Magnetized Relativistic Outflows: effects of strong time dependence Jonathan Granot

Open University of Israel, Hebrew University

13th Marcel Grossmann meeting, Stockholm, July 5, 2012

Outline of the talk:

Motivation & comparison to thermal acceleration Steady magnetic acceleration \blacksquare The σ problem & possible solutions A new solution: impulsive magnetic acceleration A single shell accelerating into vacuum A single shell expanding into an external medium Many shells: acceleration + internal shock efficiency Implications for GRBs

Relativistic Magnetic Acceleration:
 Relativistic (v≈c) outflows/jets are very common in astrophysics & involve strong gravity at the source: PWN (NS), GRBs, AGN (SMBH), μ-quasars (BH/NS)
 Most models assume a steady flow for simplicity, despite observational evidence for time variability

Crab Nebula: X-ray in blue, optical in red

Circinus X-1: an accreting neutron star (shows orbital modulation & Type I X-ray bursts)

Relativistic Magnetic Acceleration: Is the acceleration magnetic? ? ? ? ? PWN (NS), GRBs, AGN (SMBH), μ-quasars (BH/NS) Most models assume a steady flow for simplicity, despite observational evidence for time variability

Crab Nebula: X-ray in blue, optical in red

Circinus X-1: an accreting neutron star (shows orbital modulation & Type I X-ray bursts)

Relativistic Magnetic Acceleration:

Magnetic acceleration of jets: energy is transported to large distances form the source by Poynting flux Option 1 The initial magnetic energy is converted into the kinetic energy of plasma, which is then dissipated in internal shocks & produces radiation Option 2: The flow remains highly magnetized far from the source & magnetic reconnection events directly accelerate particles that produce radiation

Thermal vs. Magnetic Acceleration:

*Most of the acceleration is in the supersonic regime

Key difference between thermal and magnetic steady state acceleration of relativistic supersonic flows:

Thermal: fast, robust & efficient

■ Magnetic: slow, delicate & less efficient

Thermal acceleration: conical flow

Very fast acceleration !!!

Ideal MHD acceleration: conical flow

r/δr should decrease for acceleration!!! (stream lines must diverge faster than conical)

■ Power-law stream lines: $z = z_0 (r/r_0)^{\alpha} \Rightarrow r/\delta r = r_0/\delta r_0$ ⇒ no acceleration

dr • Varying $\alpha = \alpha(r_0)$: dr_c $r/\delta r = (r_0/\delta r_0)[1 - \alpha' r_0 \alpha^{-2} \ln(z/z_0)]^{-1}$ r r_0 decreases if $\alpha' = d\alpha/dr_0 < 0$ Z_0 7 Can this be satisfied? It requires causal contact across the jet Denser equidistant near the here axis here

Ideal MHD acceleration: numerical + analytic results (Komissarov 2009; Lyubarsky 2009)

- Unconfined flows quickly lose lateral causal contact, become quasi-spherical (locally conical) & stop accelerating when $\Gamma_{\infty} \sim \sigma_0^{1/3} \& \sigma_{\infty} \sim \sigma_0^{2/3} \gg 1$ (Goldreich & Julian 1970)
- Weak confinement: $p_{ext} \propto z^{-\alpha}$ with $\alpha > 2 \Rightarrow$ lose lateral causal contact, become conical & stop accelerating later: causal contact: $\sigma_{\infty} \sim (\sigma_0 \theta_{jet})^{2/3}$ $\Gamma_{\infty} \sim \sigma_0^{1/3} \theta_{jet}^{-2/3}$ $\sigma_{\infty} \sim (\Gamma \theta_{jet})^2 \Rightarrow$ efficient conversion: $\Gamma_{\infty} \theta_{jet} < 11$
- Strong confinement: $p_{ext} \propto z^{-\alpha}$ with $\alpha < 2 \implies$ stay in causal contact $\Gamma \propto z^{\alpha/4}$ and reach $\Gamma_{\infty} \sim \sigma_0$, $\sigma_{\infty} \sim 1$, $\Gamma_{\infty} \theta_{jet} \sim 1$

