
GRB Jets:

a Theoretical Review

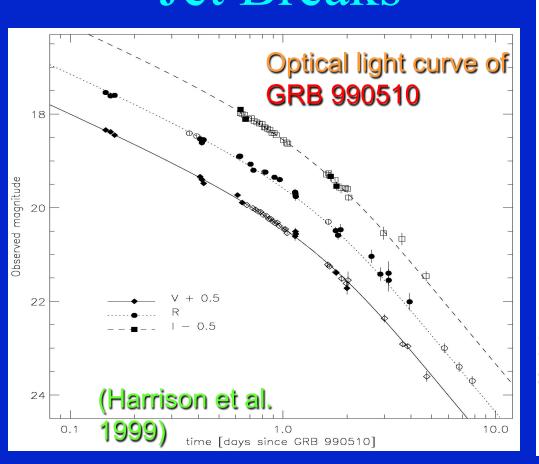
Jonathan Granot

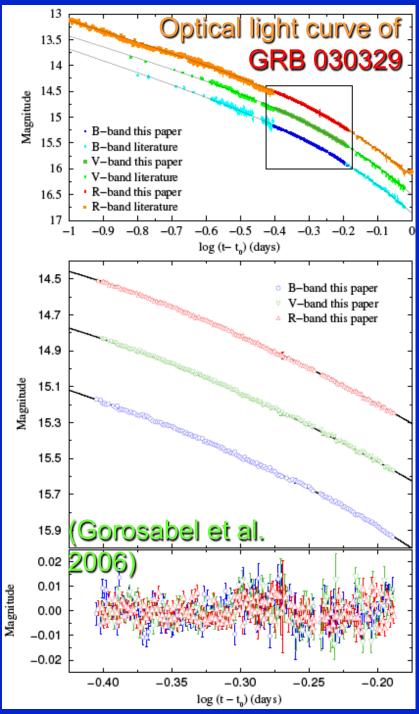
Open University of Israel

Locating Astrophysical Transients, Lorentz Center, Leiden, 15 May 2013

Outline of the talk:

- Background, jet angular structure & evolution stages
- Magnetic acceleration: overview & recent results
- Jet propagation inside the progenitor star
- Jet dynamics during the afterglow:
 - ◆ Recent numerical & analytic results: finally agree
 - ♦ Simulations of an afterglow jet propagating into a stratified external medium: $\rho_{ext} \propto R^{-k}$ for k = 0, 1, 2
 - ◆ Implications for GRBs: jet breaks, radio calorimetry

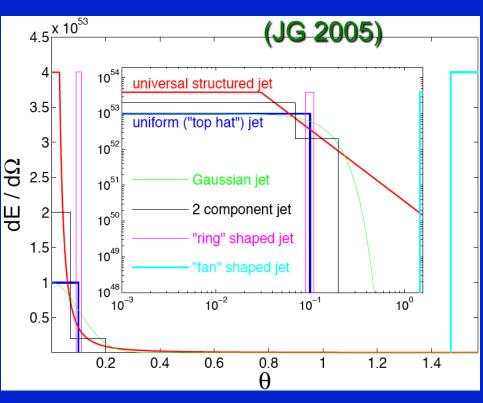

Differences between GRB jets & other Astrophysical Relativistic Jets:


- GRB jets are not directly angularly resolved
 - ◆ Typically at $z \ge 1$ + early source size ≤ 0.1 pc
 - ◆ Only a single radio afterglow (GRB 030329) was marginally resolved after 25 days (+monitored for years)
 - ◆ The jet structure is constrained indirectly
- GRB jets are **Impulsive:** most observations are long after the source activity
- GRBs are transient events, making the observations much more difficult

Observational Evidence for Jets in GRBs

- The energy output in γ -rays assuming isotropic emission approaches or even exceeds $M_{\odot}c^2$
 - → difficult for a stellar mass progenitor
 - ◆ True energy is much smaller for a narrow jet
- Some long GRBs occur together with a SN
 - ⇒ the outflow would contain >M_☉ if spherical
 - ⇒ only a small part of this mass can reach Γ ≥100
 & it would contain a small fraction of the energy
- Achromatic break or steepening of the afterglow light curves ("jet break")

