Relativistic Accelerators: Gamma-Ray Bursts

Jonathan Granot

Open University of Israel & George Washington University

PASTO – Particle Acceleration in aSTrophysical Objects, Astronomical Observatory of Rome, Frascati, Italy, September 7, 2022

Outline of the Talk:

Potential particle acceleration sites & mechanisms

- Observational constraints:
 - Spectral index \Rightarrow electron power-law index $p (dN_e/d\gamma_e \propto \gamma_e^{-p})$
 - Spectral breaks $\Rightarrow \gamma_{e,\min} \& \gamma_{e,\max}$
 - Pulse onset time $t_{on}(E_{\gamma}) \Rightarrow$ acceleration time $t_{acc}(E_{e,p})$ (Ryde's talk)
 - Signatures of anisotropic velocity distribution (local / global)
 - ◆ Polarization ⇒ B-field structure in shocks / GRB ejecta (Gill's talk)
- Observational puzzles:
 - Apparent violation of the $E_{syn,max}$ limit (in GeV / TeV)
 - Lack of clear signs for a thermal electron component
 - Transition to a Newtonian shock; Evidence for ion acceleration?

Conclusions

GRB Theoretical Framework:

Progenitors:

- Long: massive stars
 Short: binary mergers
 Acceleration: fireball or magnetic?
- **Prompt γ-rays:**

Dissipation: internal shocks or magnetic reconnection? Emission mechanism?

Deceleration: the outflow decelerates (by a reverse shock for σ ≤ 1) as it sweeps-up the external medium
 Afterglow: from the long lived forward shock going into the external medium; as the shock decelerates the typical frequency decreases: X-ray → optical → radio

Potential Particle Acceleration Sites & Mechanisms

Potential Sites	Medium	Emission		Pot. Mechanisms
 Mag. reconnection 	Outflow	Prompt GRB	<u> </u>	Direct acceleration in
Internal Shocks	Outflow	Prompt GRB		electric fields;
Reverse <mark>Shock</mark>	Outflow	Optical Flash, Radio Flare		Magnetic island dynamics
Forward Shock	Extornal	Afterglow		Fermi Type I
	LACEITIAI	Altergiow		Fermi Type II
Radiation Mediated Shocks	Outflow, progenitor	Prompt GRB? Shock breakout		Shear acceleration
Shear Layers	Near the boundary	Prompt GRB? Early Afterglow?		Neutral-charged conversion
 Turbulence 	Outflow, External	Prompt GRB? Afterglow?		A new mechanism and/or instability???

Observational constraints: Spectral index

Spectral index ⇒ electron power-law index p = - dlogN_e/dlogY_e)
Power-law electron distribution: dN_e/dY_e ∝ Y_e^{-p} Y_m < Y_e < Y_M
F_v ∝ v^{-α} with α = p-1/2 (p/2) for v_m < v < v_c (v > v_m, v_c) ⇒ p = 2α + 1 (p = 2α) (for synchrotron emission) ⇒ Afterglow: 2.1 ≤ p ≤ 2.5 Prompt GRB: 2 ≤ p ≤ 4 (?)

Observational constraints: Spectral breaks • Spectral index \Rightarrow electron power-law index $p = -\frac{d \log N_e}{d \log \gamma_e}$ • Power-law electron distribution: $\frac{dN_e}{d\gamma_e} \propto \gamma_e^{-p}$ $\gamma_m < \gamma_e < \gamma_M$ $v_m \propto \Gamma B' \gamma_m^2 \text{ with } \gamma_m = \frac{p-2}{p-1} \frac{\epsilon_e}{\xi_e} \frac{m_p}{m_e} (\Gamma_{sh} - 1) \quad (\xi_{e,\gamma} \ll 1 ?)$ • $\nu_M \propto \Gamma B' \gamma_M^2$ with $\gamma_M = (6\pi \kappa e / \sigma_T B')^{1/2}$ ("burnoff limit") $\Rightarrow E_{syn,max} = 7.0\kappa(1+z)^{-1}\Gamma_2 \text{ GeV}$ ISM scalings spectrum 1 WIND scalings (1-p)/2 ·^{1/3} (1) G JG & Sari (2002) log(

Signatures of an anisotropic velocity distribution or relativistic bulk motions in the jet comoving frame:

 Local: anisotropic w.r.t local B' that is random globally (Comisso's talk)
 Global: anisotropic w.r.t globally ordered B' or reconnection layers

Field reversals at the source can lead to reconnection at large distances millisecond-magnetar → millisecond quasi-periodic variability (♥)
 accreting BH → stochastic field-reversal & lightcurve variability (♥)

- Field reversals at the source can lead to reconnection at large distances millisecond-magnetar → millisecond quasi-periodic variability (*) accreting BH → stochastic field-reversal & lightcurve variability (✓)
- Reconnection far from the source has a natural preferred direction

- Field reversals at the source can lead to reconnection at large distances millisecond-magnetar → millisecond quasi-periodic variability (♥)
 accreting BH → stochastic field-reversal & lightcurve variability (♥)
- Reconnection far from the source has a natural preferred direction
- For large ingoing σ reconnection leads to local relativistic outward bulk motion at $\Gamma' \sim \text{few}-\text{several} \Rightarrow$ anisotropic emission in jet's bulk frame

- Field reversals at the source can lead to reconnection at large distances millisecond-magnetar → millisecond quasi-periodic variability (♥) accreting BH → stochastic field-reversal & lightcurve variability (♥)
- Reconnection far from the source has a natural preferred direction
- For large ingoing σ reconnection leads to local relativistic outward bulk motion at $\Gamma' \sim \text{few}-\text{several} \Rightarrow$ anisotropic emission in jet's bulk frame
- Larger $\sigma \Rightarrow$ higher Γ ', larger rec. rate (v_{in}/v_A), harder particle spectrum

The Shape of Pulses in the Lightcurves

Some Other Pulse Properties

Anisotropic emission can explain the "rapid decay phase" at the end of the GRB prompt emission, or X-ray pulses that decay faster than expected for isotropic emission ("high-latitude" emission), thanks to the shorter angular time $\Delta t_{\theta} \approx R/2\Gamma^{2}\Gamma$ "

Spectral evolution of pulses:

Hard to soft for $(\Gamma' < 2)$

intensity tracking $(\Gamma' > 2)$

Photon in

lab frame

Shock Produced Magnetic Field:

A magnetic field produced at a relativistic collisionless shock, due to the two-stream instability, is **naively** expected to be **tangled within the plane of the shock** (Medvedev & Loeb 1999)

The Random B-field's Degree of Anisotropy:

- $b = 2\langle B_{\parallel}^2 \rangle / \langle B_{perp}^2 \rangle$ parameterizes the asymmetry of B_{rnd}
- Sign(b-1) determines θ_p (P > 0 is along the direction from the line of sight to the jet axis & P < 0 is rotated by 90°)</p>
- For b ≈ 1 the polarization is very low (field is almost isotropic)
 P ≤ 3% in afterglows observations ⇒ 0.5 ≤ b ≤ 2

GW170817/GRB170817A Afterglow (Gill & JG 18) Assuming a shock-produce B-field with b = 2⟨B_|²⟩/⟨B_⊥²⟩ Data favor two core-dominated jet models with similar P(t)

GW170817/GRB170817A Afterglow (Gill & JG 18) ■ Assuming a shock-produce B-field with b = 2⟨B₁²⟩/⟨B_⊥²⟩ ■ Data favor two core-dominated jet models with similar P(t)

GW170817/GRB170817A Afterglow (Gill & JG 20) More realistic assumptions \Rightarrow B-field in collisionless shocks:

GW170817/GRB170817A Afterglow (Gill & JG 20)
More realistic assumptions ⇒ B-field in collisionless shocks:

2D emitting shell → 3D emitting volume (local BM76 radial profile)

GW170817/GRB170817A Afterglow (Gill & JG 20)
More realistic assumptions ⇒ B-field in collisionless shocks:
2D emitting shell → 3D emitting volume (local BM76 radial profile)
B-field evolution by faster radial expansion: L'_r/L'_{θ,φ} ∝ χ^{(7-2k)/(8-2k)} B-field isotropic in 3D with B'_r → ζB'_r (Sari 1999); ζ = ζ_f χ^{(7-2k)/(8-2k)}

