Polarization in Gamma-Ray Bursts Jonathan Granot Open University of Israel & George Washington University

Collaborators: R. Gill, A. Königl, F. De Colle, E. Ramirez-Ruiz, T. Piran

Gamma-Ray Bursts & Related Astrophysics in Multi-Messenger Era Nanjing, China, 13 May 2019

Outline of the Talk:

Polarization of synchrotron rad. from a relativistic source

Afterglow: Jet structure & dynamics, B-field structure (ES)

- Top hat vs. structured jet
- Shock-produced vs. ordered B-field, or combining the two
- Shock-produced B-field's degree of anisotropy
- Reverse shock: optical flash & radio flare (ejecta B-field)
- Prompt GRB: emission mechanism, Jet structure, ejecta B
 - High P: Syn. + ordered B vs. sharp jet + special viewing angle
 - Different emission mechanisms
 - What can be learned from single GRBs or a large sample
- Conclusions

Polarization of Synchrotron Emission

linear polarization is perpendicular to the projection of
 B on the plane of the sky (normal to the wave vector)

The maximal polarization is for the local emission from an ordered **B**-field: $P_{max} = (\alpha+1)/(\alpha+5/3)$ where $F_v \propto v^{-\alpha}$, $-1/3 \leq \alpha \leq 1.5 \Rightarrow 50\% \leq P_{max} \leq 80\%$ (Rybicki & Lightman 1979; Granot 2003)

In the source rest frame:

- A uniform field produces $\mathbf{P} = \mathbf{P}_{\text{max}}$
- For a field random when projected on the plane of the sky: P = 0
- In particular, for a field isotropically tangled in 3D: P = 0

Uniform B

Random B

Shock Produced Magnetic Field:

A magnetic field that is produced at a relativistic collisionless shock, due to the two-stream instability, is expected to be tangled within the plane of the shock (Medvedev & Loeb 1999)

Random field in shock plane

Sari 99; Ghisellni & Lazzati 99

Random field in shock plane

Sari 99; Ghisellni & Lazzati 99

Random field in shock plane

Sari 99; Ghisellni & Lazzati 99

Random field in shock plane

Ordered field in shock plane

Sari 99; Ghisellni & Lazzati 99

Granot & Königl 03

 $P \sim P_{max}$

Afterglow: Two "Traditional" Jet Structures Uniform (top hat) jet: (Rhoads 97,99; Sari+99, ...) θ_0 Log(θ) $\theta_{\rm o}/\theta_{\rm c} = 0.1$ $\theta_{\rm o}/\theta_{\rm c} = 0.4$ 10 $\theta_{\rm o}/\theta_{\rm c} = 0.67$ P₆₀ (%) $\theta_{\rm o}/\theta_{\rm c} = 0.9$ 5 0 No sideways Expansion (Ghisellini & 0.10 Lazzati 1999) 0.01 Fast sideways Expansion 20 ~c in local 15 10 rest frame) (Sari 1999) inear polarization -5 -10 q=0.32 q=0.71 -15 -20 10⁻³ 10-2 10° t/t____ 10² 10 10 10³

Afterglow: Two "Traditional" Jet Structures **Uniform (top hat) jet:** (Rhoads 97,99; g θ_0 $Log(\theta)$ $\theta_{\rm o}/\theta_{\rm e} = 0.1$ $\theta_{\rm o}/\theta_{\rm c} = 0.4$ 10 $\theta_{\rm o}/\theta_{\rm c} = 0.67$ $\theta_o/\theta_c = 0.9$ P₆₀ (%) 5 Main Prediction: 0 **P** vanishes & reappears No sideways Expansion (Ghisellini & 0.10 Lazzati 1999) with $\theta_{\rm p}$ rotated by 90° 0.01 Fast sideways Expansion Is not clearly observed 20 (∼c in local 15 10 rest frame) (Sari 1999) Also: $P \leq 10\%-20\%$ inear polarization While $P_{obs} \sim 1-3\%$ -10 q=0.32 -15 q=0.71 -20 10° t/t___ 10^{2} 10 10-2 10 10 103

