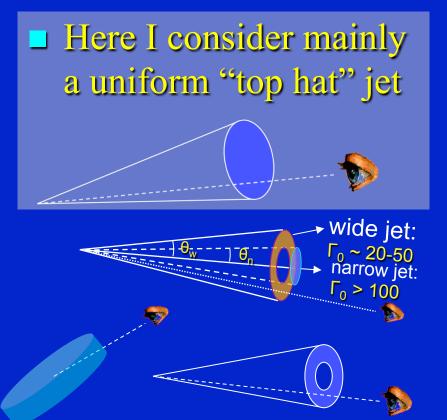
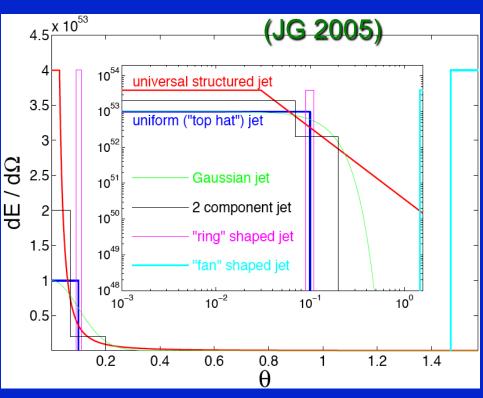

GRB Jet Dynamics

Jonathan Granot

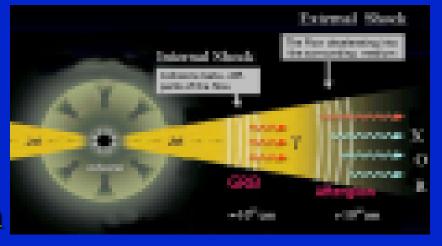
Open University of Israel


Gamma-Ray Burst Symposium, Marbella, Spain, Oct. 8, 2012


Outline of the talk:

- Jet angular structure & evolution stages
- Magnetic acceleration: overview & recent results
- Jet dynamics during the afterglow: brief overview
- Analytic vs. numerical results: a discrepancy?
- Recent numerical & analytic results: finally agree
- Simulations of an afterglow jet propagating into a stratified external medium: $\rho_{\text{ext}} \propto R^{-k}$ for k = 0, 1, 2
- Implications for GRBs: jet breaks, radio calorimetry

The Angular Structure of GRB Jets:


- Jet structure: unclear (uniform, structured, hollow cone,...)
 - Affects $E_{\gamma,iso} \rightarrow E_{\gamma}$ & observed GRB rate \rightarrow true rate
 - ◆ Viewing-angle effects (afterglow & prompt XRF)
 - ◆ Can also affect late time radio calorimetry

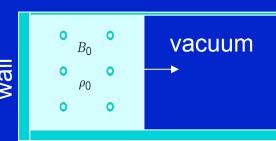
Stages in the Dynamics of GRB Jets:

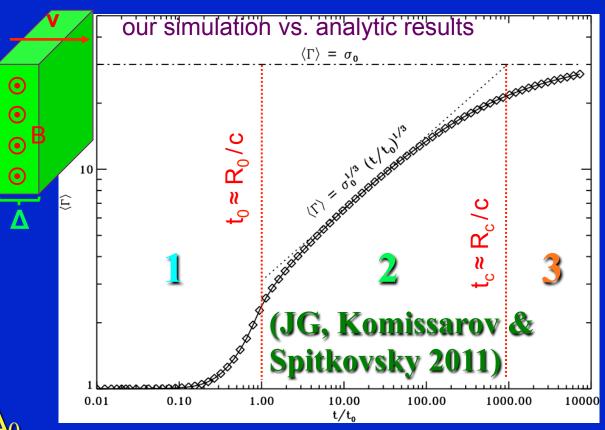
- Launching of the jet: magnetic (B-Z?) neutrino annihilation?
- Acceleration: magnetic or thermal?
- For long GRBs: propagation inside progenitor star
- Collimation: stellar envelope, accretion disk wind, magnetic
- Coasting phase that ends at the deceleration radius R_{dec}
- At $R > R_{dec}$ most of the energy is in the shocked external medium: the composition & radial profile are forgotten, but the angular profile persists (locally: BM76 solution)
- Once $\Gamma < 1/\theta_0$ at $R > R_{jet}$ jet lateral expansion is possible
- Eventually the flow becomes spherical approaches the self-similar Sedov-Taylor solution

