Gamma-Ray Burst Polarization: Status and Perspectives Jonathan Granot Open University of Israel & George Washington University

Collaborators: R. Gill, A. Königl, M. Kole, P. Kumar, T. Laskar

Astrophysical Polarimetry in the Time-Domain Era, Lecco, Italy, 1/9/22

Polarization of Synchrotron Emission

linear polarization is perpendicular to the projection of
 B on the plane of the sky (normal to the wave vector)

The maximal polarization is for the local emission from an ordered **B**-field: $P_{max} = (\alpha+1)/(\alpha+5/3)$ where $F_v \propto v^{-\alpha}$, $-1/3 \leq \alpha \leq 1.5 \Rightarrow 50\% \leq P_{max} \leq 80\%$ (Rybicki & Lightman 1979; Granot 2003)

In the source rest frame:

- A uniform field produces $P = P_{max}$
- For a field random when projected on the plane of the sky: P = 0
- In particular, for a field isotropically tangled in 3D: P = 0

Uniform B

Random B

Shock Produced Magnetic Field:

A magnetic field produced at a relativistic collisionless shock, due to the two-stream instability, is **naively** expected to be **tangled within the plane of the shock** (Medvedev & Loeb 1999)

Random field in shock plane

Ordered field in shock plane

1.5 0.5 0 -0.5 -1 -1.5 -2∟ -2 -1.5 -0.5 0.5 1.5

Random field in shock plane

Ordered field in shock plane

1.5 0.5 0 -0.5 -1 -1.5 -2∟ -2 -1.5 -0.5 0.5 1.5

Random field in shock plane

Ordered field in shock plane

1.5 0.5 Λ -0.5 -1 -1.5 -2∟ -2 -1.5 -0.5 0.5 1.5

Random field in shock plane

Ordered field in shock plane

1.5 0.5 0 R -0.5 -1 -1.5 -2∟ -2 -1.5 -0.5 0.5 1.5

Random field in shock plane

Ordered field in shock plane

1.5 0.5 0 R -0.5 -1 -1.5 -2∟ -2 -1.5 -0.5 0.5 1.5

Random field in shock plane

Ordered field in shock plane

1.5 0.5 n -0.5 -1 -1.5 -2∟ -2 -0.5 0.5 1.5 -1.5

Random field in shock plane

Ordered field in shock plane

Sari 99; Ghisellni & Lazzati 99

Granot & Königl 03

 $P \sim P_{max}$

GRB Theoretical Framework:

 Progenitors:
 Short: binary mergers
 Long: massive stars
 Jet Acceleration to Γ>100: P_{rad} / B-field?

γ-rays: dissipation: shocks/B? emission mechanism?
 The jet decelerates as it sweeps up the external medium, by a reverse shock (for σ ≤ 1) ⇒ optical flash, radio flare
 ⇒ afterglow from the long-lived forward shock going into the external medium: X-ray → optical → radio

Afterglow: Two "Traditional" Jet Structures **Uniform (top hat) jet:** (Rhoads 97,99; G 0<u>0</u>(01) θ_0 $Log(\theta)$ $\theta_{\rm o}/\theta_{\rm e} = 0.1$ $\theta_{\rm o}/\theta_{\rm c} = 0.4$ 10 $\theta_{o}/\theta_{c} = 0.67$ P₆₀ (%) $\theta_o/\theta_c = 0.9$ 5 Main Prediction: 0 **P** vanishes & reappears No sideways Expansion (Ghisellini & 0.10 Lazzati 1999) with $\theta_{\rm p}$ rotated by 90° 0.01 Fast sideways Expansion Is not clearly observed 20 [∼c in local 15 10 rest frame) (Sari 1999) Also: $P \leq 10\% - 20\%$ inear polarization While $P_{obs} \sim 1-3\%$ -10 q=0.32 -15 q=0.7

-20

10

10-2

10

10° t/t___ 10

10²

10³

The Random B-field's Degree of Anisotropy:

- $b = 2\langle B_{\parallel}^2 \rangle / \langle B_{perp}^2 \rangle$ parameterizes the asymmetry of B_{rnd}
- Sign(b-1) determines θ_p (P > 0 is along the direction from the line of sight to the jet axis & P < 0 is rotated by 90°)</p>
- For b ≈ 1 the polarization is very low (field is almost isotropic)
 P ≤ 3% in afterglows observations ⇒ 0.5 ≤ b ≤ 2