 10^{-2}

 10^{3}

 10^{2}

100

10

t (days)

 10°

 10°

t (days)

 10^{1}

 10^{2}

 10^{3}

The Random B-field's Degree of Anisotropy:

- $b = 2\langle B_{\parallel}^2 \rangle / \langle B_{perp}^2 \rangle$ parameterizes the asymmetry of B_{rnd}
- Sign(b-1) determines θ_p (P > 0 is along the direction from the line of sight to the jet axis & P < 0 is rotated by 90°)</p>
- For $b \approx 1$ the polarization is very low (field is almost isotropic)
- $P \leq 3\%$ in afterglows observations $\Rightarrow 0.5 \leq b \leq 2$

GW170817/GRB170817A Afterglow (Gill & JG 18) ■ Assuming a shock-produce B-field with b = 2⟨B²_{||}⟩/⟨B²_⊥⟩ ■ Data favor two core-dominated jet models with similar P(t)

GW170817/GRB170817A Afterglow (Gill & JG 18) ■ Assuming a shock-produce B-field with b = 2⟨B²_{||}⟩/⟨B²_⊥⟩ ■ Data favor two core-dominated jet models with similar P(t)

GW170817/GRB170817A Afterglow (Gill & JG 18) ■ Assuming a shock-produce B-field with b = 2⟨B²_{||}⟩/⟨B²_⊥⟩ ■ Data favor two core-dominated jet models with similar P(t)

GW170817/GRB170817A Afterglow (Gill & JG 19) More realistic assumptions ⇒ B-field in collisionless shocks:
2D emitting shell → 3D emitting volume (local BM76 radial profile) GW170817/GRB170817A Afterglow (Gill & JG 19) More realistic assumptions ⇒ B-field in collisionless shocks:
2D emitting shell → 3D emitting volume (local BM76 radial profile)
B-field evolution by faster radial expansion: L'_r/L'_{θ,φ} ∝ χ^{(7-2k)/(8-2k)} B-field isotropic in 3D with B'_r → ξB'_r (Sari 1999); ξ = ξ₀χ^{(7-2k)/(8-2k)}

GW170817/GRB170817A Afterglow (Gill & JG 19) More realistic assumptions ⇒ B-field in collisionless shocks:
2D emitting shell → 3D emitting volume (local BM76 radial profile)
B-field evolution by faster radial expansion: L'_r/L'_{θ,φ} ∝ χ^{(7-2k)/(8-2k)} B-field isotropic in 3D with B'_r → ξB'_r (Sari 1999); ξ = ξ₀χ^{(7-2k)/(8-2k)}

GW170817/GRB170817A Afterglow (Gill & JG 19)
More realistic assumptions ⇒ B-field in collisionless shocks:
2D emitting shell → 3D emitting volume (local BM76 radial profile)
B-field evolution by faster radial expansion: L'_r/L'_{θ,φ} ∝ χ^{(7-2k)/(8-2k)} B-field isotropic in 3D with B'_r → ξB'_r (Sari 1999); ξ = ξ₀χ^{(7-2k)/(8-2k)}

Reverse shock Pol.: Ejecta B-field (Laskar + 2019)

■ ALMA observed GRB190114C reverse shock @97.5 GHz: $P \approx 0.9 \rightarrow 0.6\%$, $\Delta \theta_p \approx 54^\circ (2.2 \rightarrow 5.2 \text{ hr})$; 1st GRB radio pol.