The σ-problem: for a "standard" steady ideal MHD axisymmetric flow

- $\Gamma_{\infty} \sim \sigma_0^{1/3} \& \sigma_{\infty} \sim \sigma_0^{2/3} \gg 1$ for a spherical flow; $\sigma_0 = B_0^{2/4} \pi \rho_0 c^2$
- lacktriangle However, PWN observations (e.g. the Crab nebula) imply $\sigma \ll 1$ after the wind termination shock the σ problem!!!
- A broadly similar problem persists in relativistic jet sources
- Jet collimation helps, but not enough: $\Gamma_{\infty} \sim \sigma_0^{1/3} \theta_{\text{jet}}^{-2/3}$, $\sigma_{\infty} \sim (\sigma_0 \theta_{\text{jet}})^{2/3} \& \Gamma \theta_{\text{jet}} \le \sigma^{1/2} (\sim 1 \text{ for } \Gamma_{\infty} \sim \Gamma_{\text{max}} \sim \sigma_0)$
- Still $\sigma_{\infty} \ge 1 \Rightarrow$ inefficient internal shocks, $\Gamma_{\infty}\theta_{\text{jet}} \gg 1$ in GRBs
- Sudden drop in external pressure can give $\Gamma_{\infty}\theta_{jet} \gg 1$ but still $\sigma_{\infty} \gtrsim 1$ (Tchekhovskoy et al. 2009) \Rightarrow inefficient internal shocks

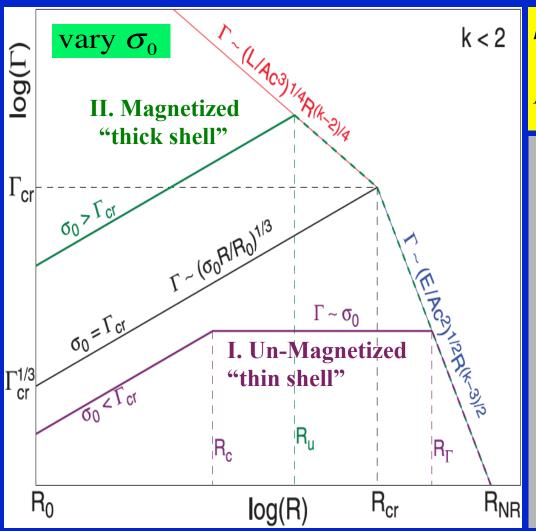
Alternatives to the "standard" model


- Axisymmetry: non-axisymmetric instabilities (e.g. the current-driven kink instability) can tangle-up the magnetic field (Heinz & Begelman 2000)
- ♦ If $\langle B_r^2 \rangle = \alpha \langle B_\phi^2 \rangle = \beta \langle B_z^2 \rangle$; α,β=const then the magnetic field behaves as an ultra-relativistic gas: $p_{\text{mag}} \propto V^{-4/3}$ ⇒ magnetic acceleration as efficient as thermal
- Ideal MHD: a tangled magnetic field can reconnect (Drenkham & Spruit 2002; Lyubarsky 2010 Kruskal-Schwarzschild instability (like R-T) in a "striped wind") magnetic energy → heat (+radiation) → kinetic energy
- Steady-state: effects of strong time dependence (JG, Komissarov & Spitkovsky 2011; JG 2012a, 2012b)


Impulsive Magnetic Acceleration: $\Gamma \propto R^{1/3}$

Useful case study:

Initial value of magnetization parameter:

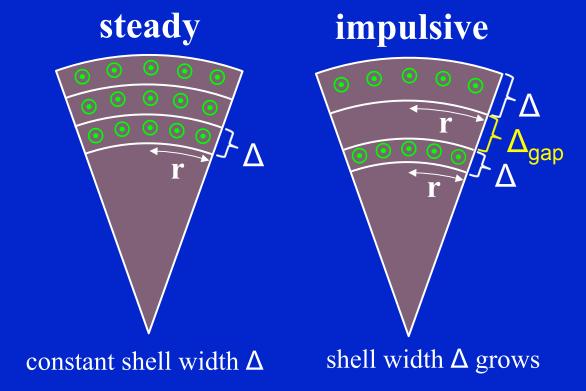

$$\sigma_0 = \frac{B_0^2}{4\pi\rho_0 c^2} >> 1$$

- 1. $\langle \Gamma \rangle_{\rm E} \approx \sigma_0^{1/3}$ by $R_0 \sim \Delta_0$
- 2. $\langle \Gamma \rangle_{\rm E} \propto {\rm R}^{1/3}$ between ${\rm R}_0 \sim \Delta_0$ & ${\rm R}_{\rm c} \sim {\rm \sigma_0}^2 {\rm R}_0$ and then $\langle \Gamma \rangle_{\rm E} \approx {\rm \sigma_0}$
- 3. At $R > R_c$ the sell spreads as $\Delta \propto R \& \sigma \sim R_c/R$ rapidly drops
- Complete conversion of magnetic to kinetic energy!
- This allows efficient dissipation by shocks at large radii

Impulsive Magnetic Acceleration: single shell propagating in an external medium acceleration & deceleration are tightly coupled (JG 2012)

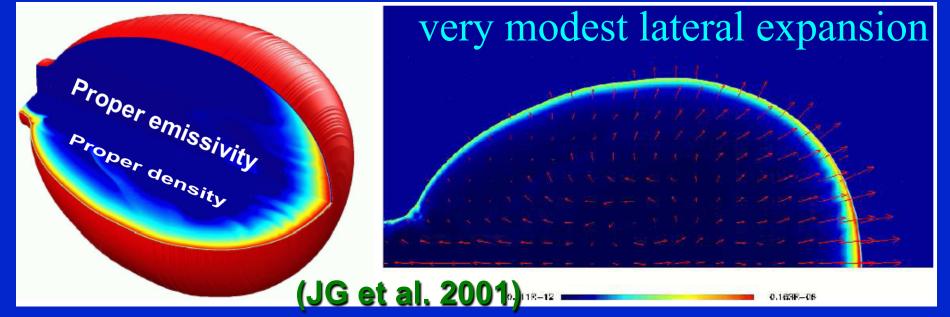

```
\rho_{\text{ext}} = AR^{-k}
R_{\text{cr}} \sim R_0 \Gamma_{\text{cr}}^2 \sim \left(\frac{ER_0}{Ac^2}\right)^{\frac{1}{4-k}}
```

L "Thin shell", low-o: strong reverse shock, peaks at $\gg T_{GRB}$ II. "Thick shell", high-o: weak or no reverse shock, T_{dec} ~ T_{GRB} III. like II, but the flow becomes independent of σ_0 IV. a Newtonian flow (if per is very high, e.g. inside a star) R_{NR} II*. if ρ_{ex} drops very sharply

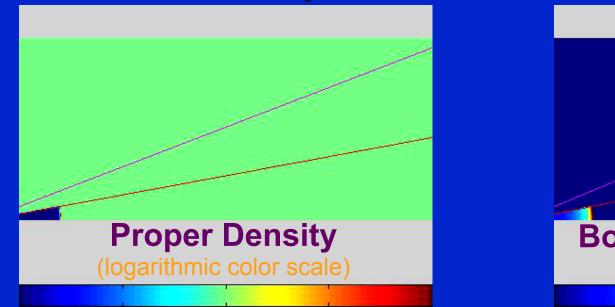

Many sub-shells: acceleration, collisions (JG 2012b)