GW170817/GRB170817A Afterglow (Gill & JG 18) Assuming a shock-produce B-field with b = 2⟨B_|²⟩/⟨B_⊥²⟩ Data favor two core-dominated jet models with similar P(t)

GW170817/GRB170817A Afterglow (Gill & JG 18) ■ Assuming a shock-produce B-field with b = 2⟨B₁²⟩/⟨B_⊥²⟩ ■ Data favor two core-dominated jet models with similar P(t)

GW170817/GRB170817A Afterglow (Gill & JG 19)
More realistic assumptions ⇒ B-field in collisionless shocks:
2D emitting shell → 3D emitting volume (local BM76 radial profile)

GW170817/GRB170817A Afterglow (Gill & JG 19) More realistic assumptions ⇒ B-field in collisionless shocks:
2D emitting shell → 3D emitting volume (local BM76 radial profile)
B-field evolution by faster radial expansion: L'_r/L'_{θ,φ} ∝ χ^{(7-2k)/(8-2k)} B-field isotropic in 3D with B'_r → ζB'_r (Sari 1999); ζ = ζ_f χ^{(7-2k)/(8-2k)}

GW170817/GRB170817A Afterglow (Gill & JG 19) More realistic assumptions ⇒ B-field in collisionless shocks:
2D emitting shell → 3D emitting volume (local BM76 radial profile)
B-field evolution by faster radial expansion: L'_r/L'_{θ,φ} ∝ χ^{(7-2k)/(8-2k)} B-field isotropic in 3D with B'_r → ζB'_r (Sari 1999); ζ = ζ_f χ^{(7-2k)/(8-2k)}

Reverse shock Pol.: B-field in ejecta

- The existence of a reverse shock $\Rightarrow E_{EM} \leq E_{kin}$ ($\sigma \leq 1$)
- In the 'optical flash' the pol. should be similar to that in γ-rays, but much easier to measure & more reliable
- If B_{ord} in the ejecta is ordered on angles $1/\Gamma_0 \leq \theta_B < \theta_j$ then $P \approx P_{max} \times min(1,\Gamma\theta_B)$ due to averaging over $N \sim (\Gamma\theta_B)^{-2}$ incoherent patches (Granot & Königl 03) \Rightarrow smaller P & different θ_p in the 'radio flare' ($\Gamma \sim 10$)

Toroidal B-field in the ejecta:

B-field	Optical Flash	Radio Flare (t~ t _j)
Shock	$\theta_{\rm obs} \lesssim \theta_{\rm j}$ -1/ Γ : $\mathbf{P} \approx 0$	pol. due to jet structure
Produced	$\theta_{\rm obs} \sim \theta_j + 1/\Gamma: P \leq 50\%$	\Rightarrow similar to afterglow
Uniform	$\mathbf{P} \sim \mathbf{P}_{\max}$	$\mathbf{P} \sim \mathbf{P}_{\max}$
Patches $(\theta_{\rm B})$	$\theta_{\rm B} \gtrsim 1/\Gamma_0$: P ~ P _{max}	$P \sim P_{max} \times min(1, \Gamma \theta_B)$
Toroidal	$\frac{1}{\Gamma_0} \lesssim \theta_{obs} \lesssim \theta_j:$ $P \sim P_{max}$	structured jet: $P \sim P_{max}$ tophat: $P \sim P_{max}(\theta_{obs}/\theta_j)^2$

Upper Limits on Polarization of Radio Flare Emission (Granot & Taylor 2005)

GRB	<mark>t (days)</mark>	<mark>t</mark> j (days)	Π _L (3 σ)	<mark>Π_C (3 σ)</mark>
990123	1.25	≈ 2	< 23%	< 32%
	1.49		< 11%	< 17%
991216	2.68	~ 2	< 9%	< 15%
	1.49, 2.68		< 7%	< 9%
020405	1.19	~ 1-2	< 11%	< 19%

Probably almost no depolarization in the host galaxy

Likely no significant depolarization in the source due to different amounts of Faraday rotation; hard to rule out