 Reverse shock Pol.: Ejecta B-field (Laskar + 2019)
 ALMA observed GRB190114C reverse shock @97.5 GHz: P≈ 0.9→0.6%, Δθ_p≈ 54° (2.2→5.2hr); 1st GRB radio pol.
 Low P: rules out B_{ord} (with θ_B ≥ 1/Γ) for which P ~ P_{max}

Reverse shock Pol.: Ejecta B-field (Laskar + 2019)
ALMA observed GRB190114C reverse shock @97.5 GHz: P≈ 0.9→0.6%, Δθ_p≈ 54° (2.2→5.2 hr); 1st GRB radio pol.
Low P: rules out B_{ord} (with θ_B ≥ 1/Γ) for which P ~ P_{max}
B_{ord}+B_{rnd}: IP|_{rnd}/IP|_{ord} ~ 1 & I_{ord} ≪ I_{rnd}; FS (t≪t_j), RS+FS

Reverse shock Pol.: Ejecta B-field (Laskar + 2019) ■ ALMA observed GRB190114C reverse shock @97.5 GHz: $P \approx 0.9 \rightarrow 0.6\%$, $\Delta \theta_p \approx 54^\circ (2.2 \rightarrow 5.2 \text{ hr})$; 1st GRB radio pol. Low P: rules out B_{ord} (with $\theta_B \gtrsim 1/\Gamma$) for which $P \sim P_{max}$ $\blacksquare B_{\text{ord}} + B_{\text{rnd}}: IP|_{\text{rnd}}/IP|_{\text{ord}} \sim 1 \& I_{\text{ord}} \ll I_{\text{rnd}}; FS (t \ll t_i), RS + FS$ ■ N ~ $(\Gamma_{ei}\theta_B)^{-2}$ incoherent patches: $\Gamma_{ei} \approx 15$, P ~ $P_{max}/N^{1/2} \Rightarrow$ $\theta_{\rm B} \sim P/P_{\rm max}\Gamma_{\rm ej} \sim 10^{-3} \& \Delta \theta_{\rm p} \sim 1 \text{ expected over } \Delta t \sim t \checkmark$

Reverse shock Pol.: Ejecta B-field (Laskar + 2019) ■ ALMA observed GRB190114C reverse shock @97.5 GHz: $P \approx 0.9 \rightarrow 0.6\%$, $\Delta \theta_p \approx 54^\circ (2.2 \rightarrow 5.2 \text{ hr})$; 1st GRB radio pol. Low P: rules out B_{ord} (with $\theta_B \gtrsim 1/\Gamma$) for which $P \sim P_{max}$ $\blacksquare B_{ord} + B_{rnd}: IP|_{rnd}/IP|_{ord} \sim 1 \& I_{ord} \ll I_{rnd}; FS (t \ll t_i), RS + FS$ ■ N ~ $(\Gamma_{ei}\theta_B)^{-2}$ incoherent patches: $\Gamma_{ei} \approx 15$, P ~ $P_{max}/N^{1/2} \Rightarrow$ $\theta_{\rm B} \sim P/P_{\rm max}\Gamma_{\rm ej} \sim 10^{-3} \& \Delta \theta_{\rm p} \sim 1 \text{ expected over } \Delta t \sim t \checkmark$ $\Delta \theta_{\rm p} \approx 54^{\circ}$ rules out an axi-symmetric configuration (e.g. a global toroidal B-field in the original jet; A patchy shell?

Prompt γ-ray Polarization: hard to measure
First consider synchrotron emission:
Shock produced B-field + θ_{obs} ≤ θ_j - 1/Γ ⇒ P ≈ 0
P ~ P_{max} can be achieved in the following ways:

ordered magnetic field in the ejecta,
special geometry: |θ_{obs} - θ_j| ≤1/Γ ⇒ favors narrow jets: θ_j ≤ 1/Γ (works with a shock produced B-field)

Narrow Jet + shock produced B-field

High polarization + reasonable flux ⇒ θ_j < θ_{obs} ≤ θ_j+1/Γ
 A reasonable probability for such θ_{obs} ⇒ Γθ_j ≤ a few
 Since Γ ≥ 100 & θ_j ≥ 0.05, Γθ_j ≥ 5 and is typically larger