GW170817/GRB170817A Afterglow (Gill & JG 20)
More realistic assumptions ⇒ B-field in collisionless shocks:
2D emitting shell → 3D emitting volume (local BM76 radial profile)
B-field evolution by faster radial expansion: L'_r/L'_{θ,φ} ∝ χ^{(7-2k)/(8-2k)} B-field isotropic in 3D with B'_r → ζB'_r (Sari 1999); ζ = ζ_f χ^{(7-2k)/(8-2k)}

Observational Puzzles: 1. E_{syn,max} Violation

- LAT detected emission up to ~ 20 hr after GRB $\blacksquare > 10 \text{ GeV } \gamma$'s observed up to hours after GRB May arise at least partly from the prompt γ -ray emission up to few 10^2 s ■ At later times there is no prompt emission, only a
 - simple power-law decay: afterglow

- LAT detected emission up to ~ 20 hr after GRB
 >10 GeV γ's observed up to hours after GRB
 May arise at least partly from the prompt γ-ray
 - emission up to few 10^2 s
- At later times there is no prompt emission, only a simple power-law decay: afterglow

LAT HE photons violate:

$$E_{\text{syn,max}} \sim \frac{\Gamma}{(1+z)} \frac{m_e c^2}{\alpha} \approx 5 \left(\frac{\Gamma}{100}\right) \text{GeV}$$

Based on a one-zone model balancing electron energy gains and losses: $t_{acc} \sim t_{syn}$

LAT HE photons violate:

$$E_{\text{syn,max}} \sim \frac{\Gamma}{(1+z)} \frac{m_e c^2}{\alpha} \approx 5 \left(\frac{\Gamma}{100}\right) \text{GeV}$$

- Based on a one-zone model balancing electron energy gains and losses: t_{acc} ~ t_{syn}
- $t_{acc} \sim 1/\omega_L = R_L/c$ (extremely fast) or $P_L = 2\pi/\omega_L$ (still very fast but a bit more realistic)

LAT HE photons violate:

$$E_{\text{syn,max}} \sim \frac{\Gamma}{(1+z)} \frac{m_e c^2}{\alpha} \approx 5 \left(\frac{\Gamma}{100}\right) \text{GeV}$$

- Based on a one-zone model balancing electron energy gains and losses: t_{acc} ~ t_{syn}
- $t_{acc} \sim 1/\omega_L = R_L/c$ (extremely fast) or $P_L = 2\pi/\omega_L$ (still very fast but a bit more realistic)
- An "easy way out" would be if SSC emission dominated at highest LAT energies (Fan-

at highest LAT energies (Fan+ 2013; Liu+ 2013), but it doesn't work

LAT HE photons violate:

$$E_{\text{syn,max}} \sim \frac{\Gamma}{(1+z)} \frac{m_e c^2}{\alpha} \approx 5 \left(\frac{\Gamma}{100}\right) \text{GeV}$$

- Based on a one-zone model balancing electron energy gains and losses: t_{acc} ~ t_{syn}
- $t_{acc} \sim 1/\omega_L = R_L/c$ (extremely fast) or $P_L = 2\pi/\omega_L$ (still very fast but a bit more realistic)
- An "easy way out" would be if SSC emission dominated at highest LAT energies (Fan-

at highest LAT energies (Fan+ 2013; Liu+ 2013), but it doesn't work

 $\Rightarrow E_{syn,max}$ appears to be truly violated $\Rightarrow \ge 1$ assumption must break

LAT HE photons violate:

$$E_{\text{syn,max}} \sim \frac{\Gamma}{(1+z)} \frac{m_e c^2}{\alpha} \approx 5 \left(\frac{\Gamma}{100}\right) \text{GeV}$$

- Based on a one-zone model balancing electron energy gains and losses: t_{acc} ~ t_{syn}
- $t_{acc} \sim 1/\omega_L = R_L/c$ (extremely fast) or $P_L = 2\pi/\omega_L$ (still very fast but a bit more realistic)
- An "easy way out" would be if SSC emission dominated at highest LAT energies (Fan+

at highest LAT energies (Fan+ 2013; Liu+ 2013), but it doesn't work

 ⇒ E_{syn,max} appears to be truly violated ⇒ ≥ 1 assumption must break
 Non-uniform magnetic field?
 E_{syn,max} grows by a factor of B₁/B₂
 B₂ ≤ B₁
 B₂ ≤ B₁

PL electron emission degeneracy (Eichler & Waxman 2005):
 (ε_e, ε_B, n, E) → (ξ_eε_e, ξ_eε_B, n/ξ_e, E/ξ_e) for ^{m_e}/_{m_p} < ξ_e≤ 1
 How can the thermal electrons still effect the observations?

