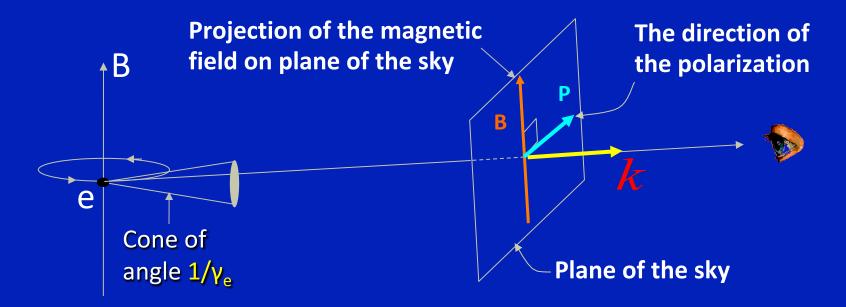

Polarization in Gamma-Ray Bursts Jonathan Granot

Open University of Israel & George Washington University

Collaborators: R. Gill, A. Königl, F. De Colle, E. Ramirez-Ruiz, T. Piran

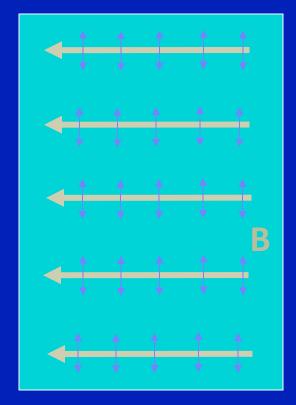


Workshop to bring together experts on High Energy Astrophysics from Japan & Israel; RIKEN, Kobe, Hyogo, Japan; 22 July 2019

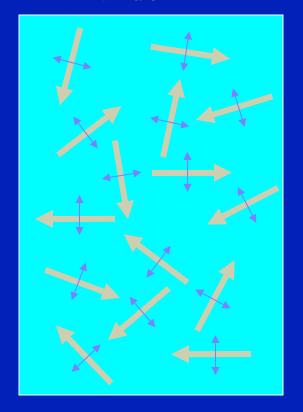
Outline of the Talk:

- Polarization of synchrotron rad. from a relativistic source
- Afterglow: Jet structure & dynamics, B-field structure (ES)
 - ◆ Top hat vs. structured jet
 - ♦ Shock-produced vs. ordered B-field, or combining the two
 - Shock-produced B-field's degree of anisotropy
- Reverse shock: optical flash & radio flare (ejecta B-field)
- Prompt GRB: emission mechanism, Jet structure, ejecta B
 - ♦ High P: Syn. + ordered B vs. sharp jet + special viewing angle
 - Different emission mechanisms
 - **♦** What can be learned from single GRBs or a large sample
- Conclusions

Polarization of Synchrotron Emission

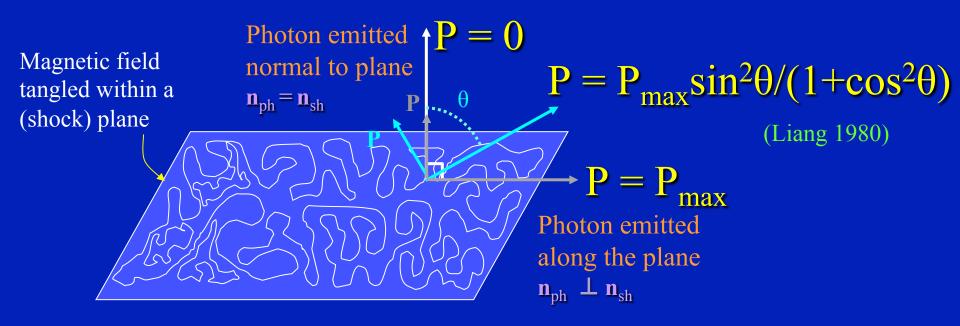


- linear polarization is perpendicular to the projection of B on the plane of the sky (normal to the wave vector)
- The maximal polarization is for the local emission from an ordered **B**-field: $P_{max} = (\alpha+1)/(\alpha+5/3)$ where $F_{\nu} \propto \nu^{-\alpha}$, $-1/3 \le \alpha \le 1.5 \Rightarrow 50\% \le P_{max} \le 80\%$ (Rybicki & Lightman 1979; Granot 2003)