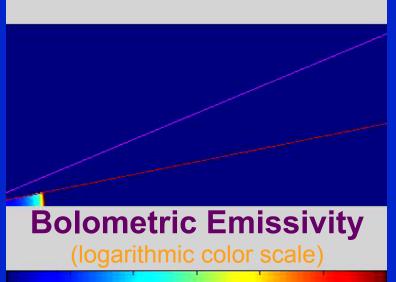
Flux freezing (ideal MHD):

$$\Phi \sim Br\Delta = constant$$

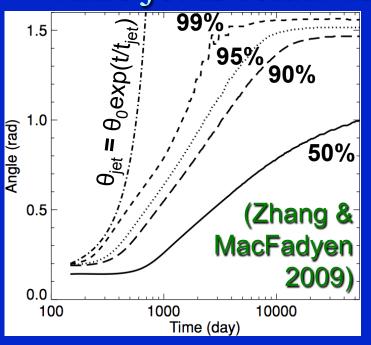

$$E_{EM}$$
 ~ B^2 Γ^2 Λ ∝ 1/Λ
total energy
rest energy = $(1+\sigma)\Gamma$

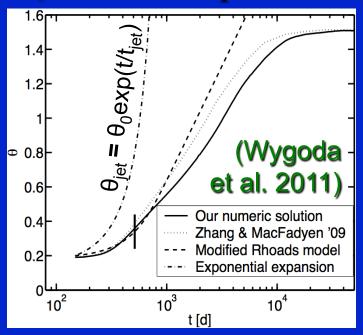
acceleration (Γ) $\Leftrightarrow \sigma \downarrow$




- For a long lived variable source (e.g. AGN), each sub shell can expand by $1+\Delta_{\rm gap}/\Delta_0 \Rightarrow \sigma_{\infty} = (E_{\rm total}/E_{\rm EM,\infty}-1)^{-1} \sim \Delta_0/\Delta_{\rm gap}$
- For a finite # of sub-shells the merged shell can still expand
- Sub-shells can lead to a low-magnetization thick shell & enable the outflow to reach higher Lorentz factors

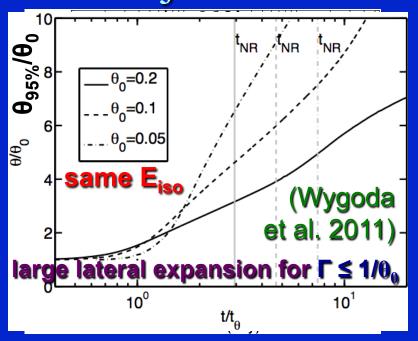
Afterglow Jet Dynamics: 2D hydro-simulations

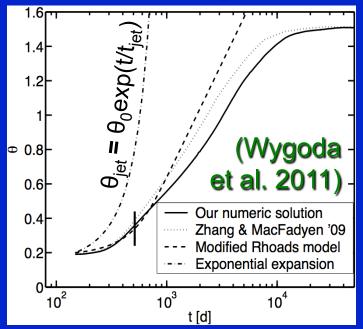

■ Emission mostly from front, slow material at the sides



Analytic vs. Numerical results: a problem?

- Analytic results (Rhoads 1997, 99; Sari, Piran & Halpern 99): exponential lateral expansion at $R > R_{jet}$ e.g. $\Gamma \sim (c_s/c\theta_0) \exp(-R/R_{jet})$, $\theta_{jet} \sim \theta_0(R_{jet}/R) \exp(R/R_{jet})$
 - ♦ Supported by a self-similar solution (Gruvinov 2007)
- **Hydro-simulations**: very **mild** lateral expansion while jet is relativistic (also for simplified $2D \rightarrow 1D$)

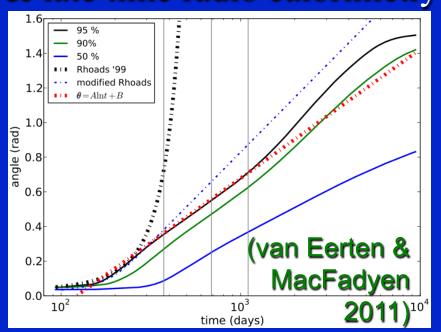




Modest 6₀ ⇒ small region of validity

Analytic vs. Numerical results: a problem?