How can the thermal electrons still affect the observations?

■ PL electron emission **degeneracy** (Eichler & Waxman 2005): $(\epsilon_e, \epsilon_B, n, E) \rightarrow (\xi_e \epsilon_e, \xi_e \epsilon_B, n/\xi_e, E/\xi_e)$ for $\frac{m_e}{m_p} < \xi_e \le 1$

How can the thermal electrons still affect the observations?

A. Plasma propagation effects in the source (radio, mm, NIR):
 May reduce the linear polarization & partly convert it to circular polarization (Matsumiya & Ioka 03; Sagiv et al. 04;...)
 May cause Faraday depolarization due to the finite Δν/ν

B. Thermal electron emission / synchrotron self-absorption:
 May produce unique features in the afterglow spectrum and lightcurve (Eichler & Waxman 05; Giannios & Spitkovsky 09)
 Self-absorption by thermal electrons may be important in radio / mm (Eichler & Waxman 2005; Ressler & Laskar 2017)
 SSC radiation by thermal electrons may also be detectable

(Warren et al. 2022)

The phenomenological assumption of $\epsilon_e, \xi_e = \text{const.}$ must break once $\gamma_m = \frac{p-2}{p-1} \frac{\epsilon_e}{\xi_e} \frac{m_p}{m_e} (\Gamma_{sh} - 1) \sim 1 \text{ or } \beta_{sh} = \beta_{dn}$ $\approx 0.22 \sqrt{\frac{(p-1)}{3(p-2)\epsilon_{e,-1}}} - \text{onset of the deep Newtonian regime}$

The phenomenological assumption of ϵ_e , $\xi_e = \text{const.}$ must break once $\gamma_m = \frac{p-2}{p-1} \frac{\epsilon_e}{\xi_e} \frac{m_p}{m_e} (\Gamma_{sh} - 1) \sim 1 \text{ or } \beta_{sh} = \beta_{dn}$ $\approx 0.22 \sqrt{\frac{(p-1) \xi_e}{3(p-2)\epsilon_{e,-1}}}$ – onset of the deep Newtonian regime • It is natural to assume that $\gamma_m \beta_m \propto \frac{\epsilon_e}{\xi_o} \beta_{sh}^2 \sim 1$ remains fixed along with either ϵ_e or ξ_e but only $\epsilon_e = \text{const.}$ is a good fit $(F_{\nu} \propto \nu^{\frac{1-p}{2}t} - \frac{3(p+1)}{2(5-k)})$ to late radio afterglow observations of a magnetar giant flare (JG et al. 06) & GRBs (Sironi & Giannios 13)

The phenomenological assumption of ϵ_e , $\xi_e = \text{const.}$ must break once $\gamma_m = \frac{p-2}{p-1} \frac{\epsilon_e}{\xi_e} \frac{m_p}{m_e} (\Gamma_{sh} - 1) \sim 1$ or $\beta_{sh} = \beta_{dn}$ $\approx 0.22 \sqrt{\frac{(p-1) \xi_e}{3(p-2)\epsilon_{e,-1}}}$ – onset of the **deep Newtonian regime** • It is natural to assume that $\gamma_m \beta_m \propto \frac{\epsilon_e}{\epsilon_o} \beta_{sh}^2 \sim 1$ remains fixed along with either ϵ_e or ξ_e but only $\epsilon_e = \text{const.}$ is a good fit $(F_{\nu} \propto \nu^{\frac{1-p}{2}}t^{-\frac{3(p+1)}{2(5-k)}})$ to late radio afterglow observations of a magnetar giant flare (JG et al. 06) & GRBs (Sironi & Giannios 13) $\Rightarrow \xi_e = \xi_{e,0} \left(\frac{\beta_{sh}}{\beta_{dn}}\right)^2 \propto t^{-\frac{2(3-k)}{5-k}} \left(\rho \propto r^{-k}\right) \text{ at } t > t_{dn} \left(\beta_{sh} < \beta_{dn}\right)$

