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Outline of the talk: 
n Motivation & comparison to thermal acceleration 
n  Steady magnetic acceleration 
n The σ problem & possible solutions 
n A new solution: impulsive magnetic acceleration 

u A single shell accelerating into vacuum 
u A single shell expanding into an external medium 
u Many shells: acceleration + internal shock efficiency 

n  Implications for GRBs 



Relativistic Magnetic Acceleration: 
n Relativistic (v ≈ c) outflows/jets are very common in 

astrophysics & involve strong gravity at the source: 
PWN (NS), GRBs, AGN (SMBH), µ-quasars (BH/NS) 

n Most models assume a steady flow for simplicity, 
despite observational evidence for time variability  

Circinus X-1: an accreting 
neutron star (shows orbital 
modulation & Type I X-ray bursts) 

(Fender et al. 2004) 

AGN jet in M87 
(VLBA @ 43 GHz) 

larger scales (VLA: 90, 20 cm) 

Crab Nebula: X-ray in 
blue, optical in red 
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Is the acceleration magnetic? 
     ✔             ?         ✔                    ? 



Relativistic Magnetic Acceleration: 
n Magnetic acceleration of jets: energy is transported 

to large distances form the source by Poynting flux 
n Option 1: The initial magnetic energy is converted 

into the kinetic energy of plasma, which is then 
dissipated in internal shocks & produces radiation 

n Option 2: The flow remains highly magnetized far 
from the source & magnetic reconnection events 
directly accelerate particles that produce radiation 



Thermal vs. Magnetic Acceleration: 
v Most of the acceleration is in the supersonic regime 

Key difference between thermal and magnetic steady 
state acceleration of relativistic supersonic flows: 
 

n Thermal:  fast, robust & efficient 
n Magnetic: slow, delicate & less efficient 
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Γ∝ r ∝ z

Thermal acceleration: conical flow 

Mass conservation: 

Energy conservation:  

 Bernoulli equation:    

Very fast acceleration !!! 
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A ∝ r2
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AΓρc =  const
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AΓ2(ρc 2 + 4 p)c =  const
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(1+ 4 p /ρc 2)Γ =  const

� 

Γ = ρ / p∝ ρ−1/ 3 ∝ Γ1/ 3r2 / 3

Relativistic EoS: 
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p∝ ρ4 / 3

� 

ρ ∝1/r2Γ

for a 
conical 
flow    

v ≈ c 
z 

� 

p >> ρc 2



Ideal MHD acceleration: conical flow 

v ≈ c 

Mass conservation: 

Energy conservation:  

 Bernoulli equation:    

No acceleration!!! 

z 

� 

A ∝ r2

� 

AΓρc =  const

� 

AΓ2(ρc 2 + B'2 /4π )c =  const

� 

(1+σ )Γ =  const

Ideal MHD  
(flux freezing): 

� 

B = ΓB'∝1/r

� 

ρ ∝1/r2Γ

� 

Γ =  const

for a conical flow    

� 

 σ = B'2

4πρc 2 ∝
1
Γ

Fluid element 
volume:  

Its magnetic field: 

Its electromagnetic energy:  

� 

V ∝ r2

� 

B ∝ r−1

� 

Eem ∝ B2V = const



Ideal MHD acceleration: non-conical 
flow (toroidal magnetic field) 

Mass conservation: 

Energy conservation:  

 Bernoulli equation:    

� 

A ∝ rδr

� 

AΓρc =  const

� 

AΓ2(ρc 2 + B'2 /4π )c =  const

� 

(1+σ)Γ =  const = C0

Ideal MHD: 
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B = ΓB'∝1/δr

� 

ρ ∝1/Γrδr

� 

Γ =  C0 −C1
r
δr
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 σ = B'2

4πρc 2 = C1
r

Γδr

r 
v 

v 

v dr 

flow between  
flux surfaces: 



� 

Γ =  C0 −C1r /δr

r 
v 

dr 

z 
r0 
dr0 

z0 

r/δr should decrease for acceleration!!! 
(stream lines must diverge faster than conical) 

n  Power-law stream lines: z = z0(r/r0)α ⇒ r/δr = r0/δr0 
⇒ no acceleration  

� 

r /δr =  (r0 /δr0)[1−α 'r0α
−2

 ln(z /z0)]−1

equidistant 
here 

Denser 
near the 
axis here 

n Varying α = α(r0): 
 
decreases if α’ = dα/dr0 < 0 

Can this be satisfied?  It requires causal contact  
across the jet 



Ideal MHD acceleration: numerical + 
analytic results (Komissarov 2009; Lyubarsky 2009) 

n  Unconfined flows quickly lose lateral causal contact, 
become quasi-spherical (locally conical) & stop accelerating 
when Γ∞ ~ σ0