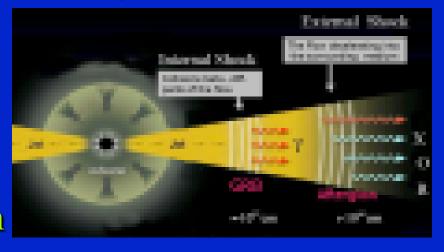

Examples of Smooth & Achromatic Jet Breaks



The Angular Structure of GRB Jets:

- Jet structure: unclear (uniform, structured, hollow cone,...)
 - Affects $E_{\gamma,iso} \rightarrow E_{\gamma}$ & observed GRB rate \rightarrow true rate
 - ◆ Viewing-angle effects (afterglow & prompt XRF)
 - ◆ Can also affect late time radio calorimetry

The Angular Structure of GRB Jets:


- Jet structure: unclear (uniform, structured, hollow cone,...)
 - Affects $E_{\gamma,iso} \rightarrow E_{\gamma}$ & observed GRB rate \rightarrow true rate
 - ◆ Viewing-angle effects (afterglow & prompt XRF)
 - ◆ Can also affect late time radio calorimetry
- Here I consider mainly a uniform "top hat" jet wide jet:

Determine the jet structure by:

- Prompt GRB: logN logS
- Afterglow:
 - ◆ Polarization evolution
 - Lightcurve shapes
 - $dN/d\theta$, $dN/d\theta dz$ (from t_{jet} , z)

Stages in the Dynamics of GRB Jets:

- Launching of the jet: magnetic (B-Z?) neutrino annihilation?
- Acceleration: magnetic or thermal?
- For long GRBs: propagation inside progenitor star
- Collimation: stellar envelope, accretion disk wind, magnetic
- Coasting phase that ends at the deceleration radius R_{dec}
- At $R > R_{dec}$ most of the energy is in the shocked external medium: the composition & radial profile are forgotten, but the angular profile persists (locally: BM76 solution)
- Once $\Gamma < 1/\theta_0$ at $R > R_{jet}$ jet lateral expansion is possible
- Eventually the flow becomes Newtonian & spherical: selfsimilar Sedov-Taylor solution

Thermal vs. Magnetic Acceleration:

Most of the acceleration is in the supersonic regime

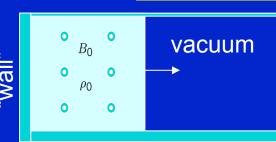
Key difference between thermal and magnetic steady state acceleration of relativistic supersonic flows:

- Thermal: fast, robust & efficient
- Magnetic: slow, delicate & less efficient

The σ-problem: for a "standard" steady ideal MHD axisymmetric flow

- $\Gamma_{\infty} \sim \sigma_0^{1/3} \& \sigma_{\infty} \sim \sigma_0^{2/3} \gg 1$ for a spherical flow; $\sigma_0 = B_0^{2/4} \pi \rho_0 c^2$
- lacktriangle However, PWN observations (e.g. the Crab nebula) imply $\sigma \ll 1$ after the wind termination shock the σ problem!!!
- A broadly similar problem persists in relativistic jet sources
- Jet collimation helps, but not enough: $\Gamma_{\infty} \sim \sigma_0^{1/3} \theta_{\rm jet}^{-2/3}$, $\sigma_{\infty} \sim (\sigma_0 \theta_{\rm jet})^{2/3} \& \Gamma \theta_{\rm jet} \le \sigma^{1/2} (\sim 1 \text{ for } \Gamma_{\infty} \sim \Gamma_{\rm max} \sim \sigma_0)$
- Still $\sigma_{\infty} \ge 1 \implies$ inefficient internal shocks, $\Gamma_{\infty}\theta_{\text{jet}} \gg 1$ in GRBs
- Sudden drop in external pressure can give $\Gamma_{\infty}\theta_{jet} \gg 1$ but still $\sigma_{\infty} \gtrsim 1$ (Tchekhovskoy et al. 2009) \Rightarrow inefficient internal shocks