The phenomenological assumption of ϵ_e , $\xi_e = \text{const.}$ must break once $\gamma_m = \frac{p-2}{p-1} \frac{\epsilon_e}{\xi_e} \frac{m_p}{m_e} (\Gamma_{sh} - 1) \sim 1$ or $\beta_{sh} = \beta_{dn}$ $\approx 0.22 \sqrt{\frac{(p-1) \xi_e}{3(p-2)\epsilon_{e,-1}}}$ - onset of the deep Newtonian regime • It is natural to assume that $\gamma_m \beta_m \propto \frac{\epsilon_e}{\epsilon_o} \beta_{sh}^2 \sim 1$ remains fixed along with either ϵ_e or ξ_e but only $\epsilon_e = \text{const.}$ is a good fit $(F_{\nu} \propto \nu^{\frac{1-p}{2}} t^{-\frac{3(p+1)}{2(5-k)}})$ to late radio afterglow observations of a magnetar giant flare (JG et al. 06) & GRBs (Sironi & Giannios 13) $\Rightarrow \xi_e = \xi_{e,0} \left(\frac{\beta_{sh}}{\beta_{dn}}\right)^2 \propto t^{-\frac{2(3-k)}{5-k}} \left(\rho \propto r^{-k}\right) \text{ at } t > t_{dn} \left(\beta_{sh} < \beta_{dn}\right)$ Can shock acceleration models reproduce this behavior?

Puzzle 4: Evidence for accelerated protons?

- While protons / ions are expected to be accelerated together with electrons, there is **no clear evidence** for this!!!
- Some prompt GRB emission models involve accelerated protons (synchrotron by protons or secondary pairs, pion production + decay, pair cascades; Böttcher's talk) but are generally less radiatively efficient and not preferred over competing leptonic models
- Hadronic models exist also for the early afterglow, but are similarly not favored over leptonic models

Puzzle 4: Evidence for accelerated protons?

- While protons / ions are expected to be accelerated together with electrons, there is **no clear evidence** for this!!!
- Some prompt GRB emission models involve accelerated protons (synchrotron by protons or secondary pairs, pion production + decay, pair cascades; Böttcher's talk) but are generally less radiatively efficient and not preferred over competing leptonic models
- Hadronic models exist also for the early afterglow, but are similarly not favored over leptonic models
- Early suggestions that GRBs may produce the UHECRs (Vietri 95; Waxman 95) are less promising relative to other models (excess from Cen A (3σ), correlation with AGN, radio galaxies – Pierre Auger Observatory)

Puzzle 4: Evidence for accelerated protons?

- While protons / ions are expected to be accelerated together with electrons, there is **no clear evidence** for this!!!
- Some prompt GRB emission models involve accelerated protons (synchrotron by protons or secondary pairs, pion production + decay, pair cascades; Böttcher's talk) but are generally less radiatively efficient and not preferred over competing leptonic models
- Hadronic models exist also for the early afterglow, but are similarly not favored over leptonic models
- Early suggestions that GRBs may produce the UHECRs (Vietri 95; Waxman 95) are less promising relative to other models (excess from Cen A (3σ), correlation with AGN, radio galaxies – Pierre Auger Observatory)
- ♦ A smoking gun will be high-energy neutrinos (some correlate w. blazars)
- If protons are accelerated, then what are: ϵ_p , ξ_e , $\gamma_{m,p}$, p_p

Conclusions:

Many potential acceleration sites & mechanisms
 Observational constraints:

- Electron PL index: afterglow: $2.1 \le p \le 2.5$ prompt: $2 \le p \le 4$ (?)
- Spectral breaks: $\nu_m \Rightarrow \gamma_{e,\min} \frac{\epsilon_e}{\xi_e} (\Gamma_{sh} 1) \quad (\xi_{e,\gamma} \ll 1 ?)$
- Signatures of anisotropic velocity distribution: spectral, temporal
- Polarization \Rightarrow B-field structure in shocks: $0.57 \leq \xi_f \leq 0.89$
- Observational puzzles:
 - Apparent violation of the $E_{syn,max}$ limit \Rightarrow some assumption breaks
 - Transition to a Newtonian shock
 - ◆ Lack of clear signs for a thermal electron component
 - No clear evidence for proton / ion acceleration