1/3 & σ∞ ~ σ0
2/3 ≫ 1  (Goldreich & Julian 1970) 

n  Weak confinement: pext ∝ z−α with α > 2 ⇒ lose lateral 
causal contact, become conical & stop accelerating later: 
causal contact: 

    σ∞ ~ (σ0θjet)2/3 
    Γ∞ ~ σ0

1/3θjet
-2/3                    ⇒ efficient conversion: Γ∞θjet < 1 

n  Strong confinement: pext ∝ z−α with α < 2 ⇒ stay in causal 
contact Γ ∝ zα/4 and reach Γ∞ ~ σ0,  σ∞ ~ 1,  Γ∞θjet ~ 1 

� 

θ jet < θMach ≈ sinθMach =
(Γβ)ms
Γβ

≈
σ1/ 2

Γ
~ σ 0

1/ 2

Γ3 / 2

� 

σ > (Γθ jet )
2



The σ-problem: for a “standard” 
steady ideal MHD axisymmetric flow 
n  Γ∞ ~ σ0

1/3 & σ∞ ~ σ0
2/3 ≫1 for a spherical flow; σ0 = B0

2/4πρ0c2 
u However, PWN observations (e.g. the Crab nebula) imply  
σ  ≪ 1 after the wind termination shock – the σ problem!!! 

u A broadly similar problem persists in relativistic jet sources 

n  Jet collimation helps, but not enough: Γ∞ ~ σ0
1/3θjet

-2/3, σ∞ ~ 

(σ0θjet)2/3 & Γθjet ≲ σ1/2 (~1 for Γ∞ ~ Γmax ~ σ0) 

n  Still σ∞ ≳ 1  ⇒ inefficient internal shocks, Γ∞θjet ≫ 1 in GRBs 
n  Sudden drop in external pressure can give Γ∞θjet ≫ 1 but still 
σ∞ ≳ 1 (Tchekhovskoy et al. 2009) ⇒ inefficient internal shocks  



� 

pmag ∝V
−4 / 3

Alternatives to the “standard” model 
n Axisymmetry: non-axisymmetric instabilities (e.g. 

the current-driven kink instability) can tangle-up 
the magnetic field (Heinz & Begelman 2000) 

u If                                                  then the magnetic 
field behaves as an ultra-relativistic gas:                  
⇒ magnetic acceleration as efficient as thermal 

n  Ideal MHD: a tangled magnetic field can reconnect 
(Drenkham 2002; Drenkham & Spruit 2002)          
magnetic energy ⇒ heat (+radiation) ⇒ kinetic energy 

n  Steady-state: effects of strong time dependence 
(JG, Komissarov & Spitkovsky 2011; JG 2012a, 2012b) 

 

� 

Br
2 = α Bφ

2 = β Bz
2  ;  α,β = const



Impulsive Magnetic Acceleration:  
a single shell expanding into vacuum  

(JG, Komissarov & Spitkovsky 2011, MNRAS; 411, 1323) 

n  Impulsive magnetic acceleration (Contopoulos 1995, 
“plasma gun” - unsteady source; Lyutikov 2010; Levinson 2010) 

n  Highly magnetized cold plasma shell expanding into vacuum 

� 

σ0 =
B0
2

4πρ0c
2 >>1

vacuum 

Initial value of 
magnetization  

parameter: 

(useful 
case 
study) “

w
al

l”
 



1. Self-similar rarefaction wave 

n  Solution at t = 1 when 
the rarefaction just 
reaches the wall (c = 1) 

n  Self-similar solution: 
simple rarefaction wave 

n  At the boundary with 
vacuum: Γ ≈ 2σ0 

n  However, the mean 
value is:  ⟨Γ⟩E  ≈ (σ0)1/3 

n  ⟨E/M⟩ ~ ⟨σΓ⟩ ≈ const ~ σ0 
   & this fast acceleration 

requires causal contact: 
Γ ≈ u < ums = σ1/2 ~ (σ0/Γ)1/2 

⇒ Γ ≲ (σ0)1/3      u = Γβ 

Energy: 
 