The σ-problem: for a "standard" steady ideal MHD axisymmetric flow $\Gamma_{\infty} \sim \sigma_0^{1/3} \& \sigma_{\infty} \sim \sigma_0^{2/3} \gg 1$ for a spherical flow; $\sigma_0 = B_0^2 / 4\pi \rho_0 c^2$ However, PWN observations (e.g. the Crab nebula) imply $\sigma \ll 1$ after the wind termination shock – the σ problem!!! A broadly similar problem persists in relativistic jet sources ■ Jet collimation helps, but not enough: $\Gamma_{\infty} \sim \sigma_0^{1/3} \theta_{iet}^{-2/3}$, $\sigma_{\infty} \sim$ $(\sigma_0 \theta_{\text{iet}})^{2/3} \& \Gamma \theta_{\text{iet}} \leq \sigma^{1/2} (\sim 1 \text{ for } \Gamma_{\infty} \sim \Gamma_{\text{max}} \sim \sigma_0)$ ■ Still $\sigma_{\infty} \gtrsim 1 \implies$ inefficient internal shocks, $\Gamma_{\infty} \theta_{iet} \gg 1$ in GRBs Sudden drop in external pressure can give $\Gamma_{\infty} \theta_{iet} \gg 1$ but still $\sigma_{\infty} \gtrsim 1$ (Tchekhovskoy et al. 2009) \Rightarrow inefficient internal shocks

Alternatives to the "standard" model

Axisymmetry: non-axisymmetric instabilities (e.g. the current-driven kink instability) can tangle-up the magnetic field (Heinz & Begelman 2000) • If $\langle B_r^2 \rangle = \alpha \langle B_{\phi}^2 \rangle = \beta \langle B_z^2 \rangle$; $\alpha, \beta = \text{const}$ then the magnetic field behaves as an ultra-relativistic gas: $p_{mag} \propto V^{-4}$ \Rightarrow magnetic acceleration as efficient as thermal Ideal MHD: a tangled magnetic field can reconnect (Drenkham 2002; Drenkham & Spruit 2002) magnetic energy \Rightarrow heat (+radiation) \Rightarrow kinetic energy Steady-state: effects of strong time dependence (JG, Komissarov & Spitkovsky 2011; JG 2012a, 2012b)

 Impulsive Magnetic Acceleration: a single shell expanding into vacuum (JG, Komissarov & Spitkovsky 2011, MNRAS; 411, 1323)
 Impulsive magnetic acceleration (Contopoulos 1995, "plasma gun" - unsteady source; Lyutikov 2010; Levinson 2010)
 Highly magnetized cold plasma shell expanding into vacuum

1. Self-similar rarefaction wave

Solution at t = 1 when the rarefaction just reaches the wall (c = 1) Self-similar solution: simple rarefaction wave At the boundary with vacuum: $\Gamma \approx 2\sigma_0$ However, the mean value is: $\langle \Gamma \rangle_{\rm E} \approx (\sigma_0)^{1/3}$ $\langle E/M \rangle \sim \langle \sigma \Gamma \rangle \approx \text{const} \sim \sigma_0$ & this fast acceleration requires causal contact: $\Gamma \approx u < u_{ms} = \sigma^{1/2} \sim (\sigma_0/\Gamma)^{1/2}$ $\Rightarrow \Gamma \leq (\sigma_0)^{1/3}$ $\mathbf{u} = \Gamma \boldsymbol{\beta}$

initial width = 1; a wall at x = -1; $s_0 = 30$

2. After separation from the wall:

A second rarefaction wave forms

- Solution at t = 20 after the shell has separated from the (c = 1):
- the shell width, energy, mass & momentum hardly change
- The Lorentz factor $\langle \Gamma \rangle_{E}$ grows as magnetic energy & momentum are transferred to the plasma
- Once the shell separates from the wall Γ_{CM} remains constant (no external force) while $\langle \Gamma \rangle_{E}$ grows since the front part carries most of the energy in the lab frame

initial width = 1; a wall at x = -1; $s_0 = 30$

Impulsive Magnetic Acceleration: $\Gamma \propto \mathbb{R}^{1/3}$

2. ⟨Γ⟩_E ∝ R^{1/3} between R₀~Δ₀ & R_c~σ₀²R₀ and then ⟨Γ⟩_E ≈ σ₀
3. At R > R_c the sell spreads as Δ ∝ R & σ ~ R_c/R rapidly drops
Complete conversion of magnetic to kinetic energy!
This allows efficient dissipation by shocks at large radii