- Analytic results (Rhoads 1997, 99; Sari, Piran & Halpern 99): exponential lateral expansion at $R > R_{jet}$ e.g. $\Gamma \sim (c_s/c\theta_0) \exp(-R/R_{jet})$, $\theta_{jet} \sim \theta_0(R_{jet}/R) \exp(R/R_{jet})$
 - ♦ Supported by a self-similar solution (Gruvinov 2007)
- Hydro-simulations: very mild lateral expansion while jet is relativistic (also for simplified $2D \rightarrow 1D$)



Modest 6₀ ⇒ small region of validity

Analytic vs. Numerical results: a problem?

van Eerten & MacFadyen 11'

- No exponential lateral expansion even for $\theta_0 = 0.05$
- Lateral expansion is instead only logarithmic
- Affects jet break shape + t_j
 & late time radio calorimetry

Lyutikov 2011

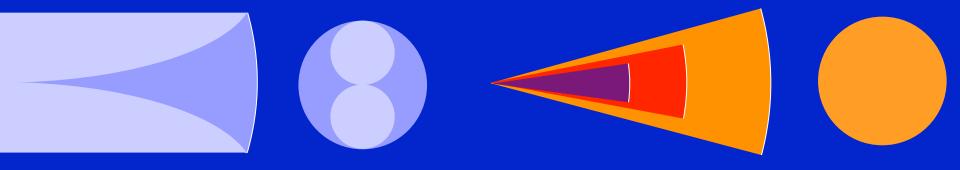
- Lateral expansion becomes significant only for $\Gamma \le \theta_0^{-1/2}$
- Based on thin shell approx.

$$\tan \alpha = -\frac{\partial \ln R}{\partial \theta}$$
 (Kumar & JG 2003)
$$\Rightarrow \beta_{\theta} \sim \frac{1}{\Gamma^2 \Delta \theta} \sim \frac{1}{\Gamma^2 \theta_{j}}$$

$$r = R(\theta) \rightarrow \text{shock radius}$$

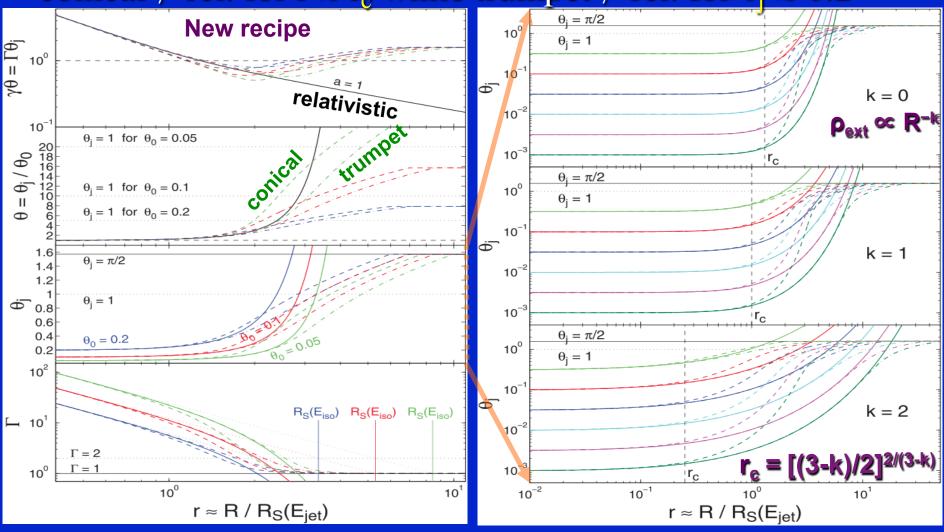
in spherical coordinates

$$\alpha$$
 = angle between the shock normal \hat{n} and radial direction \hat{r}


Generalized Analytic model (JG & Piran 2012)

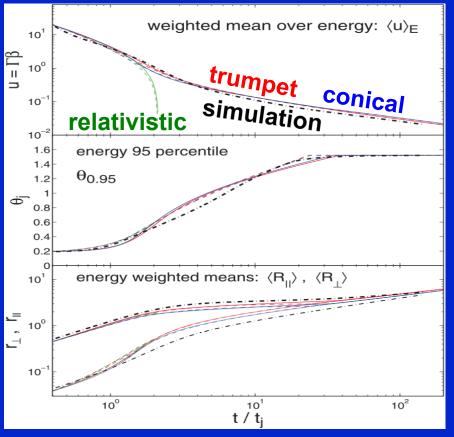
■ Lateral expansion:

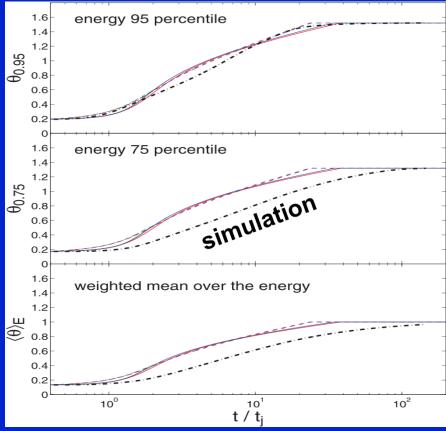
- 1. new recipe: $\beta_{\theta}/\beta_{r} \sim 1/(\Gamma^{2}\Delta\theta) \sim 1/(\Gamma^{2}\theta_{j})$ (based on $\hat{\beta} = \hat{n}$)
- 2. old recipe: $\beta_{\theta} = u_{\theta}/\Gamma = u'_{\theta}/\Gamma \sim \beta_{r}/\Gamma$ (based on $u'_{\theta} \sim 1$)


Generalized recipe:
$$\frac{d\theta_{j}}{d\ln R} = \frac{\beta_{\theta}}{\beta_{r}} \approx \frac{1}{\Gamma^{1+a}\theta_{j}^{a}}, \quad a = \begin{cases} 1 & (\hat{\beta} = \hat{n}) \\ 0 & (u'_{\theta} \sim 1) \end{cases}$$

- New recipe: lower β_{θ} for $\Gamma > 1/\theta_0$ but higher β_{θ} for $\Gamma < 1/\theta_0$
- Does not assume $\Gamma \gg 1$ or $\theta_j \ll 1$ (& variable: $\Gamma \bowtie u = \Gamma \beta$)
- Sweeping-up external medium: trumpet vs. conical models

Generalized Analytic model (JG & Piran 2012)

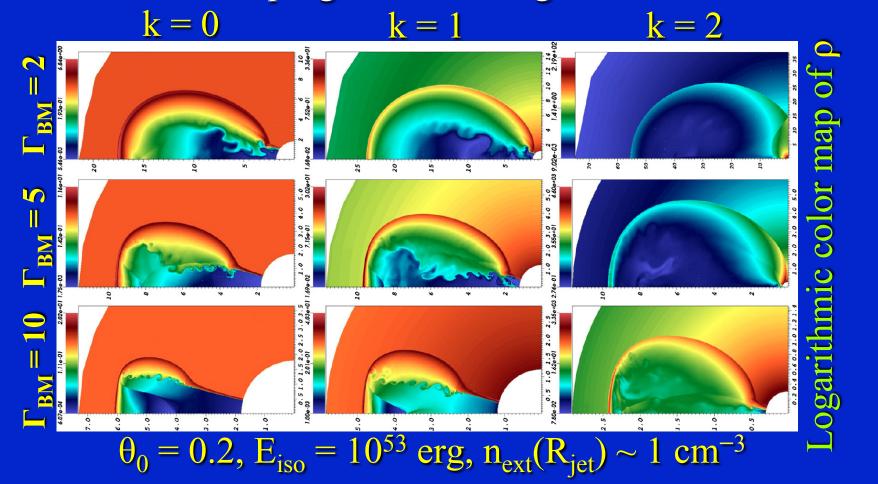

- Main effect of relaxing the $\Gamma \gg 1$, $\theta_j \ll 1$ approximation: quasi-logarithmic (exponential) lateral expansion for $\theta_0 \gtrsim 0.05$
- conical \neq rel. for $r \ge r_c$ while trumpet \neq rel. for $\theta_i \ge 0.2$