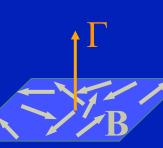

In the source rest frame:

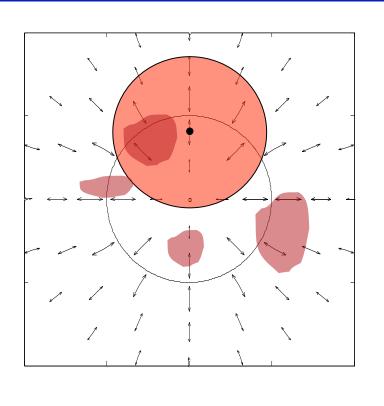
- A uniform field produces $P = P_{max}$
- For a field random when projected on the plane of the sky: P = 0
- In particular, for a field isotropically tangled in 3D: P = 0

Uniform B



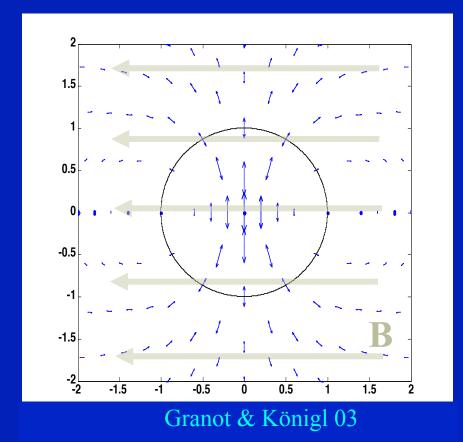
Random B


Shock Produced Magnetic Field:

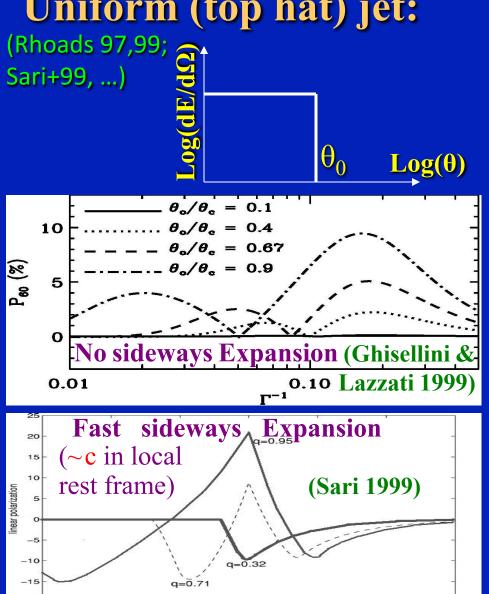

■ A magnetic field that is produced at a relativistic collisionless shock, due to the two-stream instability, is expected to be **tangled within the plane of the shock** (Medvedev & Loeb 1999)

Relativistic Source:

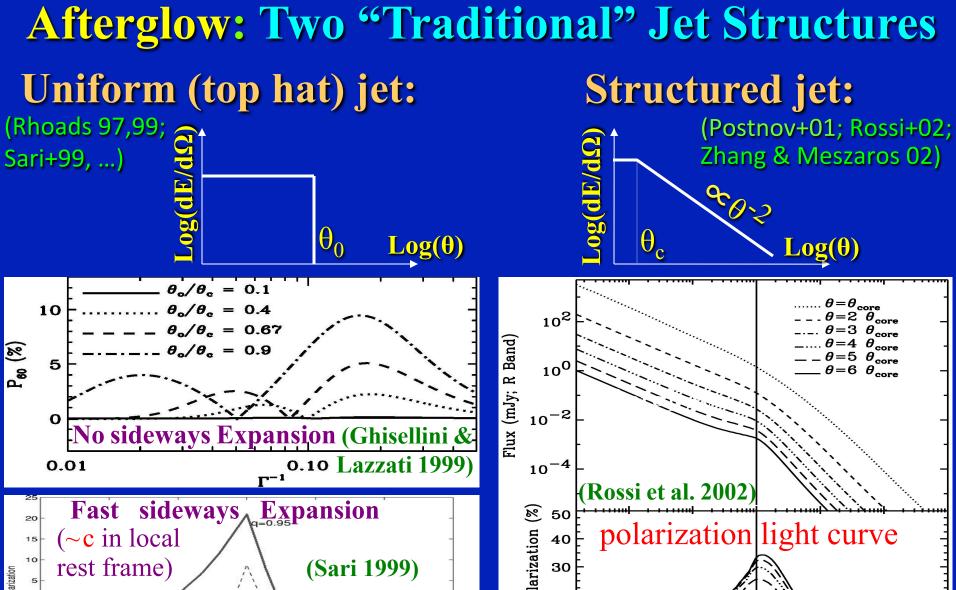
Random field in shock plane

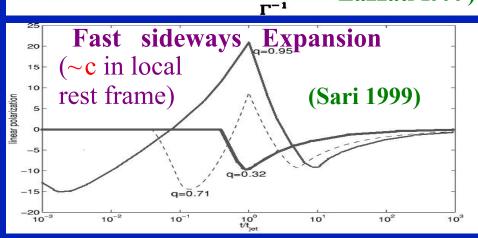


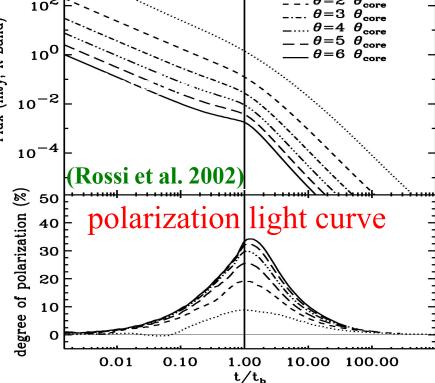
Sari 99; Ghisellni & Lazzati 99



Afterglow: Two "Traditional" Jet Structures

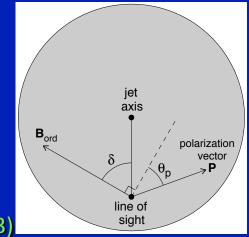

Uniform (top hat) jet:

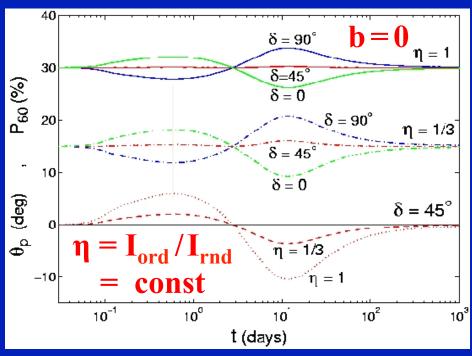


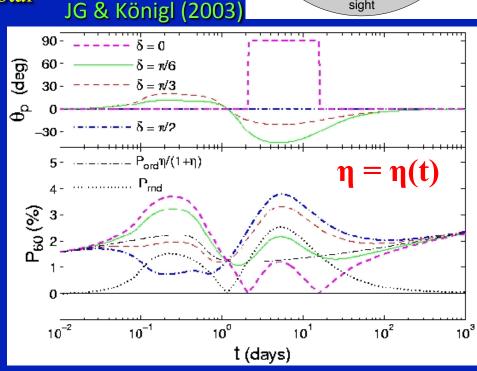

Main Prediction:

P vanishes & reappears with $\theta_{\rm p}$ rotated by 90° Is not clearly observed