1st Steady then Impulsive Acceleration

- Our test case problem may be directly relevant for giant flares in SGRs (active magnetars); however:
- In most astrophysical relativistic (jet) sources (GRBs, AGN, μ-quasars) the variability timescale((t_v≈R₀/c) is long enough (>R_{ms}/c) that steady acceleration operates & saturates (at R_s)
 Then the impulsive acceleration kicks in, resulting in σ < 1 Log(Γ)₁

Impulsive Magnetic Acceleration: single shell propagating in an external medium acceleration & deceleration are tightly coupled (JG 2012)

Impulsive Magnetic Acceleration: single shell propagating in an external medium acceleration & deceleration are tightly coupled (JG 2012)

Dynamical Regimes:

Ι. "Thin shell", low-**σ**: strong reverse shock, peaks at $\gg T_{GRB}$ **II.** "Thick shell", high-**o**: weak or no reverse shock, $T_{dec} \sim T_{GRB}$ **III.** like II, but the flow becomes independent of σ_0 IV. a Newtonian flow (if p_{ext} is very high, e.g. inside a star) II^* . if ρ_{ext} drops very sharply $\sigma_0 = B_0^2 / 4\pi\rho_0 c^2$

$$f_0 = \rho_0 / \rho_{\text{ext}}(R_0) , \ \rho_{\text{ext}} = A R^{-k}$$

$$\Gamma_{\text{cr}} \sim (f_0 \sigma_0)^{1/(8-2k)}$$

Dynamical Regimes:

Ι. "Thin shell", low-**σ**: strong reverse shock, peaks at $\gg T_{GRB}$ **II.** "Thick shell", high-**o**: weak or no reverse shock, $T_{dec} \sim T_{GRB}$ **III.** like II, but the flow becomes independent of σ_0 IV. a Newtonian flow (if p_{ext} is very high, e.g. inside a star) II^* . if ρ_{ext} drops very sharply $\sigma_0 = B_0^2 / 4\pi\rho_0 c^2$

$$f_0 = \rho_0 / \rho_{\text{ext}}(R_0) , \ \rho_{\text{ext}} = A R^{-k}$$

$$\Gamma_{\text{cr}} \sim (f_0 \sigma_0)^{1/(8-2k)}$$

Dynamical Regimes:

Ι. "Thin shell", low-**σ**: strong reverse shock, peaks at $\gg T_{GRB}$ **II.** "Thick shell", high-**o**: weak or no reverse shock, $T_{dec} \sim T_{GRB}$ **III.** like II, but the flow becomes independent of σ_0 IV. a Newtonian flow (if p_{ext} is very high, e.g. inside a star) II^* . if ρ_{ext} drops very sharply $\sigma_0 = B_0^2 / 4\pi \rho_0 c^2$

$$f_0 = \rho_0 / \rho_{\text{ext}}(R_0) , \ \rho_{\text{ext}} = AR^{-k}$$

$$\Gamma_{\text{cr}} \sim (f_0 \sigma_0)^{1/(8-2k)}$$

Many sub-shells: acceleration, collisions (JG 2012b)

For a long lived variable source (e.g. AGN), each sub shell can expand by 1+Δ_{gap}/Δ₀ ⇒ σ_∞ = (E_{total}/E_{EM,∞}-1)⁻¹ ~ Δ₀/Δ_{gap}
 For a finite # of sub-shells the merged shell can still expand