Alternatives to the "standard" model


- Axisymmetry: non-axisymmetric instabilities (e.g. the current-driven kink instability) can tangle-up the magnetic field (Heinz & Begelman 2000)
- ♦ If $\langle B_r^2 \rangle = \alpha \langle B_\phi^2 \rangle = \beta \langle B_z^2 \rangle$; α,β = const then the magnetic field behaves as an ultra-relativistic gas: $p_{\text{mag}} \propto V^{-4/3}$ ⇒ magnetic acceleration as efficient as thermal
- Ideal MHD: a tangled magnetic field can reconnect (Drenkham & Spruit 2002; Lyubarsky 2010 Kruskal-Schwarzschild instability (like R-T) in a "striped wind") magnetic energy → heat (+radiation) → kinetic energy
- Steady-state: effects of strong time dependence (JG, Komissarov & Spitkovsky 2011; JG 2012a, 2012b)

Impulsive Magnetic Acceleration: $\Gamma \propto R^{1/3}$

Useful case study:

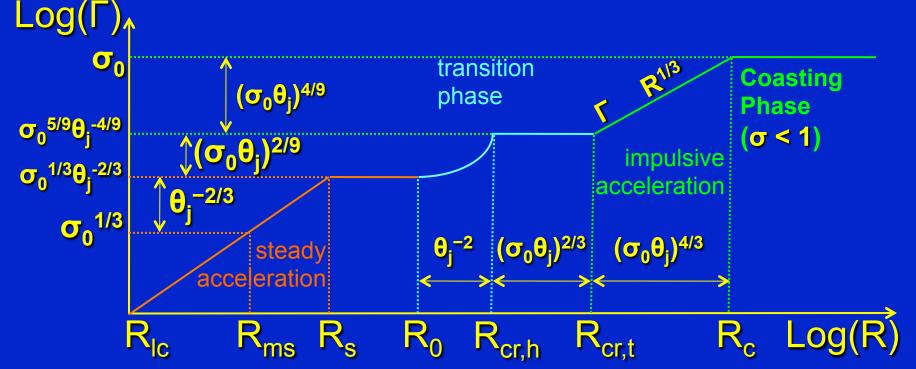
Initial value of magnetization parameter:

$$\sigma_0 = \frac{B_0^2}{4\pi\rho_0 c^2} >> 1$$

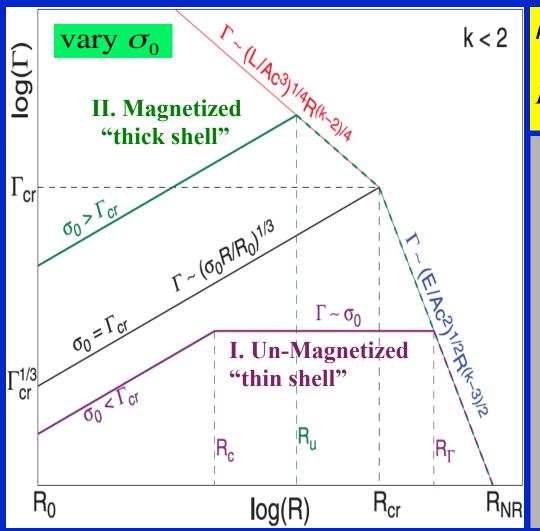
t/t_o

1000.00

- 1. $\langle \Gamma \rangle_{\rm E} \approx \sigma_0^{1/3}$ by $R_0 \sim \Delta_0$
- 2. $\langle \Gamma \rangle_{\rm E} \propto {\rm R}^{1/3}$ between ${\rm R}_0 \sim \Delta_0$ & ${\rm R}_{\rm c} \sim {\rm \sigma_0}^2 {\rm R}_0$ and then $\langle \Gamma \rangle_{\rm E} \approx {\rm \sigma_0}$


0.10

0.01


- 3. At $R > R_c$ the sell spreads as $\Delta \propto R \& \sigma \sim R_c/R$ rapidly drops
- Complete conversion of magnetic to kinetic energy!
- This allows efficient dissipation by shocks at large radii

1st Steady then Impulsive Acceleration

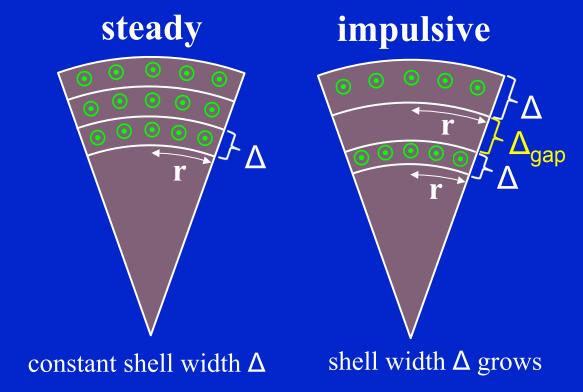
- Our test case problem may be directly relevant for giant flares in SGRs (active magnetars); however:
- In most astrophysical relativistic (jet) sources (GRBs, AGN, μ -quasars) the variability timescale ($t_v \approx R_0/c$) isllong enough (> R_{ms}/c) that steady acceleration operates & saturates (at R_s)
- Then the impulsive acceleration kicks in, resulting in $\sigma < 1$

