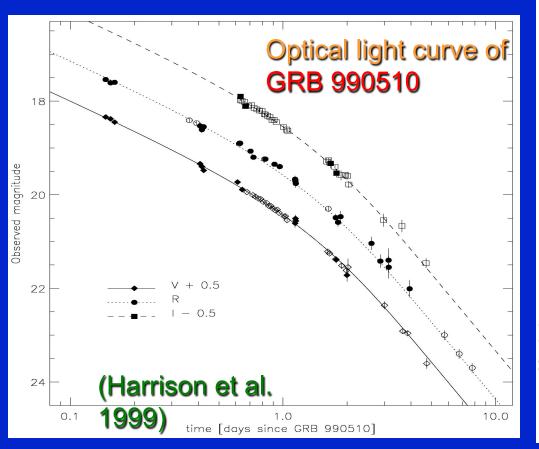
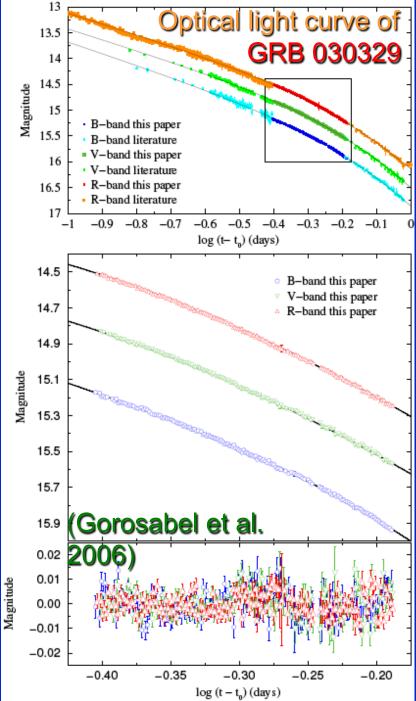

GRB Jet Dynamics & Afterglow Lightcurves Jonathan Granot

Open University of Israel, Hebrew University

13th Marcel Grossmann meeting, Stockholm, July 6, 2012

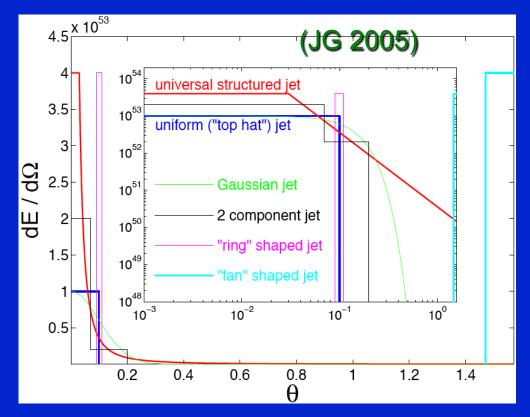

Outline of the talk:


- Evidence for jets, angular structure, evolution stages
- Jet dynamics during the afterglow: an overview
- Analytic vs. numerical results: a problem?
- Recent numerical & analytic results: finally agree
- Simulations of an afterglow jet propagating into a stratified external medium: $\rho_{ext} \propto R^{-k}$ for k = 0, 1, 2
- Implications for GRBs: jet breaks, radio calorimetry

Observational evidence for jets in GRBs:

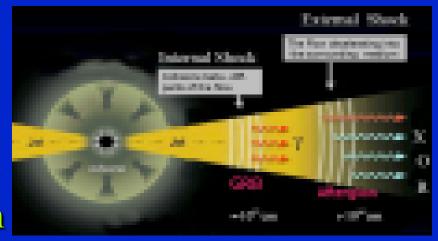
The energy output in \gamma-rays assuming isotropic emission $(\mathbf{E}_{\gamma,iso})$ approaches (and sometimes even exceeds) $M_{\odot}c^2$ ◆ Difficult for a stellar mass progenitor • **True energy** is much smaller for a narrow jet • At least some long GRBs occur together with a SN Ic \bullet the outflow would contain $>M_{\odot}$ if spherical • only a small part of this mass can reach $\Gamma \geq 100$ & it would contain a small fraction of the energy Achromatic break or steepening of the afterglow light curves ("jet break")

Examples of Smooth & Achromatic Jet Breaks:



The Angular Structure of GRB Jets:

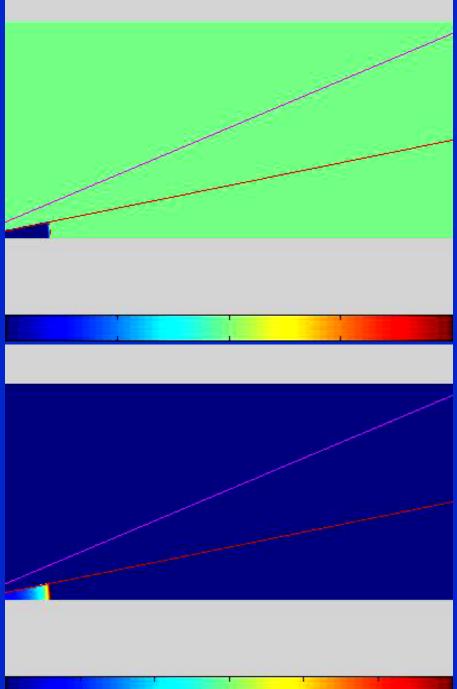
■ Jet structure: unclear (uniform, structured, hollow cone,...)


Affects E_{γ,iso} → E_γ & observed GRB rate → true rate
 Viewing-angle effects (afterglow & prompt - XRF)
 Can also affect late time radio calorimetry

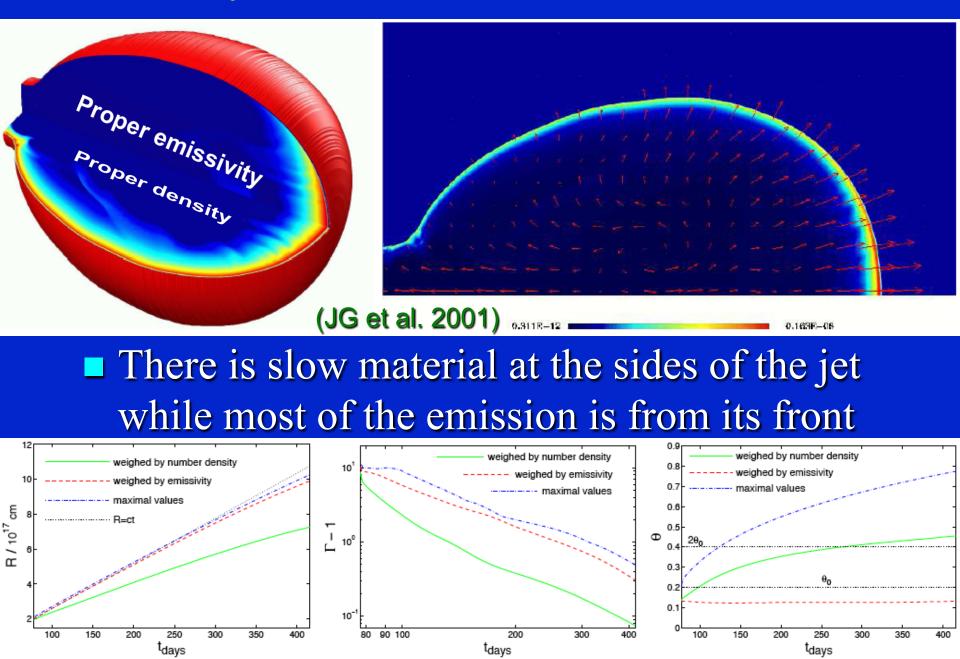
Here I consider mainly a uniform "top hat" jet

Stages in the **Dynamics** of GRB Jets:

- Launching of the jet: magnetic (B-Z?) neutrino annihilation?
 Acceleration: magnetic or thermal?
- For long GRBs: propagation inside progenitor star
- Collimation: magnetic, stellar envelope, accretion disk wind
- Coasting phase that ends at the deceleration radius R_{dec}
- At R > R_{dec} most of the energy is in the shocked external medium: the composition & radial profile are forgotten, but the angular profile persists (locally: BM76 solution)
- Once $\Gamma < 1/\theta_0$ at $R > R_{jet}$ jet lateral expansion is possible
- Eventually the flow becomes spherical approaches the selfsimilar Sedov-Taylor solution