total 

magnetic 
kinetic 

magnetic 
pressure magnetic  

field 

Lorentz  
factor 

initial width = 1;  a wall at x = −1; s0 = 30    



2. After separation from the wall: 

n  A second rarefaction wave forms 
n  Solution at t = 20 after the shell  
has separated from the (c = 1): 
n  the shell width, energy, mass & 
momentum hardly change 
n  The Lorentz factor ⟨Γ⟩E grows 
as magnetic energy & momentum 
are transferred to the plasma 
n  Once the shell separates from 
the wall ΓCM remains constant (no 
external force) while ⟨Γ⟩E grows 
since the front part carries most  
of the energy in the lab frame 

initial width = 1;  
 a wall at x = −1; s0 = 30    

magnetic  
field 

magnetic 
pressure 

Lorentz  
factor 

Energy 
density 
(magnetic, 
kinetic, 
total) 



Impulsive Magnetic Acceleration: Γ ∝ R1/3 

1. ⟨Γ⟩E ≈ σ0
1/3

 by R0 ~ Δ0  
2. ⟨Γ⟩E ∝ R1/3 between R0 ~ Δ0  & Rc ~ σ0

2R0 and then ⟨Γ⟩E ≈ σ0 
3. At R > Rc the sell spreads as Δ ∝ R & σ ~ Rc/R rapidly drops 
n  Complete conversion of magnetic to kinetic energy!  
n  This allows efficient dissipation by shocks at large radii 

    

t c 
≈ 

R
c 
/ c

 

t 0 
≈ 

R
0 
/ c
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our simulation vs. analytic results 

(JG, Komissarov & 
Spitkovsky 2011) 
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σ0 =
B0
2

4πρ0c
2 >>1

Initial value of 
magnetization  

parameter: 

Useful case study: 

1 2 3 



1st Steady then Impulsive Acceleration 

n  Our test case problem may be directly relevant for giant 
flares in SGRs (active magnetars); however: 

n  In most astrophysical relativistic (jet) sources (GRBs, AGN, 
µ-quasars) the variability timescale (tv ≈ R0 / c) is long enough 
(>Rms/c) that steady acceleration operates & saturates (at Rs) 

n  Then the impulsive acceleration kicks in, resulting in σ < 1 
Log(Γ)  

Log(R)  Rlc Rms 

σ0
1/3

 

σ0
1/3θj

-2/3
 

Rs R0  Rcr,h  Rcr,t  

θj
−2 

σ0
5/9θj

-4/9
 

σ0 

(σ0θj)2/3 

Rc  

(σ0θj)4/9 

(σ0θj)2/9 

(σ0θj)4/3 steady 
acceleration 

transition 
phase 

impulsive 
acceleration 

Coasting  
Phase 
(σ < 1) 



Magnetized “thick shell” 
deceleration 

Un-Magnetized “thin shell” 
deceleration � 

ρext = AR−k

Rcr ~ R0Γcr
2 ~ ER0

Ac 2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

1
4−k

Impulsive Magnetic Acceleration: single 
shell propagating in an external medium  
acceleration & deceleration are tightly coupled (JG 2012) 

� 

vary σ 0 



Impulsive Magnetic Acceleration: single 
shell propagating in an external medium  
acceleration & deceleration are tightly coupled (JG 2012) 

� 

vary ρext = AR-k 
through A



Dynamical Regimes: 

� 

σ0 = B0
2 /4πρ0c

2

f0 = ρ0 /ρext (R0) ,   ρext = AR-k

Γcr ~ ( f0σ0)1/(8−2k )  

I.  “Thin shell”, low-σ : strong 
reverse shock, peaks at ≫ TGRB 
II.  “Thick shell”, high-σ : weak 
or no reverse shock, Tdec ~ TGRB 
III.  like II, but the flow 
becomes independent of σ0  
IV.  a Newtonian flow (if ρext is 
very high, e.g. inside a star) 
II*. if ρext drops very sharply 
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2
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� 

vary f0 ,  Γcr ∝ f0
1/(8−2k );  σ0 = const

I.  “Thin shell”, low-σ : strong 
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Many sub-shells: acceleration, collisions 
(JG 2012b) 

¤ ¤ ¤ ¤ ¤ 

¤ ¤ ¤ ¤ ¤ 

¤ ¤ ¤ ¤ ¤ 

steady 
¤ ¤ ¤ ¤ ¤ 

¤ ¤ ¤ ¤ 

impulsive 

constant shell width Δ 
 

shell width Δ grows 

Flux freezing            
(ideal MHD): 
 