A. Infinite pulse train & no energy losses

- Initial quasi-steady acceleration saturates at Γ₀, σ₀, Δ₀, Δ_{gap}
 In planar symmetry: linear momentum is conserved ⇒ final merged state with Γ_{CM} ~ Γ₀σ₀^{1/2} ≪ Γ_{max} ~ Γ₀σ₀ for Δ_{gap} ≥ Δ₀ (JG, Komissarov & Spitkovsky 2011, Komissarov 2012)
- \Rightarrow E' thermal/Mc² ~ $\Gamma_{max}/\Gamma 1 \sim \sigma_0^{1/2} \gg 1$ i.e. magnetic energy is converted mostly to thermal energy as the shells collide
- Planar symmetry: no thermal acceleration ($\Gamma \propto A^{1/2} = const$)
- In a conical flow (more realistic!): Γ ∝ A^{1/2} ∝ r ∝ z thermal energy is quickly converted into bulk kinetic energy
- Bernoulli eq.: $\Gamma(1+\sigma) = \text{const}$, ideal MHD: $E_{EM}\Delta = \text{const} \Rightarrow$
 - $\sigma_{\infty} = \left[\Delta_{\text{gap}} / \Delta_0 + (1 + \Delta_{\text{gap}} / \Delta_0) / \sigma_0\right]^{-1} \sim \Delta_0 / \Delta_{\text{gap}}$ $\Gamma_{\infty} / \Gamma_0 = (1 + \sigma_0) / (1 + \sigma_{\infty}) \sim \sigma_0 / (1 + \Delta_0 / \Delta_{\text{gap}})$

B. Infinite pulse train & radiative losses

- Radiation carries both energy & momentum so even in planar symmetry plasma linear momentum is not conserved
- **Energy budget:** a fraction f_{rad} of the total energy is radiated $\Rightarrow \Gamma_{\infty}(1 + \sigma_{\infty}) = (1 - f_{rad})\Gamma_0(1 + \sigma_0), \text{ but still } E_{EM}\Delta = \text{const} \Rightarrow$ $\sigma_{\infty} = [(1+1/\sigma_0)(1+\Delta_{gap}/\Delta_0)(1-f_{rad})-1]^{-1}$ e.g. $\sim [\Delta_{gap}/\Delta_0 - f_{rad}(1 + \Delta_{gap}/\Delta_0)]^{-1}$ $\Delta_0/\Delta_{\rm gap} \sim \frac{1}{2}$ $\Gamma_{\infty}/\Gamma_0 = (1+\sigma_0)(1-f_{rad}) - \sigma_0/(1+\Delta_{gap}/\Delta_0)$ $\varepsilon_{\rm rad} \sim \frac{1}{2}$ $f_{rad} \sim \frac{1}{3}$ $\Gamma_{\infty}/\Gamma_0\sigma_0 \sim 1 - f_{rad} - 1/(1 + \Delta_{gap}/\Delta_0)$ $\Gamma_{\infty}/\Gamma_0\sigma_0 \sim \frac{1}{3}$ $f_{rad} \leq \sigma_0 / [(1 + \sigma_0)(1 + \Delta_0 / \Delta_{gap})] = f_{rad} / \epsilon_{rad}$

N sub-shells: external medium interaction (JG 2012b)

- Leading sub-shell sweeps-up the external medium and clears the way for subsequent sub-shells
- Later sub-shells have a longer time to accelerate and collide with other sub-shells before being influenced by the external medium
 - enables a low- σ thick shell (strong reverse shock, $T_{dec} \sim T_{GRB}$)
 - enables the outflow to reach higher Lorentz factors

Conclusions:

- Magnetic acceleration is generally slower, more delicate & less efficient than thermal acceleration
- The σ-problem: some deviation from a "standard" steady, ideal MHD axisymmetric flow is required by observations
- Strong time dependence in highly magnetized relativistic outflows can efficiently convert magnetic to kinetic energy & lead to efficient internal shock dissipation in the flow
- **GRB**, AGN, μ -Q: quasi-steady \Rightarrow impulsive acceleration
- Interaction with external medium: unmagnetized thin shell (strong reverse shock, peaks at $T_{dec} \gg T_{GRB}$) or magnetized thick shell (weak/no reverse shock; afterglow $T_{dec} \sim T_{GRB}$)
- Sub-shells can lead to a low-magnetization thick shell & enable the outflow to reach higher Lorentz factors