberg et al 2011a

$$t_b \approx 15 \sec\left(\frac{Liso}{10^{51} erg/s}\right)^{-1/3} \left(\frac{\theta_0}{10^{\circ}}\right)^{2/3} \left(\frac{R}{5R\odot}\right)^{2/3} \left(\frac{M}{15M\odot}\right)^{1/3}$$

Bromberg+ 2014

$$t_b \approx 1.8 \sec\left(\frac{Liso}{10^{51} erg / s}\right)^{-1/3} \left(\frac{r_L}{5*10^7 cm}\right)^{2/3} \left(\frac{M}{15M_{\odot}}\right)^{1/3}$$

Breakout times comparison:

Bromberg & Tchekhovskoy 2014 in prep

Conclusions:

Magnetic acceleration: • Helps avoid large baryon loading Requires external confinement Is tightly related to the jet collimation Impulsive magnetic acceleration: • Can help reach kinetic energy dominance Allows efficient dissipation in internal shocks Poynting dominated GRB jet propagating in a star Analytic solution: the jet's head is relativistic throughout most of the star Smaller breakout time, less energy injected into cocoon Observational implication: long GRB durations, the SN