Φ ~ B r Δ = constant 
 

EEM ~ B2
  r 

2
 Δ ∝ 1 / Δ 

Δ r 

Δ r 
Δ r 

� 

total energy
rest energy

= (1+σ)Γ

acceleration (Γ↑) ⇔  σ ↓

Δgap 

n  For a long lived variable source (e.g. AGN), each sub shell 
can expand by 1+Δgap/Δ0 ⇒ σ∞ = (Etotal/EEM,∞ − 1)−1 ~ Δ0/Δgap  

n  For a finite # of sub-shells the merged shell can still expand 

 



A. Infinite pulse train & no energy losses 

n  Initial quasi-steady acceleration saturates at Γ0, σ0 , Δ0, Δgap  
n  In planar symmetry: linear momentum is conserved ⇒ final 

merged state with ΓCM ~ Γ0σ0
1/2 ≪  Γmax ~ Γ0σ0

  for Δgap ≳ Δ0                                 
(JG, Komissarov & Spitkovsky 2011, Komissarov 2012) 

n  ⇒ E’thermal / Mc2 ~ Γmax/Γ − 1 ~ σ0
1/2 ≫ 1 i.e. magnetic energy 

is converted mostly to thermal energy as the shells collide 
n  Planar symmetry: no thermal acceleration (Γ ∝ A1/2 = const) 
n  In a conical flow (more realistic!): Γ ∝ A1/2 ∝ r ∝ z  

thermal energy is quickly converted into bulk kinetic energy 

n  Bernoulli eq.: Γ(1+σ) = const, ideal MHD: EEMΔ = const ⇒ 

σ∞ = [Δgap/Δ0+(1+Δgap/Δ0)/σ0]−1 ~  Δ0 /Δgap                                                     

Γ∞ /Γ0 = (1 + σ0)/(1 + σ∞) ~  σ0 /(1 + Δ0  /Δgap) 

 



B. Infinite pulse train & radiative losses 

n  Radiation carries both energy & momentum so even in 
planar symmetry plasma linear momentum is not conserved 

n  Energy budget: a fraction frad of the total energy is radiated 

⇒ Γ∞ (1 + σ∞) = (1− frad)Γ0(1 + σ0), but still EEMΔ = const ⇒ 

σ∞ = [(1+1/σ0)(1+Δgap/Δ0)(1− frad) − 1]−1  
         ~  [Δgap/Δ0 − frad(1+Δgap/Δ0)]−1 

    Γ∞ /Γ0 = (1 + σ0)(1− frad) − σ0 /(1 + Δgap /Δ0) 

    Γ∞ /Γ0σ0 ~  1 − frad −  1 /(1 + Δgap  /Δ0) 
  

   frad ≤ σ0 /[(1 + σ0)(1 + Δ0  /Δgap)] = frad /εrad  
 

e.g.  
Δ0/Δgap  ~ ½ 

εrad ~ ½ 
frad ~ ⅓ 
Γ∞ /Γ0σ0 ~ ⅓ 



N sub-shells: external medium interaction 
(JG 2012b) 

¤ ¤ ¤ ¤ ¤ 
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Δ 

Δ 
Δgap 

n  Leading sub-shell sweeps-up the 
external medium and clears the   
way for subsequent sub-shells 

n  Later sub-shells have a longer time 
to accelerate and collide with other 
sub-shells before being influenced 
by the external medium 
u enables a low-σ thick shell 

(strong reverse shock, Tdec ~ TGRB) 
u enables the outflow to reach 

higher Lorentz factors  

shocked external 
medium 



Conclusions: 
n Magnetic acceleration is generally slower, more delicate 

& less efficient than thermal acceleration 
n The σ-problem: some deviation from a “standard” steady, 

ideal MHD axisymmetric flow is required by observations 
n Strong time dependence in highly magnetized relativistic 

outflows can efficiently convert magnetic to kinetic energy 
& lead to efficient internal shock dissipation in the flow 

n GRB, AGN, µ-Q: quasi-steady ⇒ impulsive acceleration 
n Interaction with external medium: unmagnetized thin shell 

(strong reverse shock, peaks at Tdec ≫ TGRB) or magnetized 
thick shell (weak/no reverse shock; afterglow Tdec ~ TGRB) 

n Sub-shells can lead to a low-magnetization thick shell & 
enable the outflow to reach higher Lorentz factors  
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