Impulsive Magnetic Acceleration: single shell propagating in an external medium acceleration & deceleration are tightly coupled (JG 2012)


```
\rho_{\text{ext}} = AR^{-k}
R_{\text{cr}} \sim R_0 \Gamma_{\text{cr}}^2 \sim \left(\frac{ER_0}{Ac^2}\right)^{\frac{1}{4-k}}
```

L "Thin shell", low-s: strong reverse shock, peaks at $\gg T_{GRB}$ II. "Thick shell", high-o: weak or no reverse shock, T_{dec} ~ T_{GRB} III. like II, but the flow becomes independent of σ_0 IV. a Newtonian flow (if per is very high, e.g. inside a star) R_{NR} II*. if ρ_{ex} drops very sharply

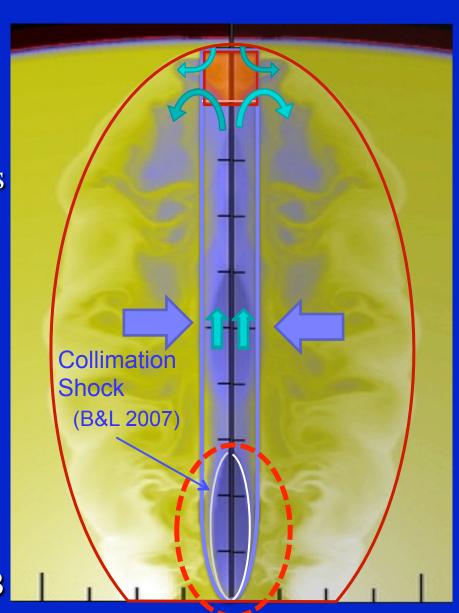
Many sub-shells: acceleration, collisions (JG 2012b)


Flux freezing (ideal MHD):

$$\Phi \sim Br\Delta = constant$$

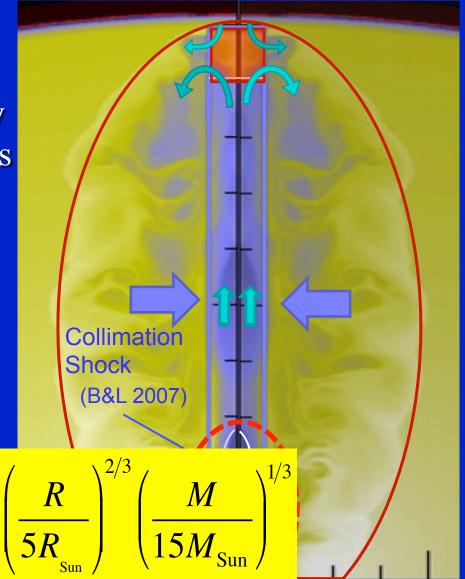
$$E_{EM} \sim B^2 r^2 \Delta \propto 1/\Delta$$

$$\frac{\text{total energy}}{\text{rest energy}} = (1 + \sigma)\Gamma$$


$$\text{acceleration } (\Gamma \uparrow) \Leftrightarrow \sigma \downarrow$$

- For a long lived variable source (e.g. AGN), each sub shell can expand by $1+\Delta_{\rm gap}/\Delta_0 \Rightarrow \sigma_{\infty} = (E_{\rm total}/E_{\rm EM,\infty}-1)^{-1} \sim \Delta_0/\Delta_{\rm gap}$
- For a finite # of sub-shells the merged shell can still expand
- Sub-shells can lead to a low-magnetization thick shell & enable the outflow to reach higher Lorentz factors