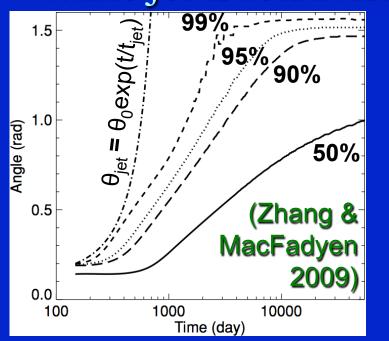

Dynamics of GRB Jets: Lateral Expansion Simple semi-analytic models (Rhoads 97, 99; Sari, Piran & Halpern 99,...) make simplifying assumptions, such as: • The shock front is a part of a sphere within $\theta < \theta_{jet}$ • The velocity is in the radial direction (even at $t > t_{jet}$) • Lateral expansion at $c_s \approx c/\sqrt{3}$ in the comoving frame • The jet dynamics are obtained by solving simple 1D equations for conservation of energy and momentum $\blacksquare \Rightarrow \Gamma \sim (c_s/c\theta_0) \exp(-R/R_{iet}), \theta_{iet} \sim \theta_0(R_{iet}/R) \exp(R/R_{iet})$ Hydro-simulations: these simplifying assumptions fail: shock front is aspherical, velocity is not radial,... Very mild lateral expansion while jet is relativistic Non-uniform shocked fluid: emission mainly from $\theta < \theta_0$ Nevertheless, despite the differences, there is a sharp achromatic jet break [for $v > v_m(t_{jet})$] at a similar t_{jet}

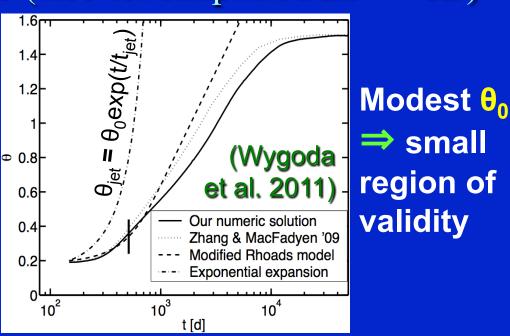
2D hydro-simulations (JG et al. 2001)

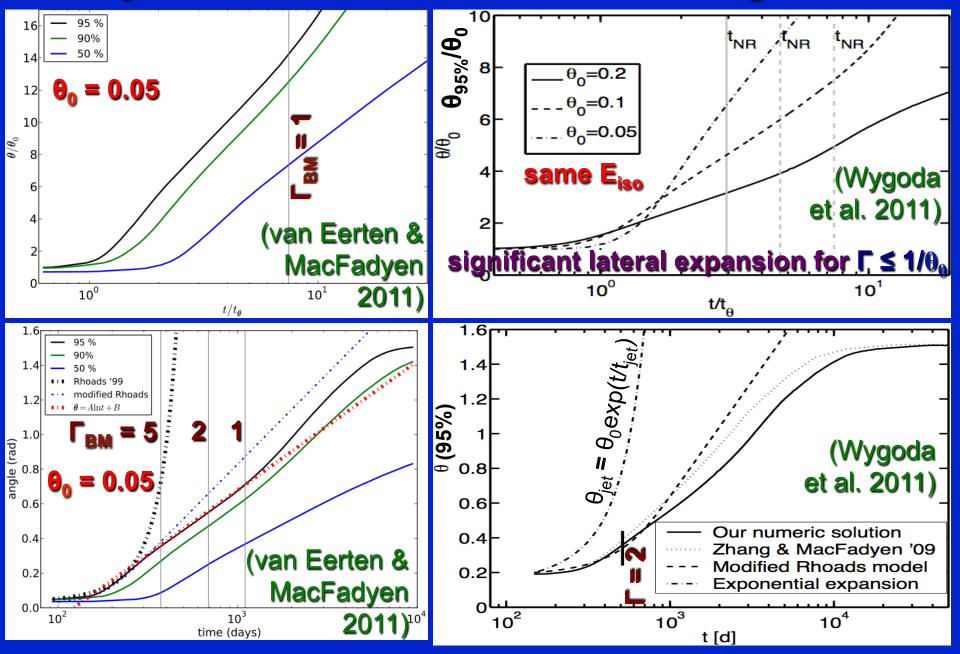

Proper Density: (logarithmic color scale)