Also: $P \leq 10\%-20\%$ While $P_{obs} \sim 1-3\%$

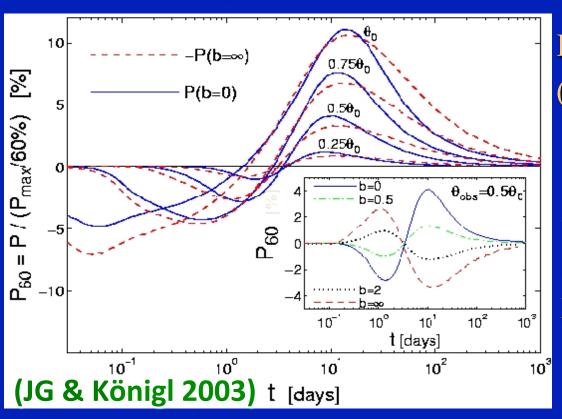




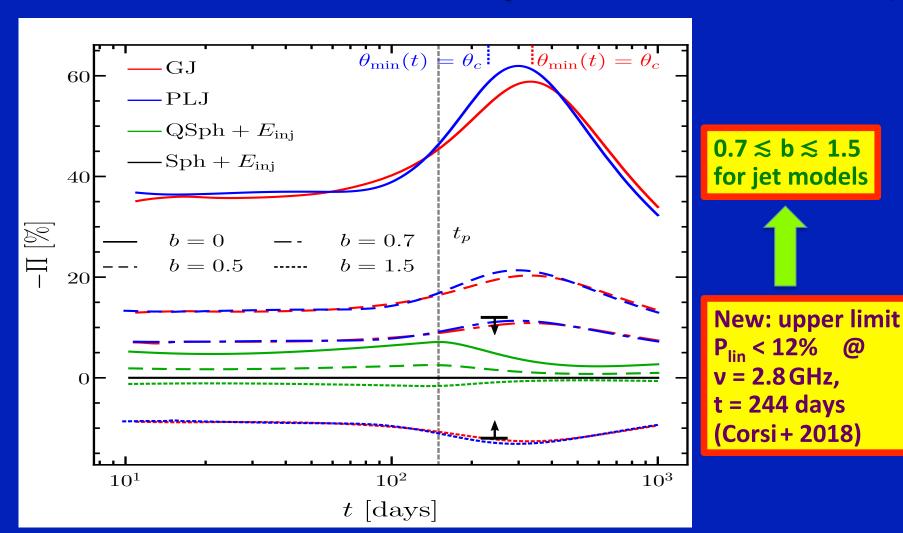


Combining Ordered Bord & Random Brad Fields

- $P_{ord} \sim P_{max} \sim 60\% \& \theta_p = 90^{\circ} \text{ w.r.t. the direction of } B_{ord}$
- In the afterglow $P \le 3\% \Rightarrow I_{ord} \le I_{rnd}$ but we can still have $I_{ord}P_{ord} \ge I_{rnd}P_{rnd}$
- \Rightarrow B_{rnd} dominates I_{total} but B_{ord} dominates IP & P_{total}

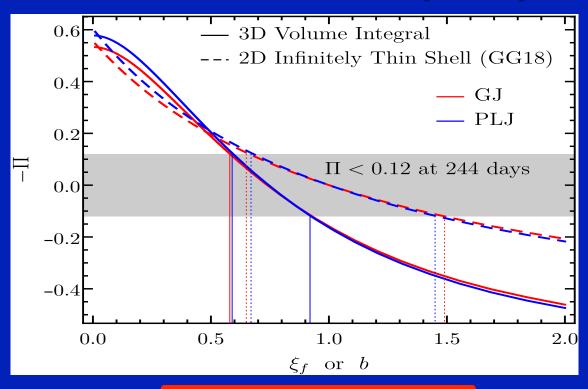


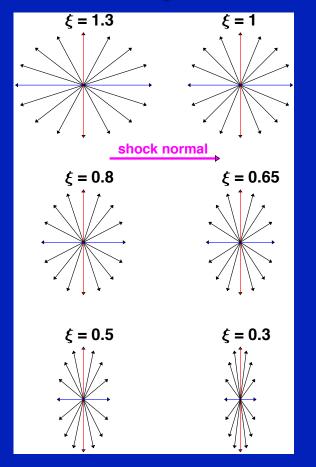
The Random B-field's Degree of Anisotropy:


- $b = 2\langle B_{\parallel}^2 \rangle / \langle B_{perp}^2 \rangle$ parameterizes the asymmetry of B_{rnd}
- Sign(b-1) determines $\theta_p(P > 0)$ is along the direction from the line of sight to the jet axis & P < 0 is rotated by 90°)
- For $b \approx 1$ the polarization is very low (field is almost isotropic)
- $P \le 3\%$ in afterglows observations $\Rightarrow 0.5 \le b \le 2$


```
P = P_{max}/[1+2/(b-1)\sin^2\theta]
(valid for j'_{v'} \propto [B' \sin \chi']^2)
\theta_0 = 5^{\circ}
E_{\text{jet}} = 3 \times 10^{51} \text{ erg}
n = 1 \text{ cm}^{-3}
z = 1
p = 2.5
\varepsilon_e = 0.1
```

GW170817/GRB170817A Afterglow (Gill & JG 18)

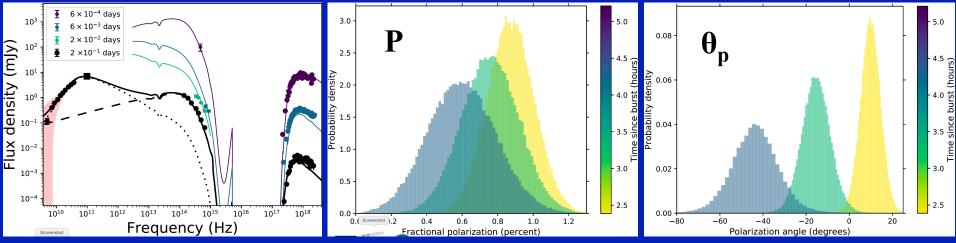

- Assuming a shock-produce B-field with $b \equiv 2\langle B_{\parallel}^2 \rangle / \langle B_{\perp}^2 \rangle$
- Data favor two core-dominated jet models with similar P(t)



GW170817/GRB170817A Afterglow (Gill & JG 19)

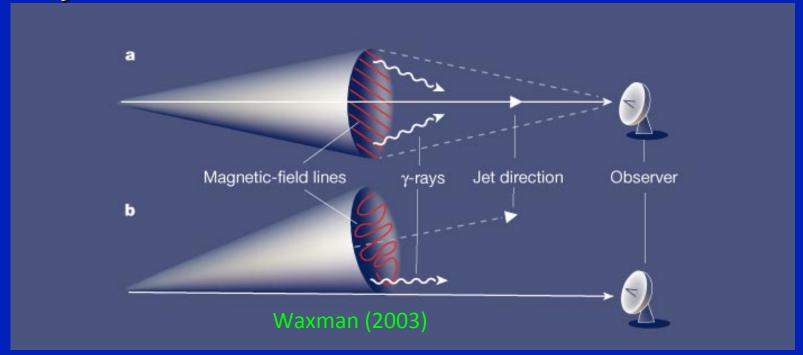
More realistic assumptions \Rightarrow B-field in collisionless shocks:

- 2D emitting shell → 3D emitting volume (local BM76 radial profile)
- B-field evolution by faster radial expansion: $L'_r/L'_{\theta,\phi} \propto \chi^{(7-2k)/(8-2k)}$ B-field isotropic in 3D with $B'_r \rightarrow \xi B'_r$ (Sari 1999); $\xi = \xi_0 \chi^{(7-2k)/(8-2k)}$