Toroidal Magnetic Field:

the Ejecta: Γ (t) follows that of

 Γ (t) follows the Blandford & McKee self similar solution

 Γ (t) follows that of the forward shock

Implications of the Upper limits on the Radio Flare Polarization

B-field	Theoretical	Theory vs.
structure	prediction	Observation
Shock	pol. due to jet structure	
Produced	\Rightarrow similar to afterglow	
Uniform	$P \sim P_{max}$	X
Patches $(\theta_{\rm B})$	$P \sim P_{max} \times min(1, \Gamma \theta_B)$	$\theta_{\rm B} \lesssim P_{\rm lim} / \Gamma P_{\rm max} \sim 10^{-2}$
Toroidal	structured jet: P ~ P _{max}	X
	tophat: $P \sim P_{max}(\theta_{obs}/\theta_j)^2$	$\theta_{\rm obs}/\theta_{\rm j} \lesssim 0.4 - 0.55$

Implications of the Upper limits on				
the Dodie Flore Delerization				
New Results: Tanmoy Laskar's talk				
D-meru		Theory vs.		
structure	prediction	Observation		
Shock	pol. due to jet structure			
Produced	\Rightarrow similar to afterglow			
Uniform	$P \sim P_{max}$	X		
Patches $(\theta_{\rm B})$	$P \sim P_{max} \times min(1, \Gamma \theta_B)$	$\theta_{\rm B} \lesssim P_{\rm lim} / \Gamma P_{\rm max} \sim 10^{-2}$		
Toroidal	structured jet: P ~ P _{max}	X		
	tophat: $P \sim P_{max}(\theta_{obs}/\theta_j)^2$	$\theta_{\rm obs}/\theta_{\rm j} \lesssim 0.4 - 0.55$		

Prompt γ-ray Polarization: hard to measure
First consider synchrotron emission:
Shock produced B-field + θ_{obs} ≤ θ_j−1/Γ ⇒ P ≈ 0
P ~ P_{max} can be achieved in the following ways:

ordered magnetic field in the ejecta,
special geometry: |θ_{obs} - θ_j| ≤1/Γ ⇒ favors narrow jets: θ_j ≤ 1/Γ (works with a shock produced B-field)

- High polarization + reasonable flux $\Rightarrow \theta_i < \theta_{obs} \leq \theta_i + 1/\Gamma$
- A reasonable probability for such $\theta_{obs} \Rightarrow \Gamma \theta_i \lesssim a$ few
- Since $\Gamma \ge 100 \& \theta_i \ge 0.05$, $\Gamma \theta_i \ge 5$ and is typically larger

- High polarization + reasonable flux $\Rightarrow \theta_i < \theta_{obs} \leq \theta_i + 1/\Gamma$
- A reasonable probability for such $\theta_{obs} \Rightarrow \Gamma \theta_i \lesssim a$ few
- Since $\Gamma \ge 100 \& \theta_i \ge 0.05$, $\Gamma \theta_i \ge 5$ and is typically larger
- The jet must have sharp edges: $\Delta \theta_i \lesssim 1/4\Gamma$ (Nakar et al. 03)

- High polarization + reasonable flux $\Rightarrow \theta_i < \theta_{obs} \leq \theta_i + 1/\Gamma$
- A reasonable probability for such $\theta_{obs} \Rightarrow \Gamma \theta_i \lesssim a$ few
- Since $\Gamma \ge 100 \& \theta_i \ge 0.05$, $\Gamma \theta_i \ge 5$ and is typically larger
- The jet must have sharp edges: $\Delta \theta_i \lesssim 1/4\Gamma$ (Nakar et al. 03)
- a 'structured jet' produces low polarization (several %)

- High polarization + reasonable flux $\Rightarrow \theta_i < \theta_{obs} \leq \theta_i + 1/\Gamma$
- A reasonable probability for such $\theta_{obs} \Rightarrow \Gamma \theta_i \lesssim a$ few
- Since $\Gamma \ge 100 \& \theta_i \ge 0.05$, $\Gamma \theta_i \ge 5$ and is typically larger
- The jet must have sharp edges: $\Delta \theta_i \lesssim 1/4\Gamma$ (Nakar et al. 03)
- a 'structured jet' produces low polarization (several %)
- Most GRBs are viewed from θ_{obs} < θ_j and are expected to have a very low polarization in this scenario