Uniform external medium
 Initial conditions: a conical wedge from the BM solution

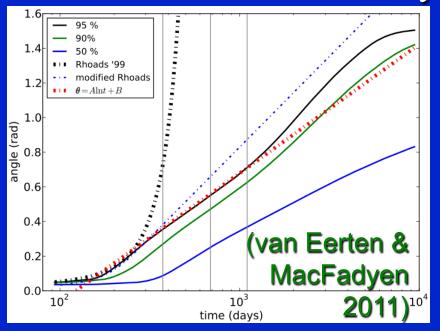
Bolometric Emissivity: (logarithmic color scale)




The Jet Dynamics: very modest lateral expansion


Analytic vs. Numerical results: a problem?

Analytic results (Rhoads 1997, 99; Sari, Piran & Halpern 99): exponential lateral expansion at R > R_{jet} e.g. Γ ~ (c_s/cθ₀)exp(-R/R_{jet}), θ_{jet} ~ θ₀(R_{jet}/R)exp(R/R_{jet})
 Supported by a self-similar solution (Gruvinov 2007)
 Hydro-simulations: very mild lateral expansion while jet is relativistic (also for simplified 2D → 1D)


Analytic vs. Numerical results: a problem?

Analytic vs. Numerical results: a problem?

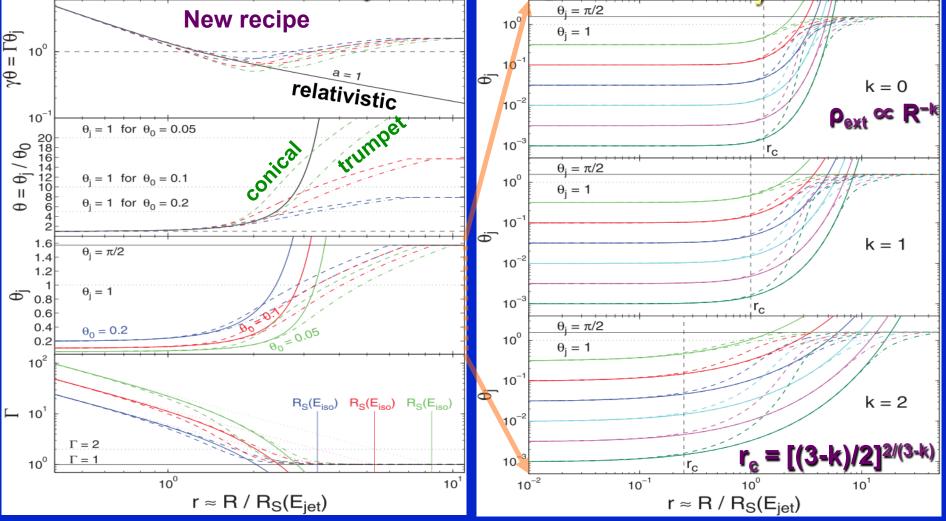
van Eerten & MacFadyen 11'

No exponential lateral expansion even for θ₀ = 0.05
 Lateral expansion is instead only logarithmic: θ_j ~ θ₀ln(t/t_j)
 Affects jet break shape + t_j & late time radio calorimetry

Lyutikov 2011

• Lateral expansion becomes significant only for $\Gamma \leq \theta_0^{-1/2}$

Based on thin shell approx.


$\tan \alpha = -$	$\frac{\partial \ln R}{\partial \theta}$	(Kumar & JG 2003)
$\Rightarrow \beta_{\!\theta} \sim$	$\frac{1}{\Gamma^2 \Delta \theta} \sim$	$\frac{1}{\Gamma^2 \boldsymbol{\theta}_{j}}$