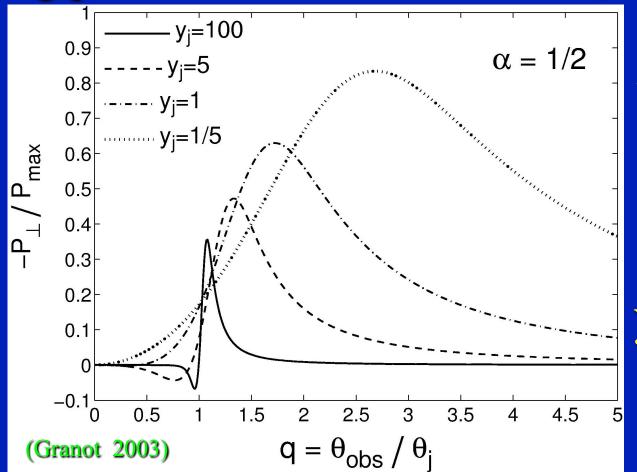
 $0.58 \lesssim \xi_f \lesssim 0.92$

Reverse shock Pol.: Ejecta B-field (Laskar + 2019)


- ALMA observed GRB190114C reverse shock @97.5 GHz: $P \approx 0.9 \rightarrow 0.6\%$, $\Delta\theta_p \approx 54^\circ$ (2.2 \rightarrow 5.2hr); 1st GRB radio pol.
- Low P: rules out B_{ord} (with $\theta_B \gtrsim 1/\Gamma$) for which $P \sim P_{max}$
- $B_{ord}+B_{rnd}$: $IP|_{rnd}/IP|_{ord} \sim 1 \& I_{ord} \ll I_{rnd}$; FS (t \ll t_j), RS+FS
- N ~ $(\Gamma_{ej}\theta_B)^{-2}$ incoherent patches: $\Gamma_{ej}\approx 15$, P ~ $P_{max}/N^{1/2} \Rightarrow \theta_B \sim P/P_{max}\Gamma_{ej} \sim 10^{-3} \& \Delta\theta_p \sim 1$ expected over $\Delta t \sim t$
- $\Delta\theta_p \approx 54^\circ$ rules out an axi-symmetric configuration (e.g. a global toroidal B-field in the original jet; A patchy shell?

Prompt γ-ray Polarization: hard to measure

First consider synchrotron emission:


- Shock produced B-field $+\theta_{obs} \le \theta_j 1/\Gamma \Rightarrow P \approx 0$
- $Arr P_{max}$ can be achieved in the following ways:
 - (1) ordered magnetic field in the ejecta,
 - (2) special geometry: $|\theta_{obs} \theta_j| \le 1/\Gamma \implies$ favors narrow jets: $\theta_j \le 1/\Gamma$ (works with a shock produced B-field)

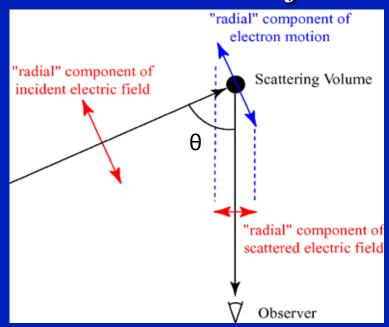
Narrow Jet + shock produced B-field

- High polarization + reasonable flux $\Rightarrow \theta_j < \theta_{obs} \le \theta_j + 1/\Gamma$
- A reasonable probability for such $\theta_{obs} \Rightarrow \Gamma \theta_j \leq a$ few
- Since $\Gamma \ge 100 \& \theta_j \ge 0.05$, $\Gamma \theta_j \ge 5$ and is typically larger
- The jet must have sharp edges: $\Delta \theta_j \lesssim 1/4\Gamma$ (Nakar et al. 03)
- a 'structured jet' produces low polarization (several %)
- Most GRBs are viewed from $\theta_{obs} < \theta_{j}$ and are expected to have a very low polarization in this scenario
- Afterglow obs. imply more random B_{rnd} : $0.58 \le \xi_f \le 0.92$