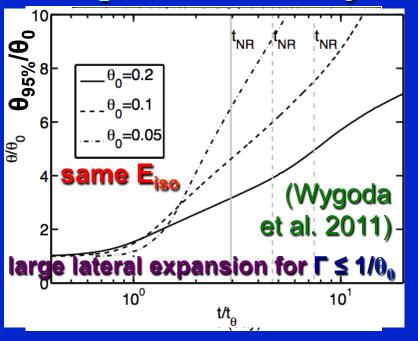
Jet propagation inside the progenitor star

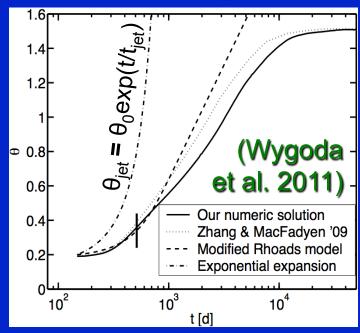

- The Jet develops a slowly moving 'head'
- At the head matter decelerates by a reverse shock & flows sideways forming a high-pressure cocoon that collimates the jet
- At the head there is a pressure balance between the shocked jet material & external medium
- The engine must continuously work until the jet breaks out
- After the jet breaks out it can freely accelerate & form the GRB

Jet propagation inside the progenitor star

- The Jet develops a slowly moving 'head'
- At the head matter decelerates by a reverse shock & flows sideways forming a high-pressure cocoon that collimates the jet
- At the head there is a pressure balance between the shocked jet material & external medium
- Breakout time (Bromberg et al. 2011)

Breakout time (Bromberg et al. 2011)
$$t_b \approx 15 \sec \left(\frac{L_{\text{iso}}}{10^{51} erg/s}\right)^{-1/3} \left(\frac{\theta_0}{10^{\circ}}\right)^{2/3} \left(\frac{R}{5R_{\text{sun}}}\right)^{2/3} \left(\frac{M}{15M_{\text{Sun}}}\right)^{1/3}$$

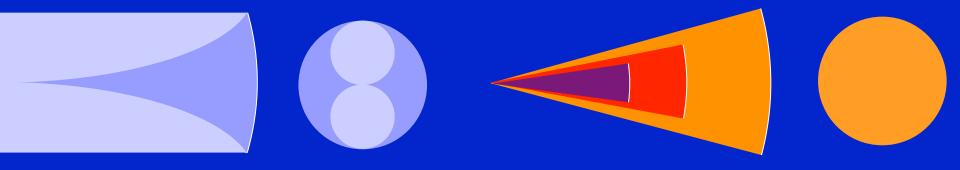

Jet propagation inside the progenitor star highly magnetized vs. hydrodynamics jets


- The flow must decelerate to match it's head velocity, but for high- σ a shock can't do it \rightarrow the jet converges near its head
- Narrower head larger head velocity faster jet breakout
- Relativistic head >> less energy into cocoon & supernova
- The head velocity is independent of the detailed jet structure
 - → simplifies the model & allows (semi-) analytic solutions

Afterglow Jet Dynamics: Analytic vs. Numerical

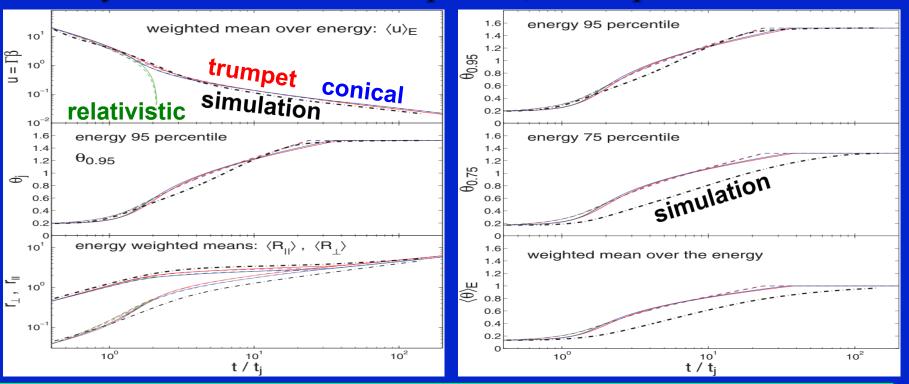
- Analytic results (Rhoads 1997, 99; Sari, Piran & Halpern 99): exponential lateral expansion at $R > R_{jet}$ e.g. $\Gamma \sim (c_s/c\theta_0) \exp(-R/R_{jet})$, $\theta_{jet} \sim \theta_0(R_{jet}/R) \exp(R/R_{jet})$
 - ♦ Supported by a self-similar solution (Gruvinov 2007)
- **Hydro-simulations**: very **mild** (logarithmic) lateral expansion while jet is relativistic (JG et al. 2001)