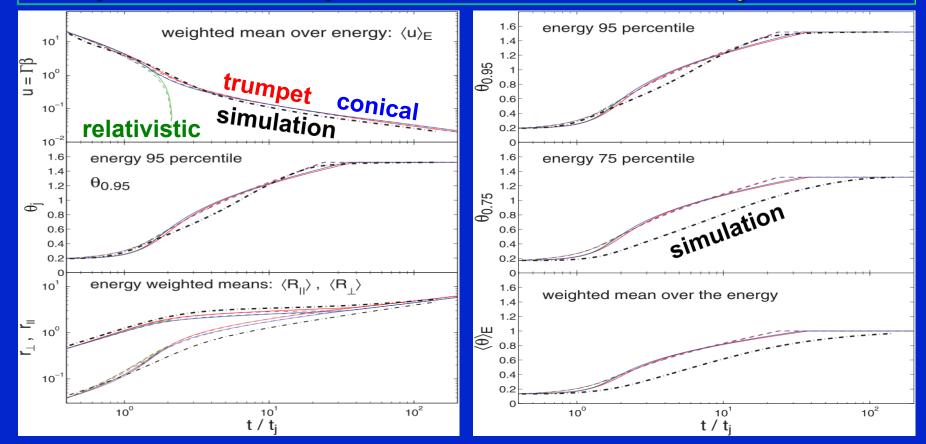
 $r = R(\theta) \rightarrow$ shock radius in spherical coordinates

 $\alpha =$ angle between the shock normal \hat{n} and radial direction \hat{r}

Generalized Analytic model (JG & Piran 2012) Lateral expansion: 1. new recipe: $\beta_{\theta}/\beta_{r} \sim 1/(\Gamma^{2}\Delta\theta) \sim 1/(\Gamma^{2}\theta_{i})$ (based on $\hat{\beta} = \hat{n}$) 2. old recipe: $\beta_{\theta} = u_{\theta}/\Gamma = u'_{\theta}/\Gamma \sim \beta_r/\Gamma$ (based on $u'_{\theta} \sim 1$) Generalized recipe: $\frac{d\theta_{j}}{d\ln R} = \frac{\beta_{\theta}}{\beta_{r}} \approx \frac{1}{\Gamma^{1+a}\theta_{i}^{a}}, \quad a = \begin{cases} 1 & (\beta = \hat{n}) \\ 0 & (u_{\theta} \sim 1) \end{cases}$ • New recipe: lower β_{θ} for $\Gamma > 1/\theta_0$ but higher β_{θ} for $\Gamma < 1/\theta_0$ Does not assume $\Gamma \gg 1$ or $\theta_i \ll 1$ (& variable: $\Gamma \rightarrow u = \Gamma \beta$) Sweeping-up external medium: trumpet vs. conical models

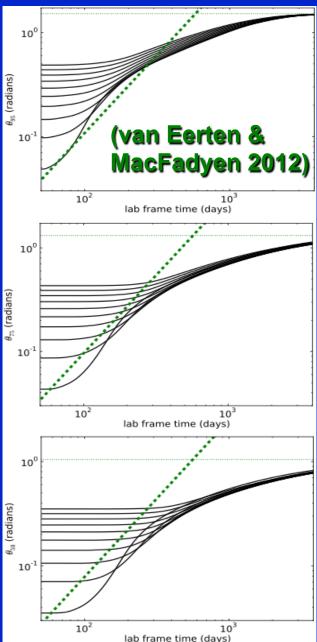
Generalized Analytic model (JG & Piran 2012) • Main effect of relaxing the $\Gamma \gg 1$, $\theta_j \ll 1$ approximation: quasi-logarithmic (exponential) lateral expansion for $\theta_0 \ge 0.05$ • conical \neq rel. for $r \ge r_c$ while trumpet \neq rel. for $\theta_i \ge 0.2$

Generalized Analytic model (JG & Piran 2012)