Adding pulses: Random B-field in shock plane

$$y_j = (\Gamma \theta_j)^2$$
$$F_v \propto v^{-\alpha}$$

■ $\Delta\Gamma$ ~ Γ between different shell collisions (different pulses in GRB light curve) reduces P by a factor ~ 2

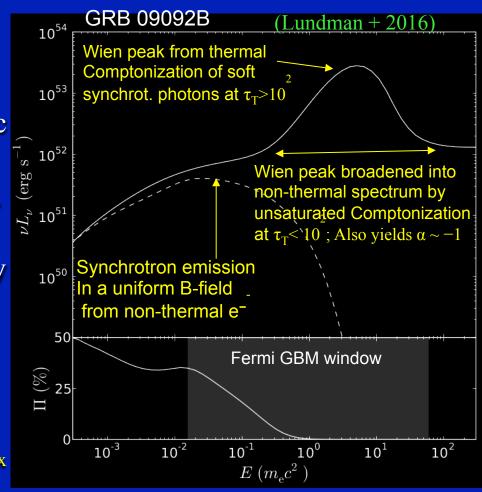

Prompt γ-ray Polarization: short summary

	Ordered Field	Sharp-edge Jet
P~80%	X	X
P~50%		X
P~25%	with $B_{rnd} \leq B_{ord}$	
P ≤ 10%	$B_{rnd} > B_{ord}$	with $B_{rnd} \gtrsim B_{ord}$
statistics	High P in all GRBs	low P in most GRBs
Potential problems	Some B _{rnd} required for Fermi acceleration	$\Gamma\theta_{j} \le \text{a few, } \Delta\Gamma \sim \Gamma,$ $B_{\text{rnd}} (0.58 \le \xi_{f} \le 0.92)$ $\Delta\theta_{j} \le 1/4\Gamma$

Alternative to Synchrotron: Compton Drag (Bulk Inverse Compton Scattering of External photons)

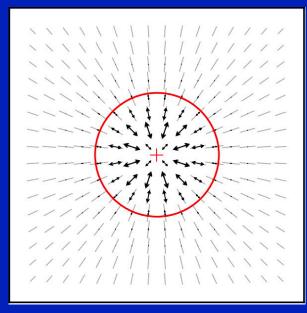
(Lazzati et al. 2003; Dar & De Rujula 2003, Eichler & Levinson 2003)

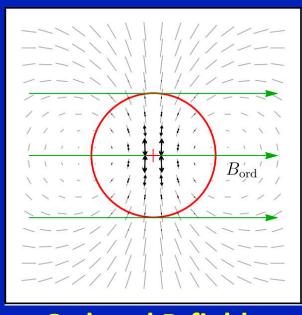
- Requires special geometry/viewing angle, $\theta_j < \theta_{obs} \le \theta_j + 1/\Gamma$
- Polarization properties similar to synchrotron + B_{rnd} with an advantage: **local polarization** $P = (1 \cos^2\theta)/(1 + \cos^2\theta)$ can reach up to 100% while $P_{max} \sim 70\%$ for synchrotron
- Shares drawbacks of shock produced field + narrow jet

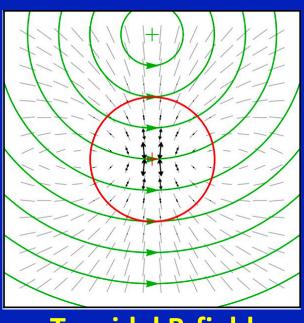


Alternative to Synchrotron: Photospheric Emission

(Comptonized radiation advected from optically thick to thin region of the jet)