Modest 6₀ ⇒ small region of validity


Generalized Analytic model (JG & Piran 2012)

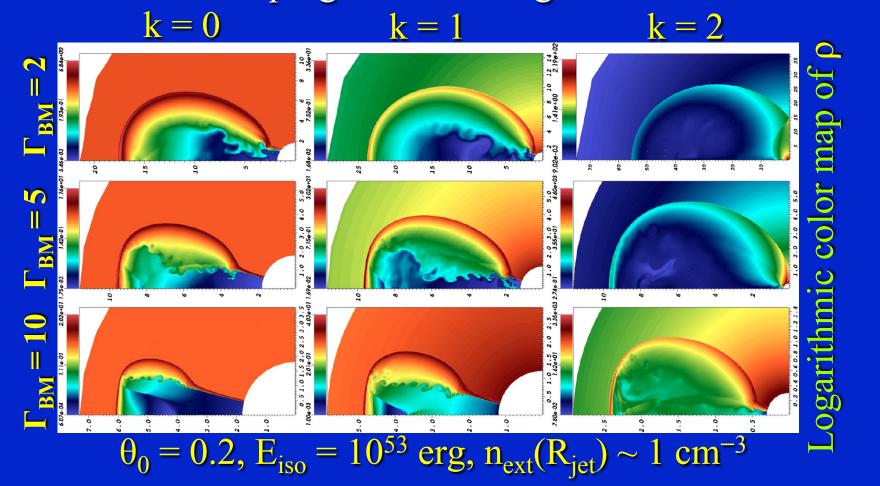
■ Lateral expansion:

- 1. new recipe: $\beta_{\theta}/\beta_{r} \sim 1/(\Gamma^{2}\Delta\theta) \sim 1/(\Gamma^{2}\theta_{j})$ (based on $\hat{\beta} = \hat{n}$)
- 2. old recipe: $\beta_{\theta} = u_{\theta}/\Gamma = u'_{\theta}/\Gamma \sim \beta_{r}/\Gamma$ (assumes $u'_{\theta} \sim \beta_{r} \sim c_{s}$)

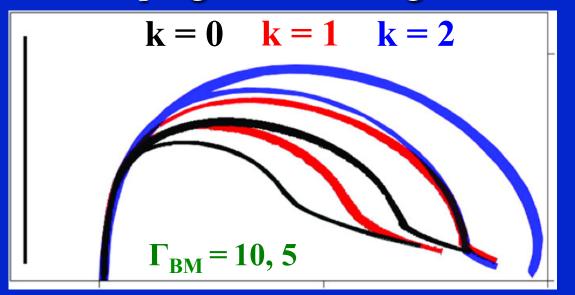

Generalized recipe:
$$\frac{d\theta_{j}}{d\ln R} = \frac{\beta_{\theta}}{\beta_{r}} \approx \frac{1}{\Gamma^{1+a}\theta_{j}^{a}}, \quad a = \begin{cases} 1 & (\hat{\beta} = \hat{n}) \\ 0 & (u'_{\theta} \sim 1) \end{cases}$$

- ♦ New recipe: lower $β_θ$ for $Γ > 1/θ_0$ but higher $β_θ$ for $Γ < 1/θ_0$
- Does not assume $\Gamma \gg 1$ or $\theta_j \ll 1$ (& variable: $\Gamma \rightarrow u = \Gamma \beta$)
- Sweeping-up external medium: trumpet vs. conical models

Comparison to Simulations (JG & Piran 2012)


- Main effect of relaxing the $\Gamma \gg 1$, $\theta_j \ll 1$ approximation: quasi-logarithmic (exponential) lateral expansion for $\theta_0 \ge 0.05$
- There is a reasonable overall **agreement** between the **analytic** generalized models and the hydro-**simulations**
- Analytic models: over-simplified, but capture the essence