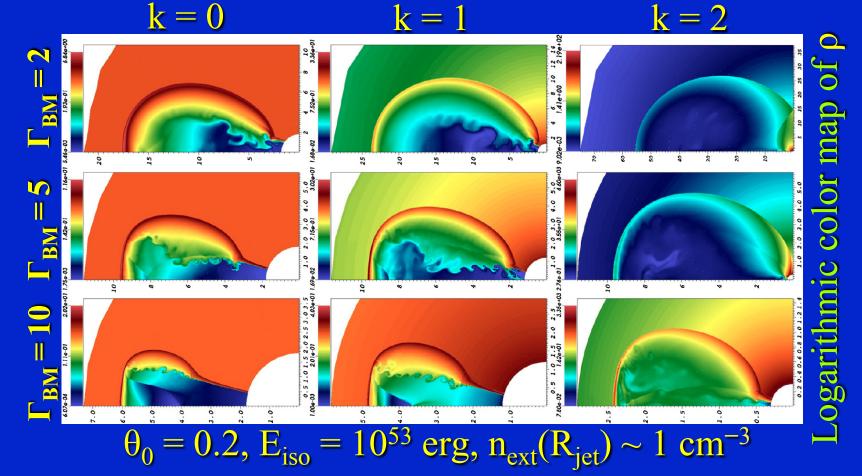

Conical: larger M(R) than trumpet \rightarrow lower $\Gamma(R) \rightarrow$ larger $\theta_i(R)$ New recipe: lower β_{θ} for $\Gamma > 1/\theta_0$ but higher β_{θ} for $\Gamma < 1/\theta_0$

New (solid) vs. old (dashed) 10 recipes **New recipe** $\gamma \theta = \Gamma \theta_{i}$ θ 10⁰ 10⁰ Ш γθ a = 1relativistic 10 trumpet 10 $\theta_i = 1$ for $\theta_0 = 0.05$ $\theta_i = 1$ for $\theta_0 = 0.05$ 20 18 16 conical 20 18 16 14 12 10 8 6 θ_{i} / θ_{0} θ_i / θ_0 14 12 $\theta_i = 1$ for $\theta_0 = 0.1$ $\theta_i = 1$ for $\theta_0 = 0.1$ 10 ш Ш $\theta_i = 1$ for $\theta_0 = 0.2$ $\theta_i = 1$ for $\theta_0 = 0.2$ Θ Φ elativistic 1.6 1.6 $\theta_i = \pi/2$ trumpet $\theta_i = \pi/2$ 1.4 1.4 1.2 1.2 . Ф 0.8 $\theta_i = 1$ $\theta_i = 1$ θ 0.8 0.6 0.6 0.4 $\theta_0 = 0.05$ $\theta_0 = 0.2$ 0.4 0.2 0.2 10² 10^{2} $R_{S}(E_{iso})$ $R_{S}(E_{iso})$ $R_{S}(E_{iso})$ R_S(E_{iso}) Ĺ 10^{1} 10¹ $\Gamma = 2$ $\Gamma = 2$ 10° 10° $\Gamma = 1$ 10^{0} 10 10° 10^{-1} $r \approx R / R_S(E_{jet})$ R / R_S(E_{iso})

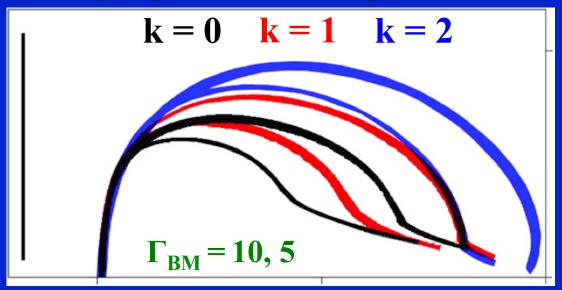
Comparison to Simulations (JG & Piran 2012)


There is a reasonable overall agreement between the analytic generalized models and the hydro-simulations
 Analytic models: over-simplified, but capture the essence

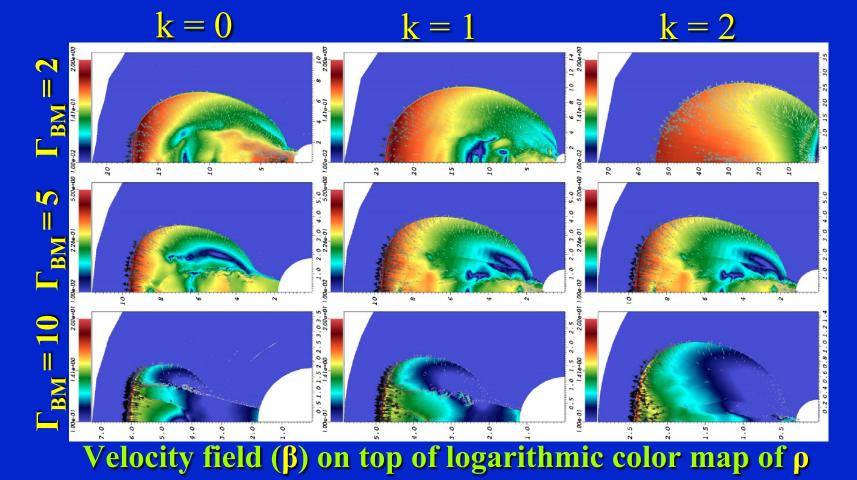
2D hydro-simulation by F. De Colle et al. 2012, with $\theta_0 = 0.2$, k = 0



