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Outline of the Talk:

m GRB prompt emission: GBM + LAT (@ high-energy
¢ Delayed HE onset, HE spectral component, BB component?
¢ = cmission region: I', R

¢ short vs. long GRBs @ HE

¢ Long-lived HE emission

m High-energy afterglow & GRB 130427A.:

¢ Implications for relativistic collisionless shock physics

m non-GRB physics: EBL, Lorentz invariance violation



Delayed onset of High-Energy Emission
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m The 15t LAT peak coincides m The first few GBM peaks are
with the 24 GBM peak missing in LAT but later peaks
m Delay in HE onset: ~4-5s  coincide; the delay 1s 0.1-0.2s
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Dlstlnct ngh-Energy Spectral Component
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i m Clearly (>50) exists in several

LAT GRBs, but very common
in the brightest LAT GRBs

m Suggests that it 1s common
but good photon statistics 1s
needed for clear evidence

(GRB090902B;
Abdo+ 2009)

(GRB080916C;
Abdo et al. 2009, Science, 323 1688)
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Late onset/HE spectral component: Possible Origin

m Leptonic: inverse-Compton (or synchrotron self-Compton)?
Hard to produce a delayed onset longer than spike widths
(the seed photon field builds-up on the dynamical time)
A gradual increase in the HE photon index P (determined
by the electron energy dist.) 1s not naturally expected

Hard to account for the different photon index values of
the HE component & the Band spectrum at low energies

Hard to produce a low-energy power-law (GRB090902B)
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Late onset/HE spectral component: Possible Origin

m Hadronic: (pair cascades, proton synchrotron) ?
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Late onset: time to accelerate protons+develop cascades?
Does not naturally account the gradual increase 1n 3
Hard to produce the observed sharp spikes that coincide
with those at low energies (+ a longer delay in the onset)
GRB090510: large energy needed: E,//E, i, ~ 10°—10°

GRB090902B: synchrotron emission from secondary e*
pairs can naturally explain the power-law at low energies

(GRB090902B;
Abdo et al. 2009,
ApJ, 706, L138)
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Thermal components in prompt spectrum?

m Usually sub-dominant = degeneracy with the assumed

(usually phenomenologlcal Band) dominant component

(GRB110721A; |
Axelsson+ 2012)]
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Thermal components in prompt spectrum?

m Usually sub-dominant = degeneracy with the assumed
(usually phenomenological Band) dominant component
m Photospheric emission 1s not a perfect black body (BB)
¢ Even for a local BB emission + a spherical flow, Doppler factor & R
variations with the angle to the line of sight smear/widen spectrum

¢ Temperature variations (with time/location) smear/widen spectrum
¢ Non-thermal e7/e” from dissipation near R ; = power-law wings

® Many options (continuum of physically motivated spectra) + many
degrees of freedom = non-uniqueness (many viable options)
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Photospheric components
m Suggested 1n some cases by low energy data (kT < 0.1 MeV)

m Usually sub-dominant energetically (+non-unique interpretation)

m In the Fireball Model: a remnant of the thermal acceleration
E/E =T /Ty = 0.05E, "Ry (*°t,*°T") 87  (Nakar et al. 2005)
kT, = 3(1+z)'Es, "Ry 1t 7 MeV t="Trp/(1F2)
kT, = 300(1+z) 'Ey, 5,E5,*R 4t 7 keV

Time-integrated spectrum
GRB110721A

® For magnetic acceleration:

o
o
o

¢ Dissipation below the photosphere
can give such a spectral component

(Axelsson
et al. 2012)
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Constraints on I for Fermi LAT GRBs

m I’ . :no high-energy cutoff due to intrinsic pair production
= lower limit on the Lorentz factor of the emitting region

® Fermi: more robust limits — don’t assume photons >E
BT, <[/ R=T

YY min

obs,max

requires assuming R(I") (e.g. R ~ I'*cAt)

m For bright LAT GRBs (long/short): I' = 10° for simple model
(steady-state, uniform, 1sotropic) but I' = 500 for more realistic
time-dependent self-consistent thin shell model (JG et al. 2008)
® GRB 090926A: high-energy cutoff — 1f due to intrinsic pair
production then I' ~ 300 - 700




Long vs. Short GRBs (@ High-Energies:

Trend: larger LAT/GBM fluence  jpysmeliiohinsss}

ckermann et al. 2013) . oo 3

ratio in short (rel. to long) GRBs

Short GRBs are harder (higher } & E 5

E .. 10 time itegrated spectrum)

m Both show delayed onsets, but the E
delay scales with the GRB duration

m Both show HE hard PL component e
m Both show long-lived HE emission [
m Both include very bright LAT GRBs

m Both have very constraining I

mim

m Both have some redshifts but long
GRBs are usually easier to follow up

T, (50 keV-300 keV) [s]



Long-Lived ngh-Energy emission
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m Scen 1n many/most LAT GRBs: a ; E ggggggi
power-law in time/energy o< t“EP :
with p~—2 and a; ~1-1.5

m Consistent with afterglow @ t» T, 5
(at t < Ty, sharp spikes = not afterglow)

m Prompt to afterglow transition?

10 100 1000

m Some emission from X-ray flares (?) [kttt
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High-Energy Afterglow: GRB130427A

m LAT detected emission
up to ~ 20 hr after GRB

m >]10 GeV y’s observed
up to hours after GRB

m May arise at least partly
from the prompt y-ray
emission up to few 107 s [EEElEeEit Ty

XRT+BAT (0.3-10 keV, ergcm ™ 57')

Flux [0.1 - 100 GeV]

+ LAT energy flux (0.1-100 GeV, erg cm™* 57')

m At later times there 1S N0 | -———-
prompt emission, only a
simple power-law
decay: afterglow
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m LAT detected emission
up to ~ 20 hr after GRB

m >10 GeV vy’s observed
up to hours after GRB

m May arise at least partly

from the prompt y-ray
emission up to few 107 s

m At later times there 1s no

prompt emission, only a

simple power-law
decay: afterglow
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(Maselli et al. 2014)
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[ Swift/XRT 0.3-10 keV (a=1.36+0.05)
- NuSTAR 3—10 keV (a=1.23+0.02)

(STAR 3-79 keV (a=1.28+0.02
Fermi/LAT 100 MeV-100 GeV (<:r.l=1 .17+0.06) |
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High-Energy Afterglow: GRB130427A

m NuSTAR: 1% late-time GRB
afterglow detection at 3-79 keV

m A single-component synchrotron
spectrum nicely fits all energies

TO+ ~1.5 days T

NuSTAR
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m No need or much room for SSC

m Also supported by VERITAS # |
observations (Aliu et al. 2014) #"__ (Kouveliotou et al. 2013)
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High-Energy Afterglow. GRB130427A

LAT HE photons violate:

(Ackermann+ 2014, Science, 343,;42) ;
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m Based on a one-zone model
balancing electron energy
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®m An “easy way out” would be SPCRESPC e
1f SSC emission dominated Time Since Trigger [sec]
at highest LAT energies (Fan+ 2013; Liut+ 2013), but it doesn’t work
B = E . appears to be truly violated = = 1 assumption must break
®m Non-uniform magnetic field? acceleration B
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Constraining the opacity of the Universe

m y-rays from distant sources can pair produce (yy — €*e”) on
the way to us with the extragalactic background light (EBL)

m This can test the transparency of the Universe and constrain
EBL models (or the massive star formation rate at z = 1)

m GRBs are already competitive with AGN, & probe higher z
m EBL possibly detected (using blazars: LAT+HIACTs; Dominguez+2013)

® BlLlLacs ® GRBs (Pass6) Kneiske - pest 1t m Bllacs ® GRBs (Pass6)
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Testing for Lorentz Invariance Violation

(usik GRB was first suggested
[1)% elino-Camelia et al. 1998)

Why GRBs? Very bright & short
transient events, at cosmological
distances, emit high-energy y-rays

(D. Pile, Nature Photonics, 2010)

NASA / SONOMA STATE UNIVERSITY / AURORE SIMONNET




Testing for Lorentz Invariance Violation

m GRB 090510 1s much better than the rest @
(short, hard, very fine time structure) Ejjj
m Abdo+ 2009, Nature, 462, 331: 15 direct s
time-of-flight limit beyond Plank scale K==
on linear (n= 1) energy dispersion:

n : Z:‘romv, :
ol e=12104m)(E, 1Eq, )" BEoss > 1 LEpas | =

(robust, conservative, 2 independent methods)

m Vasileiout 2013: 3 different methods,
4 GRBs (090510 1s still the best by far),

the limits improved by factors of a few

m Vasileiou+ 2015, Nature Phys., 11, 344:
stochastic LIV — motivation: space-time
foam (1% Planck-scale limit of its kind)
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