- High polarization + reasonable flux $\Rightarrow \theta_i < \theta_{obs} \leq \theta_i + 1/\Gamma$
- A reasonable probability for such $\theta_{obs} \Rightarrow \Gamma \theta_i \lesssim a$ few
- Since $\Gamma \ge 100 \& \theta_i \ge 0.05$, $\Gamma \theta_i \ge 5$ and is typically larger
- The jet must have sharp edges: $\Delta \theta_i \lesssim 1/4\Gamma$ (Nakar et al. 03)
- a 'structured jet' produces low polarization (several %)
- Most GRBs are viewed from $\theta_{obs} < \theta_j$ and are expected to have a very low polarization in this scenario
- Afterglow obs. imply more random B_{rnd} : $0.57 \leq \xi_f \leq 0.89$

Adding pulses: Random B-field in shock plane

ΔΓ ~ Γ between different shell collisions (different pulses in GRB light curve) reduces P by a factor ~ 2

Prompt γ-ray Polarization: short summary

	Ordered Field	Sharp-edge Jet
P~80%	X	X
P ~ 50%	\checkmark	X
P ~25%	with $B_{rnd} \lesssim B_{ord}$	\checkmark
$\mathbf{P} \lesssim 10\%$	$B_{rnd} > B_{ord}$	with $B_{rnd} \gtrsim B_{ord}$
statistics	High P in all GRBs	low P in most GRBs
Potential problems	Some B _{rnd} required for Fermi acceleration	$ \begin{array}{l} \Gamma \theta_{j} \lesssim a \text{ few, } \Delta \Gamma \sim \Gamma, \\ B_{rnd} \left(0.57 \lesssim \xi_{f} \lesssim 0.89 \right) \\ \Delta \theta_{j} \lesssim 1/4\Gamma \end{array} $

Prompt GRB Polarization (Gill, JG & Kumar 2020):
Comprehensive study in view of γ-ray polarimetry missions
Jet structure: top hat (sharp/smooth), Gaussian, core+power-law
Emission mechanism: synchrotron, photospheric, Compton drag
Time integrated over single or multiple pulses

Prompt GRB Polarization (Gill, JG & Kumar 2018): Model comparison: structured jet, integrating 10 pulses

 B_{tor}/B_{ord} is favored if P~50-65% in 1 ($\geq 20\%$ in most) GRBs

Prompt GRB Polarization (Gill, Kole & JG 2022):

Conclusions:

Afterglow polarization probes jet structure & dynamics + the B-field structure behind relativistic collisionless shocks
 ⇒ GW170817: 0.57 < ξ₀ < 0.89 (B_{rnd}) + core-dominated jet (talks by Brivio, Jordana-Mitjans, Laskar)

Conclusions:

Afterglow polarization probes jet structure & dynamics + the B-field structure behind relativistic collisionless shocks
 ⇒ GW170817: 0.57 < ξ₀ < 0.89 (B_{rnd}) + core-dominated jet (talks by Brivio, Jordana-Mitjans, Laskar)

Reverse shock polarization probes B-field structure in ejecta
 Optical flash (θ ~ 1/Γ₀ ≤ 10⁻²), radio flare (θ ~ 1/Γ ~ 0.1)
 Reverse & forward (afterglow) shock emission may overlap
 Optical / Radio results: talks by Jordana-Mitjans / Laskar

Conclusions:

Afterglow polarization probes jet structure & dynamics + the B-field structure behind relativistic collisionless shocks
 ⇒ GW170817: 0.57 < ξ₀ < 0.89 (B_{rnd}) + core-dominated jet (talks by Brivio, Jordana-Mitjans, Laskar)

Reverse shock polarization probes B-field structure in ejecta • Optical flash ($\theta \sim 1/\Gamma_0 \leq 10^{-2}$), radio flare ($\theta \sim 1/\Gamma \sim 0.1$) Reverse & forward (afterglow) shock emission may overlap Optical / Radio results: talks by Jordana-Mitjans / Laskar Prompt GRB pol. probes emission mechanism & jet structure • Observations are improving & new planned missions • Theory is improving to match the upcoming observations ♦ B_{ord}/B_{tor} favored if P ~ 50-65% in 1 (≥20% in most) GRBs (talks by Kole, Gill, Parsotan, De Angelis)