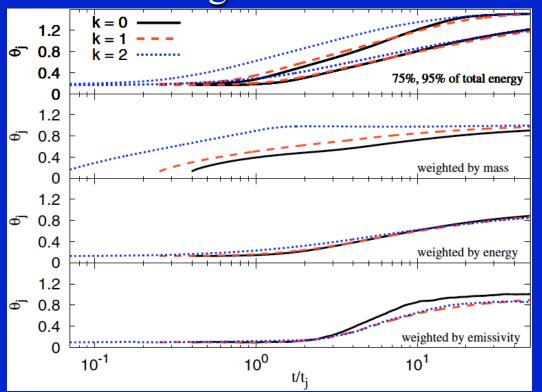
Jet Dynamics: Intermediate Conclusions

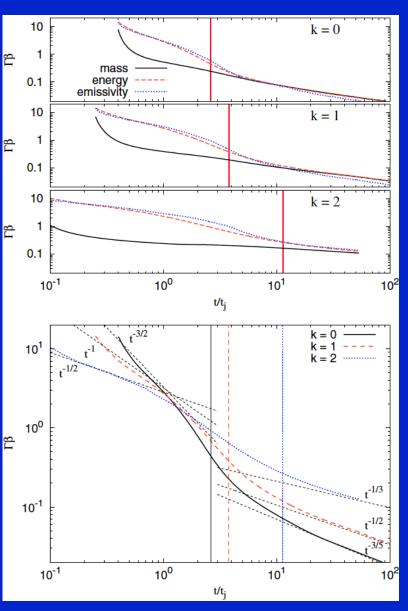

- For $\theta_0 \ge 0.05$ the lateral expansion is quasi-logarithmic (exponential), due to the small dynamical range $1/\theta_0 > \Gamma \gg 1$
- For $\theta_0 \ll 0.05$ there is an exponential lateral expansion phase (hinted also by van Eerten & MacFadyen's simulations) but such narrow GRB jets appear rare
- The jet first becomes sub-relativistic & only then gradually approaches spherical symmetry over a long time

Previous simulations were all for k = 0 where ρ_{ext} ∝ R^{-k}
 Larger (e.g. k =1, 2) are motivated by the stellar wind of a massive star progenitor for long GRBs

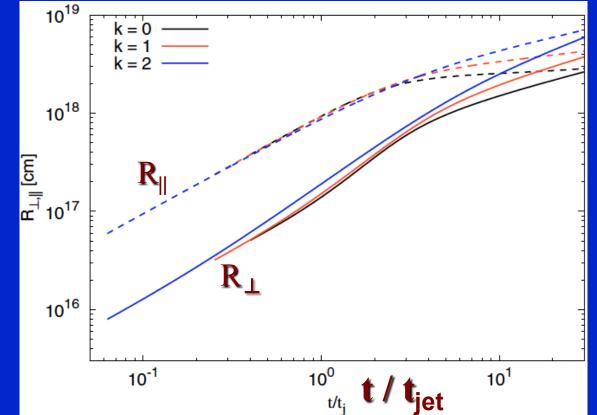


Previous simulations were all for k = 0 where ρ_{ext} ∝ R^{-k}
 Larger (e.g. k =1, 2) are motivated by the stellar wind of a massive star progenitor for long GRBs