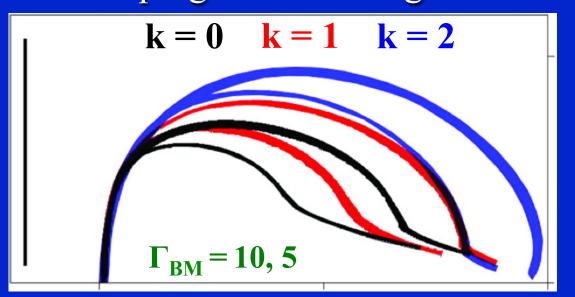
Comparison to Simulations (JG & Piran 2012)

- There is a reasonable overall **agreement** between the **analytic** generalized models and the hydro-**simulations**
- Analytic models: over-simplified, but capture the essence

2D hydro-simulation by F. De Colle et al. 2012, with $\theta_0 = 0.2$, k = 0



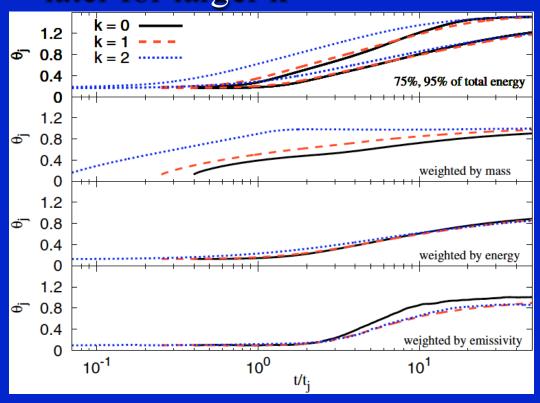
Afterglow jet in stratified external media

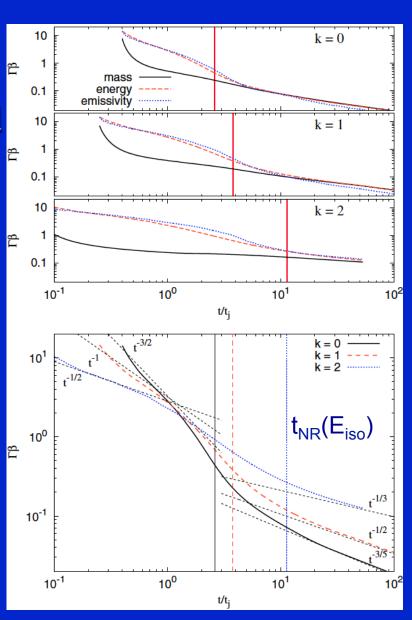

(De Colle, Ramirez-Ruiz, JG & Lopez-Camara 2012)

- Previous simulations were all for k = 0 where $\rho_{\text{ext}} \propto R^{-k}$
- Larger k (e.g. k = 1, 2) are motivated by the stellar wind of a massive star progenitor for long GRBs

Afterglow jet in stratified external media (De Colle, Ramirez-Ruiz, JG & Lopez-Camara 2012)

- Previous simulations were all for k = 0 where $\rho_{ext} \propto R^{-k}$
- Larger k (e.g. k = 1, 2) are motivated by the stellar wind of a massive star progenitor for long GRBs

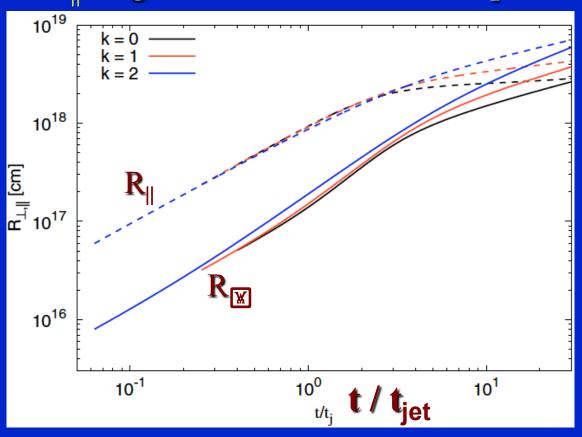



At the same Lorentz factor larger k show larger sideways expansion since they sweep up mass and decelerate more slowly (e.g. M \propto R^{3-k}, $\Gamma \propto$ R^{(3-k)/2} in the spherical case) and spend more time at lower Γ (and β_{θ} decreases with Γ)

Afterglow jet in stratified external media

(De Colle, Ramirez-Ruiz, JG & Lopez-Camara 2012)