2D hydro-simulation by F. De Colle et al. 2012, with $\theta_0 = 0.2$, k = 0

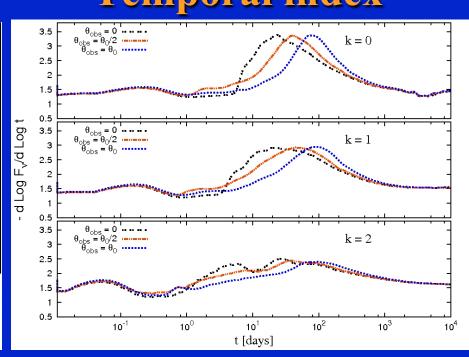

Afterglow jet in stratified external media (De Colle, Ramirez-Ruiz, JG & Lopez-Camara 2012)

- Previous simulations were all for k = 0 where $\rho_{ext} \propto R^{-k}$
- Larger k (e.g. k = 1, 2) are motivated by the stellar wind of a massive star progenitor for long GRBs

Afterglow jet in stratified external media (De Colle, Ramirez-Ruiz, JG & Lopez-Camara 2012)

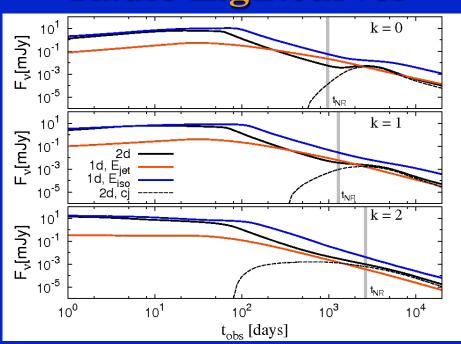
- Previous simulations were all for k = 0 where $\rho_{ext} \propto R^{-k}$
- Larger k (e.g. k = 1, 2) are motivated by the stellar wind of a massive star progenitor for long GRBs

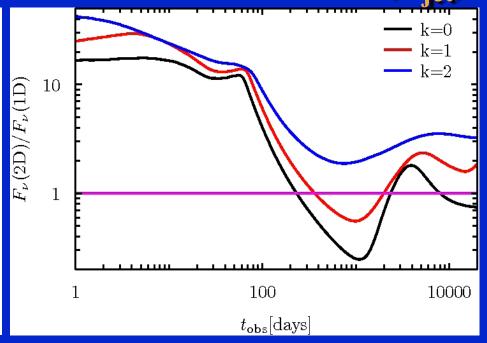
At the same Lorentz factor larger k show larger sideways expansion since they sweep up mass and decelerate more slowly (e.g. M \propto R^{3-k}, $\Gamma \propto$ R^{(3-k)/2} in the spherical case) and spend more time at lower Γ (and β_{θ} decreases with Γ)


The shape of the jet break

- Jet break becomes smoother with increasing k (as expected analytically; Kumar & Panaitescu 2000 KP00)
- However, the jet break is significantly sharper than found by KP00 ⇒ better prospects for detection
- Varying $\theta_{obs} < \theta_0$ dominates over varying $k \le 2$

Lightcurves


Temporal index


Late time Radio emission & Calorimetry

- The bump in the lightcurve from the counter jet is much less pronounced for larger k (as the counter jet decelerates & becomes visible more slowly) ⇒ hard to detect
- The error in the estimated energy assuming a spherical flow depends on the observation time t_{obs} & on k

Radio Lightcurves

Flux Ratio: 2D/1D(E_{iet})

Conclusions:

- Magnetic acceleration: likely option worth further study
- Jet propagation in star: can help probe jet magnetization
- Jet lateral expansion: analytic models & simulations agree
 - ♦ For $\theta_0 \ge 0.05$: quasi-logarithmic (exponential) lateral expansion
 - For $\theta_0 \ll 0.05$: an early exponential lateral expansion phase (but such narrow GRB jets appear to be rare)
 - ◆ Jet becomes first sub-relativistic, then (slowly) spherical
- Jet in a stratified external medium: $\rho_{\text{ext}} \propto R^{-k}$ for k = 0, 1, 2
 - ◆ larger k jets sweep-up mass & slow down more slowly
 - \Rightarrow sideways expansion is faster at $t < t_i$ & slower at $t > t_i$
 - ⇒ become spherical slower; harder to see counter jet
 - ◆ Jet break is smoother for larger k but possibly detectable
 - \blacklozenge Jet break sharpness affected more by $\theta_{obs} < \theta_0$ than $k \le 2$
 - ◆ Radio calorimetry accuracy affected both by t_{obs} & k