Narrow Jet + shock produced B-field

• High polarization + reasonable flux $\Rightarrow \theta_i < \theta_{obs} \leq \theta_i + 1/\Gamma$ • A reasonable probability for such $\theta_{obs} \Rightarrow \Gamma \theta_i \leq a$ few ■ Since $\Gamma \ge 100 \& \theta_i \ge 0.05$, $\Gamma \theta_i \ge 5$ and is typically larger ■ The jet must have sharp edges: $\Delta \theta_i \leq 1/4\Gamma$ (Nakar et al. 03) a 'structured jet' produces low polarization (several %) • Most GRBs are viewed from $\theta_{obs} < \theta_i$ and are expected to have a very low polarization in this scenario

Narrow Jet + shock produced B-field

- High polarization + reasonable flux $\Rightarrow \theta_j < \theta_{obs} \le \theta_j + 1/\Gamma$
- A reasonable probability for such $\theta_{obs} \Rightarrow \Gamma \theta_i \leq a$ few
- Since $\Gamma \ge 100 \& \theta_i \ge 0.05$, $\Gamma \theta_i \ge 5$ and is typically larger
- The jet must have sharp edges: $\Delta \theta_i \leq 1/4\Gamma$ (Nakar et al. 03)
- a 'structured jet' produces low polarization (several %)
- Most GRBs are viewed from $\theta_{obs} < \theta_j$ and are expected to have a very low polarization in this scenario
- Afterglow obs. imply more random B_{rnd} : 0.48 < ξ_0 < 0.79

Adding pulses: Random B-field in shock plane

ΔΓ ~ Γ between different shell collisions (different pulses in GRB light curve) reduces P by a factor ~ 2

Prompt γ-ray Polarization: short summary

	Ordered Field	Sharp-edge Jet
P~80%	X	X
P ~ 50%	\checkmark	X
P~25%	with B _{rnd} ≤ B _{ord}	\checkmark
P ≤ 10%	$B_{rnd} > B_{ord}$	with B _{rnd} ≥ B _{ord}
statistics	High P in all GRBs	low P in most GRBs
Potential problems	Some B _{rnd} required for Fermi acceleration	$\Gamma \theta_{j} \leq a \text{ few, } \Delta \Gamma \sim \Gamma,$ $B_{rnd} (0.48 < \xi_{0} < 0.79)$

Alternative to Synchrotron: Compton Drag (Bulk Inverse Compton Scattering of External photons) (Lazzati et al. 2003; Dar & De Rujula 2003, Eichler & Levinson 2003)
Requires special geometry/viewing angle, θ_j < θ_{obs} ≤ θ_j+1/Γ
Polarization properties similar to synchrotron + B_{rnd} with an advantage: local polarization P=(1-cos²θ)/(1+cos²θ) can reach up to 100% while P_{max}~70% for synchrotron

Shares drawbacks of shock produced field + narrow jet

- It has additional problems, unrelated to polarization:
 - Explaining prompt GRB spectrum
 - Supplying external photons for all the ejected shells
 - High photon density \Rightarrow small radii \Rightarrow high $\tau_{\gamma\gamma}$

Alternative to Synchrotron: Photospheric Emission (Comptonized radiation advected from optically thick to thin region of the jet) (Beloborodov 11; Thompson & Gill 14; Lundman+14; Vurm & Beloborodov 16; Lundman+16)

- Need to integrate radiation transfer equations for the Stokes parameters $I(r,\mu) \& Q(r,\mu)$ from $\tau_T \gg 1$ to $\tau_T \ll 1$.
- P=0 seed photons become anisotropic at $\tau_T \leq 10 \implies P \approx 0.45P_{\text{Compton-drag}}$

Alternative to Synchrotron: Photospheric Emission (Comptonized radiation advected from optically thick to thin region of the jet) (Beloborodov 11; Thompson & Gill 14; Lundman+14; Vurm & Beloborodov 16; Lundman+16)

