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Outline of the talk:

m Evidence for jets, angular structure, evolution stages
m Jet dynamics during the afterglow: an overview

m Analytic vs. numerical results: a problem?

m Recent numerical & analytic results: finally agree

m Simulations of an afterglow jet propagating into a
stratified external medium: p, ¢ R™* fork=0,1,2

m [mplications for GRBS: jet breaks, radio calorimetry



Observational evidence for jets in GRBs:

® The energy output in y-rays assuming 1sotropic emission
(E, ..,) approaches (and sometimes even exceeds) Mc?

¢ Difficult for a stellar mass progenitor

Y,iS0

¢ True energy is much smaller for a narrow jet

m At least some long GRBs occur together with a SN Ic
¢ the outflow would contain >M 1f spherical

¢ only a small part of this mass can reach I' =100
& 1t would contain a small fraction of the energy

m Achromatic break or steepening of the afterglow light
curves (“jet break™)
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The Angular Structure of GRB Jets:

m Jet structure: unclear (uniform, structured, hollow cone,...
¢ Affects E, ., — E, & observed GRB rate — true rate
¢ Viewing-angle effects (afterglow & prompt - XRF)
¢ Can also affect late time radio calorimetry

S

,1SO

m Here I consider mainly
a uniform “top hat” jet

universal structured jet

PN
=~
10% d

uniform ("top hat") jet

2 component jet

"ring" shaped jet




Stages in the Dynamics of GRB Jets:

® Launching of the jet: magnetic (B-Z?) neutrino annihilation?
m Acceleration: magnetic or thermal?

m For long GRBs: propagation inside progenitor star

m Collimation: magnetic, stellar envelope, accretion disk wind

m Coasting phase that ends at the deceleration radius R

m At R > R, most of the energy 1s in the shocked external
medium: the composition & radial profile are forgotten,
but the angular profile persists (locally: BM76 solutlon)

m Once ' < 1/6,at R > R, jet
lateral expansion 1s p0531ble
m Eventually the flow becomes

spherical approaches the self-
similar Sedov-Taylor solution

dec




Dynamics of GRB Jets: Lateral Expansion

N Simple semi-analytic models (Rhoads 97, 99; Sari, Piran

& Halpern 99,...) make simplifying assumptions, such as:

¢ The shock front is a part of a sphere within 6 <6,
¢ The velocity 1s 1n the radial direction (even at t > t;.)
+ Lateral expansion at c,~ ¢/\3 in the comoving frame

¢ The jet dynamics are obtained by solving simple 1D
equations for conservation of energy and momentum

B = '~ (c/chy)exp(-R/R;), 0: ~ Op(R;/R)exp(R/R; )

®m Hydro-simulations: these simplifying assumptions
fail: shock front 1S aspherical, velocity is not radial,. ..

® Very mild lateral expansion while jet is relativistic

® Non-uniform shocked fluid: emission mainly from 0<0,

m Nevertheless, despite the differences, there 1s a sharp
achromatic jet break [for v > v, (t;.)] at a similar t;.,



2D hydro-simulations
(JG et al. 2001)

Proper Density:

(logarithmic color scale)

m Uniform external medium

m Initial conditions: a conical _

wedge from the BM solution

Bolometric
Emissivity:



The Jet Dynamics: very modest lateral expansion
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while most of the emission 1s from its front
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Analytic vs. Numerical results: a problem?

N Analytic results (Rhoads 1997, 99; Sari, Piran & Halpern 99).
exponential lateral expansion atR >R, e.g.
I'~(cy/ Ceo)exp('R/Rjet)a ejet O ( Jet/ R)GXP(R/Rjet)
¢ Supported by a self-similar solution (Gruvinov 2007)

m Hydro-simulationS' very mild lateral expansion
while Jet 1s relativistic (also for simplified 2D — 1D)
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Analytic vs. Numerical results: a problem?
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etal. 2011)

2011)

95 %

90%

50 %
1+ Rhoads '99
+= modified Rhoads
v =Alnt+B

rau s 5 2
_00 - 0.05:

L R

, /l}et) ]

o

=
N

,__?oeXp

o
o)

etal. 2011)

| , 5 —— Our numeric solution
) oA Zhang & MacFadyen 09
(van Eerten &_ _ o - - - Modified Rhoads model

- Exponential expansion

| MacFadyen T A
2011)“ a 10"

time (days)

angle (rad)

o
o

°
I

©
N

o©
o




Analytic vs. Numerical results: a problem?

van Eerten & MacFadyen 11° Lyutikov 2011
= No exponential lateral m [ateral expansion becomes
expansion even for 6, = 0.05 significant only for I' <0,

m Lateral expansion is instead m Based on thin shell approx.
only logarithmic: 6, ~ 6,In(t/t;)

m Affects jet break shape +t  [BUYeEE 8(191;R S'éug'oa(;:)'

& late time radio calorimetry

= B, ~

1 1
A6 T°6.
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r = R(@) — shock radius

in spherical coordinates

angle (rad)

(van Eerten &
MacFadyen
time(ldoasys) 2011 10°

o = angle between the shock

normal 7z and radial direction r



Generalized Analytic model (JG & piran 2012)

m [ateral expansion:
1. new recipe: Bo/B,~ 1/(I°AB) ~ 1/(I"?6;) (based on IR
2. old recipe: Bg=uy/I'=uw’y/I' ~B./I'  (basedonu’y ~ 1)