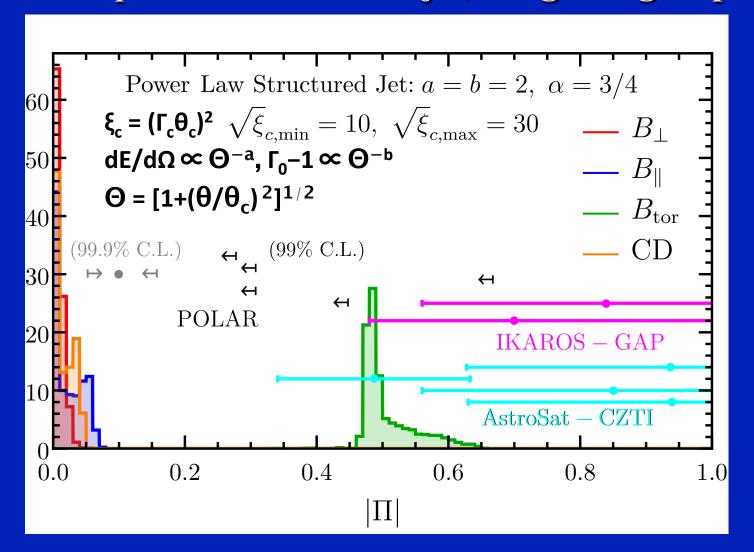

(Beloborodov 11; Thompson & Gill 14; Lundman + 14; Vurm & Beloborodov 16; Lundman + 16)


- Need to integrate radiation transfer equations for the Stokes parameters $I(r,\mu) \& Q(r,\mu)$ from $\tau_T \gg 1$ to $\tau_T \ll 1$.
- P=0 seed photons become anisotropic at $\tau_T \le 10 \implies P \approx 0.45 P_{Compton-drag}$
- This requires symmetry breaking e.g.
- special viewing angle: $|\theta_{obs} \theta_i| \le 1/\Gamma$
- θ -dependent bulk- Γ and/or luminosity (in structured jets $P \le 40\%$)
- Synchrotron + B_{ord} (spherical flow): Unscattered syn. photons emitted at $\tau_T \sim 1$ dominate at $E \ll E_{pk} \Rightarrow P \sim P_{syn,max}$



Prompt GRB Polarization (Gill, JG & Kumar 2018):

- Comprehensive study in view of γ-ray polarimetry missions
- Jet structure: top hat (sharp/smooth), Gaussian, core+power-law
- Emission mechanism: synchrotron, photospheric, Compton drag
- Time resolved, integrated over single or multiple pulses


Random B-field in 2D

Ordered B-field

Toroidal B-field

Prompt GRB Polarization (Gill, JG & Kumar 2018):

■ Model comparison: structured jet, integrating 10 pulses

■ B_{tor}/B_{ord} is favored if P~50-65% in 1 ($\geq 20\%$ in most) GRBs

Conclusions:

- **Afterglow polarization** probes jet structure & dynamics + the B-field structure behind relativistic collisionless shocks
 - \Rightarrow GW170817: 0.58 $< \xi_0 < 0.92$ (B_{rnd}) + core-dominated jet
- Reverse shock polarization probes B-field structure in ejecta
 - Optical flash ($\theta \sim 1/\Gamma_0 \lesssim 10^{-2}$), radio flare ($\theta \sim 1/\Gamma \sim 0.1$)
 - Reverse & forward (afterglow) shock emission may overlap
 - ♦ GRB190114C: $\frac{B_{ord}}{B_{ord}}$, $\frac{axisymmetric}{A_{tor}}$ ($\frac{B_{tor}}{B_{rnd}}$), $\frac{B_{ord}}{B_{ord}}$ + $\frac{B_{rnd}}{A_{rnd}}$ patchy shell?, incoherent patches: $\frac{B_{rnd}}{B_{rnd}}$ ∨
- Prompt GRB pol. probes emission mechanism & jet structure
 - Observations are improving & new planned missions
 - Theory is improving to match the upcoming observations
 - ♦ B_{ord}/B_{tor} favored if P ~ 50-65% in 1 ($\geq 20\%$ in most) GRBs