- Swept-up mass: a lot at the sides of the jet at large angles
- Energy, emissivity: near the head
- Spherical symmetry approached later for larger k

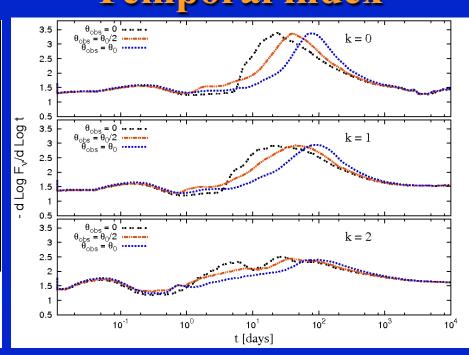

Afterglow jet in stratified external media

(De Colle, Ramirez-Ruiz, JG & Lopez-Camara 2012)

For k = 0 the growth of R_{\parallel} is stalled at $t_{NR}(E_{iso})$ while R_{\parallel} continues to grow \rightarrow helps approach spherical symmetry

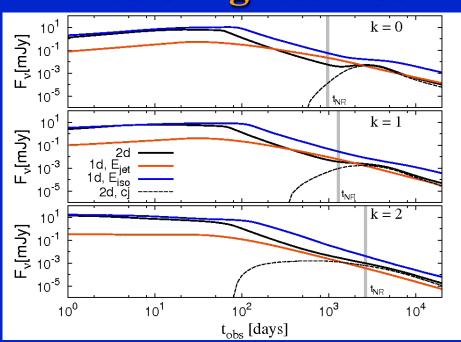
■ Less pronounced for larger k as the slower accumulation of mass enables R_{\parallel} to grow more \Rightarrow become spherical

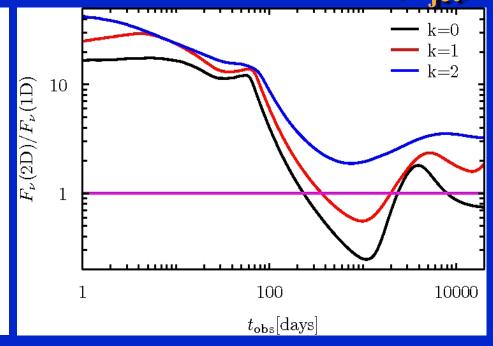
more slowly


The shape of the jet break

- Jet break becomes smoother with increasing k (as expected analytically; Kumar & Panaitescu 2000 KP00)
- However, the jet break is significantly sharper than found by KP00 → better prospects for detection
- Varying $\theta_{obs} < \theta_0$ dominates over varying $k \le 2$

Lightcurves


Temporal index


Late time Radio emission & Calorimetry

- The bump in the lightcurve from the counter jet is much less pronounced for larger k (as the counter jet decelerates & becomes visible more slowly) → hard to detect
- The error in the estimated energy assuming a spherical flow depends on the observation time t_{obs} & on k

Radio Lightcurves

Flux Ratio: 2D/1D(E_{iet})

Conclusions:

- Magnetic acceleration: likely option worth further study
- Jet lateral expansion: analytic models & simulations agree
 - ♦ For $\theta_0 \ge 0.05$ the lateral expansion is quasi-logarithmic (exponential), due to small dynamic range $1/\theta_0 > \Gamma \gg 1$
 - For $\theta_0 \ll 0.05$ there is an exponential lateral expansion phase early on (but such narrow GRB jets appear rare)
 - ◆ Jet becomes first sub-relativistic, then (slowly) spherical
- Jet in a stratified external medium: $\rho_{\text{ext}} \propto R^{-k}$ for k = 0, 1, 2
 - ◆ larger k jets sweep-up mass & slow down more slowly
 - \rightarrow sideways expansion is faster at $t < t_i$ & slower at $t > t_i$
 - become spherical slower; harder to see counter jet
 - ◆ Jet break is smoother for larger k but possibly detectable
 - lacklost Jet break sharpness affected more by $\theta_{\rm obs} < \theta_0$ than $k \le 2$
 - ◆ Radio calorimetry accuracy affected both by t_{obs} & k