Generalized recipe:

® New recipe: lower 3, for I > 1/0,, but higher 3, for I' < 1/0,
m Does not assume ['>>1 or §; < 1 (& variable: I — u=1()

m Sweeping-up external medium: trumpet vs. conical models

E® X0



Generalized Analytic model (JG & Piran 2012)

m Main eftect of relaxing the I'>>1, 8. << 1 approximation:
quasi-logarithmic (expenrential) lateral expansion for 0, 2 0.05
m conical # rel. for r 2 r, while trumpet # rel. for 6. 2 0.2

New recipe -
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Generalized Analytic model (JG & Piran 2012)

Conical: larger M(R) than trumpet Iljlftvi;fgeﬁg eB: l(f)gzelf E 0 lf/%r "> 178,
0

=> lower I'(R) = larger 6,(R)
New (solid) vs. old (dashed)
_ Newrecipe _ rempes
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Comparison to Simulations (JG & Piran 2012)

m There 1s a reasonable overall agreement between the
analytic generalized models and the hydro-simulations

m Analytic models: over-simplified, but capture the essence

2D hydro-simulation by F. De Colle et al. 2012, with 6, = 0.2, k =0

weighted mean over energy: {(U)g

- energy 95 percentile

00.95

- energy 95 percentile




Jet Dynamics: Intermediate Conclusions

m For 0, 2 0.05 the lateral expansion 1s

quasi-logarithmic (expenrenttal), due to

the small dynamical range 1/60,>1 >>1 .:’"(van Eerten &

m For 0, << 0.05 there is an exponential _ MacFadyen 2012)
lateral expansion phase (hinted also by |EEEGE_—GE—_-CEEE
van Eerten & MacFadyen’s simulations) [

but such narrow GRB jets appear rare

m The jet first becomes sub-relativistic
& only then gradually approaches
spherical symmetry over a long time



Afterglow jet in stratified external media
(De Colle, Ramirez-Ruiz, JG & Lopez-Camara 2012)

= Previous simulations were all for k = 0 where p, ¢ R

m [arger (e.g. k=1, 2) are motivated by the stellar wind of
a massive star progenitor for long GRBs
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Afterglow jet in stratified external media
(De Colle, Ramirez-Ruiz, JG & Lopez-Camara 2012)

= Previous simulations were all for k = 0 where p, ¢ R

m [arger (e.g. k =1, 2) are motivated by the stellar wind of
a massive star progenitor for long GRBs

m At the same Lorentz factor larger k show larger sideways
expansion since they sweep up mass and decelerate more
slowly (e.g. M oc R¥K T" oc RG72 ip the spherical case)
and spend more time at lower I' (and 3, decreases with I)



Afterglow jet in stratified external media
(De Colle, Ramirez-Ruiz, JG & Lopez-Camara 2012)

m The velocity just behind the shock 1s always normal to
the shock front — radial near the head of the jet, while
pointing sideways & non-relativistic at the sides of the jet

k=0 k=1 k=2




Afterglow jet in stratified external media
(De Colle, Ramirez-Ruiz, JG & Lopez-Camara 2012)

m Swept-up mass: a lot at the sides K L
of the jet at large angles e

m Energy, emissivity: near the head

m Spherical symmetry approached
later for larger k

energy
emissivity

Iweighted by mass
+——+—+ t +—t

Iweighted by energy

ans
PP

. weighted by emissivity
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Afterglow jet in stratified external media
(De Colle, Ramirez-Ruiz, JG & Lopez-Camara 2012)

m For k = 0 the growth of R 1s stalled at t\(E;,,) while R ;

1SO

continues to grow =» helps approach spherical symmetry

m [ess pronounced for larger k as the slower accumulation
of mass enables R, to grow more =» become spherical
more slowly




The shape of the jet break
m Jet break becomes smoother with increasing k (as
expected analytically; Kumar & Panaitescu 2000 — KP0O)

m However, the jet break 1s significantly sharper than found
by KPOO =» better prospects for detection

® Varying 0, . < 6, dominates over varying k < 2

Lightcurves Temporal index
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Late time Radio emission & Calorimetry

m The bump in the lightcurve from the counter jet 1s much
less pronounced for larger k (as the counter jet decelerates
& becomes visible more slowly) = hard to detect

m The error 1n the estimated energy assuming a spherical
flow depends on the observation time t . & on k

Radio Lightcurves Flux Ratio: 2D/1D(E; )




Conclusions:

B Jct lateral expansion: analytic models & simulations agree

® For 6, = 0.05 the lateral expansion is quasi-logarithmic
(exponenttat), due to small dynamic range 1/0,>1 >>1
® For 0, << 0.05 there is an exponential lateral expansion
phase early on (but such narrow GRB jets appear rare
@ The jet first becomes sub-relativistic & only then slowly
approaches spherical symmetry over a long time
B et in a stratified external medium: p,,, o R7* for k=0,1,2

@ larger k jets sweep-up mass & slow down more slowly
=> sideways expansion is faster at t <t; & slower at t >t
=» become spherical slower; harder to see counter jet

@ Jet break is smoother for larger k but possibly detectable

¥ Jet break sharpness affected more by 6, <0, than k < 2

& Radio calorimetry accuracy affected both by t .. & k

obs
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