- Need to integrate radiation transfer equations for the Stokes parameters $I(r,\mu) \& Q(r,\mu)$ from $\tau_T \gg 1$ to $\tau_T \ll 1$.
- P=0 seed photons become anisotropic at $\tau_T \leq 10 \implies P \approx 0.45P_{Compton-drag}$
- This requires symmetry breaking e.g.
 special viewing angle: |θ_{obs}-θ_j| ≤ 1/Γ
 θ-dependent bulk-Γ and/or luminosity
 - (in structured jets $P \le 40\%$)

Alternative to Synchrotron: Photospheric Emission (Comptonized radiation advected from optically thick to thin region of the jet) (Beloborodov 11; Thompson & Gill 14; Lundman+14; Vurm & Beloborodov 16; Lundman+16)

- Need to integrate radiation transfer equations for the Stokes parameters $I(r,\mu) \& Q(r,\mu)$ from $\tau_T \gg 1$ to $\tau_T \ll 1$.
- P=0 seed photons become anisotropic at $\tau_T \leq 10 \implies P \approx 0.45P_{\text{Compton-drag}}$
- This requires symmetry breaking e.g.
 special viewing angle: |θ_{obs}-θ_j| ≤ 1/Γ
 θ-dependent bulk-Γ and/or luminosity (in structured jets P ≤ 40%)
- Synchrotron + B_{ord} (spherical flow): Unscattered syn. photons emitted at $\tau_T \sim 1$ dominate at $E \ll E_{pk} \Rightarrow P \sim P_{syn,max}$

Prompt GRB Polarization (Gill, JG & Kumar 2018):
Comprehensive study in view of γ-ray polarimetry missions
Jet structure: top hat (sharp/smooth), Gaussian, core+power-law
Emission mechanism: synchrotron, photospheric, Compton drag
Time resolved, integrated over single or multiple pulses

Toroidal B-field

Random B-field in 2D

Ordered B-field

Prompt GRB Polarization (Gill, JG & Kumar 2018): Model comparison: structured jet, integrating 10 pulses

■ B_{tor}/B_{ord} is favored if P ~ 50-65% in 1 (≥20% in most) GRBs

Conclusions:

Afterglow polarization probes jet structure & dynamics + the B-field structure behind relativistic collisionless shocks
 → GW170817: 0.48 < ξ₀ < 0.79 (B_{rnd}) + core-dominated jet

Conclusions:

Afterglow polarization probes jet structure & dynamics + the B-field structure behind relativistic collisionless shocks $\diamond \Rightarrow$ GW170817: 0.48 < ξ_0 < 0.79 (B_{rnd}) + core-dominated jet Reverse shock polarization probes B-field structure in ejecta • Optical flash ($\theta \sim 1/\Gamma_0 \leq 10^{-2}$), radio flare ($\theta \sim 1/\Gamma \sim 0.1$) Reverse & forward (afterglow) shock emission may overlap ♦ GRB190114C: B_{ord}, axisymmetric (B_{tor}, B_{md}), B_{ord}+B_{md}X patchy shell?, incoherent patches: $\theta_{\rm B} \sim 10^{-3}$ \checkmark

Conclusions:

Afterglow polarization probes jet structure & dynamics + the B-field structure behind relativistic collisionless shocks $\diamond \Rightarrow$ GW170817: 0.48 < ξ_0 < 0.79 (B_{rnd}) + core-dominated jet Reverse shock polarization probes B-field structure in ejecta • Optical flash ($\theta \sim 1/\Gamma_0 \leq 10^{-2}$), radio flare ($\theta \sim 1/\Gamma \sim 0.1$) Reverse & forward (afterglow) shock emission may overlap ♦ GRB190114C: B_{ord}, axisymmetric (B_{tor}, B_{md}), B_{ord}+B_{md}X patchy shell?, incoherent patches: $\theta_{\rm B} \sim 10^{-3}$ \checkmark Prompt GRB pol. probes emission mechanism & jet structure • Observations are improving & new planned missions • Theory is improving to match the upcoming observations ♦ B_{ord}/B_{tor} favored if P ~ 50-65% in 1 (≥20% in most) GRBs