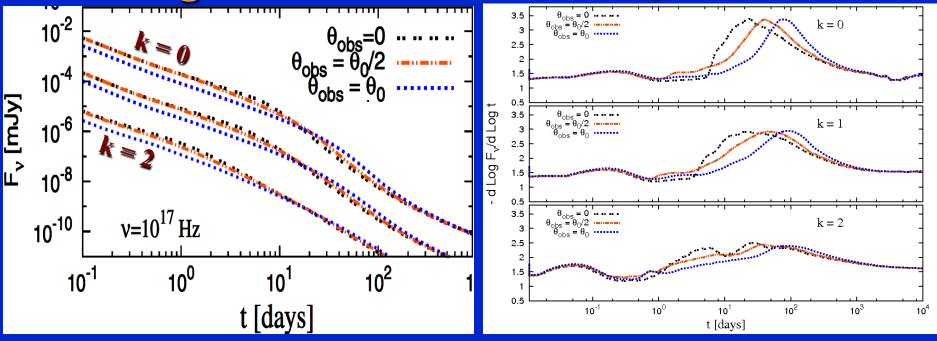

At the same Lorentz factor larger k show larger sideways expansion since they sweep up mass and decelerate more slowly (e.g. M ∝ R^{3-k}, Γ ∝ R^{(3-k)/2} in the spherical case) and spend more time at lower Γ (and β_θ decreases with Γ)

The velocity just behind the shock is always normal to the shock front – radial near the head of the jet, while pointing sideways & non-relativistic at the sides of the jet


Swept-up mass: a lot at the sides of the jet at large angles
Energy, emissivity: near the head
Spherical symmetry approached later for larger k

For k = 0 the growth of R_{||} is stalled at t_{NR}(E_{iso}) while R_⊥ continues to grow → helps approach spherical symmetry
 Less pronounced for larger k as the slower accumulation of mass enables R_{||} to grow more → become spherical

more slowly

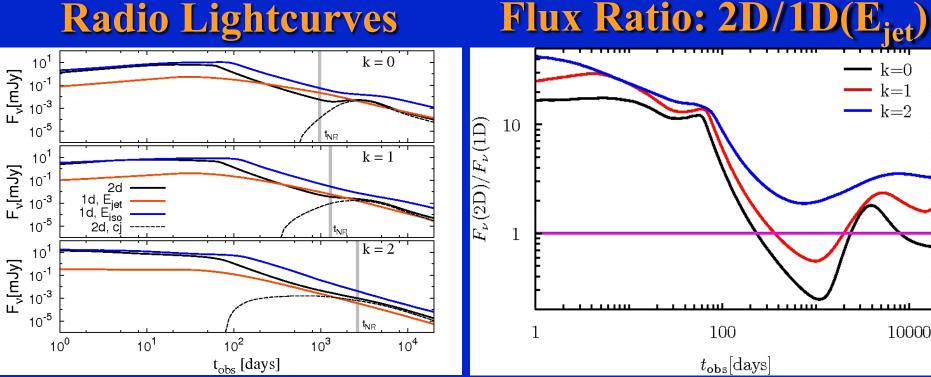


The shape of the jet break

- Jet break becomes smoother with increasing k (as expected analytically; Kumar & Panaitescu 2000 KP00)
- However, the jet break is significantly sharper than found by KP00 -> better prospects for detection
- Varying $\theta_{obs} < \theta_0$ dominates over varying $k \leq 2^{1}$

Lightcurves

Temporal index


Late time Radio emission & Calorimetry

- The bump in the lightcurve from the counter jet is much less pronounced for larger k (as the counter jet decelerates & becomes visible more slowly) \rightarrow hard to detect
- The error in the estimated energy assuming a spherical flow depends on the observation time t_{obs} & on k

Radio Lightcurves

F_v[mJy]

F_v[mJy]

Conclusions:

Jet lateral expansion: analytic models & simulations agree • For $\theta_0 \ge 0.05$ the lateral expansion is quasi-logarithmic (exponential), due to small dynamic range $1/\theta_0 > \Gamma \gg 1$ • For $\theta_0 \ll 0.05$ there is an exponential lateral expansion phase early on (but such narrow GRB jets appear rare • The jet first becomes sub-relativistic & only then slowly approaches spherical symmetry over a long time I Jet in a stratified external medium: $\rho_{ext} \propto R^{-k}$ for k = 0, 1, 2◆ larger k jets sweep-up mass & slow down more slowly \rightarrow sideways expansion is faster at $t < t_i \&$ slower at $t > t_i$ -> become spherical slower; harder to see counter jet \blacklozenge Jet break is smoother for larger k but possibly detectable • Jet break sharpness affected more by $\theta_{obs} < \theta_0$ than $k \leq 2$ \diamond Radio calorimetry accuracy affected both by $t_{obs} \& k$