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Abstract—Subspaces offer convenient means of representing information in many pattern recognition, machine vision, and statistical

learning applications. Contrary to the growing popularity of subspace representations, the problem of efficiently searching through

large subspace databases has received little attention in the past. In this paper, we present a general solution to the problem of

Approximate Nearest Subspace search. Our solution uniformly handles cases where the queries are points or subspaces, where query

and database elements differ in dimensionality, and where the database contains subspaces of different dimensions. To this end, we

present a simple mapping from subspaces to points, thus reducing the problem to the well-studied Approximate Nearest Neighbor

problem on points. We provide theoretical proofs of correctness and error bounds of our construction and demonstrate its capabilities

on synthetic and real data. Our experiments indicate that an approximate nearest subspace can be located significantly faster than the

nearest subspace, with little loss of accuracy.

Index Terms—Approximate nearest neighbor search techniques, subspace representations.

Ç

1 INTRODUCTION

LINEAR and affine subspaces are a common means of
representing information in computer vision and pattern

recognition applications. In computer vision, for example,
subspaces are often used to capture the appearance of objects
under different lighting [7], [29], viewpoint [35], [33], spatial
transformations (e.g., using the “tangent distance” [32]),
articulation [13], [34], identity [19], [39], classes of similar
objects [4], [10], and more. Typically, given a query image (or
images) of an object, represented as a point (or as a subspace)
in high-dimensional space, a database of subspaces is
searched for the subspace closest to the query. A natural
problem which arises from this type of search problems is:
Can the nearest (or a near) subspace be found faster than a
brute force sequential search through the entire database?

The related problem of finding the nearest neighbor
within a database of high-dimensional points has become an
important component in a wide range of machine vision
and pattern recognition applications. As such, it has
attracted considerable attention in recent years, and a
number of efficient algorithms for approximate nearest
neighbor (ANN) search have been proposed (e.g., [3], [16],
[22], [25]). These algorithms achieve sublinear search times
when locating a near, not necessarily the nearest neighbor,
suffices. The gain in query speed is achieved at the price of
preprocessing the database. This pays off when a fixed

database is searched many times [30]. In light of the success
of ANN methods, our goal is to design an approximate

nearest subspace (ANS) algorithm for efficient search through
a database of subspaces.

We present an ANS algorithm based on a reduction to
the problem of point ANN search. Our algorithm can thus
work in concert with any ANN method, enjoying future
improvements to these algorithms. For example, for a query
subspace of dimension kQ and a database of n subspaces
(possibly of a different dimension), all embedded in Rd,
ANS query running time, using our construction, is
OðkQd2Þ þ TANNðn; d2Þ, where TANNðn; dÞ is the running
time for a choice of an ANN algorithm, on a database of n
points in Rd. We can achieve further speedup by using
random projections to lower the dimensionality of the
problem. Our solution uniformly handles cases where the
queries are points or subspaces, where query and database
elements differ in dimensionality, and where the database
contains subspaces of different dimensions.

We next survey related work, describe our method
including theoretical proofs of correctness and error
bounds of our construction, and present both analytical
and empirical analysis.

2 PREVIOUS WORK

An intuitive approach to the Nearest Subspace problem
would be adapting existing solutions designed for the case of
points to the case of subspaces. Unfortunately, such exten-
sions are not trivial. Tree-based methods, e.g., [3], [25], rely
on splitting the ambient space into smaller cells bounded by
hyperplanes. Such a construction cannot be used when the
database items are subspaces since they extend infinitely and
therefore cannot be bounded in cells. Other methods, e.g.,
[16], [22], are based on randomly projecting points onto
extremely low-dimensional hyperplanes (e.g., lines) and
hashing the projected points. The projection of a subspace
remains a subspace, and therefore quick hashing remains a
problem also on the low-dimensional projection.
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Subspaces have been used to solve the so-called “Partial
Match” problem on strings [15] and related problems. These
problems usually use subspaces to represent binary strings
containing some unknown values. The subspaces they
handle are therefore parallel to the main axes and only
span two values in each coordinate. As such, they present a
special case of the one handled here.

Our method is more related to recent work by Magen [26],
who solved ANS by a reduction to the vertical ray shooting
problem. Magen’s method, however, requires Oðnd2Þ pre-
processing time and space, while our preprocessing requires
only OðnkSd2Þ þ TpANNðn; d2Þ (where kS is the intrinsic
dimensionality of the database subspaces and TpANNðn; dÞ
is the processing time required to produce a search structure
for n points of dimension d using, e.g., kd-trees). Further-
more, Magen’s approach is applicable only to point queries,
while our approach handles both point queries and subspace
queries. Finally, a restricted solution to the dual problem has
been proposed in [2], where the database consists of points
and the query is restricted to be a line.

In an earlier version [5], we presented a method for
sublinear Approximate Nearest Subspace search which was
based on a reduction to the problem of point ANN search.
This solution, however, was limited to the particular
scenario where the queries are high-dimensional points.
Although the case of point queries is very often useful, in
some cases subspace queries are preferable. For example, in
[37], [19], [36], it was shown that, for the purpose of face
recognition, subspace-to-subspace distance is a better
measure of similarity than point-to-subspace. Moreover,
when using subspaces to capture motion (e.g., [13], [14],
[23], [34]), it is unclear how points can even be used to
represent queries, subspaces being the natural representa-
tion for both the database items and the queries.

In this paper (see also [6]), we extend and subsume the
work of Basri et al. [5] by providing the following
contributions:

. We present a general framework for efficient approx-
imate nearest subspace search. Our framework

addresses circumstances where both query and
database elements may be either points or subspaces
of different dimensions. The various scenarios
handled by our approach are summarized in Table 1.

. We rework the math in [5], thus obtaining simpler
yet more general derivations.

. We provide empirical analysis on both synthetic
and real data for the new scenarios handled. In
particular, we test the performance of our method
on tasks related to illumination, voice, and motion
classification.

3 NEAREST SUBSPACE SEARCH

The nearest subspace search problem is defined as follows: Let
fS1;S2; . . . ;Sng be a collection (database) of linear (or affine)
subspaces in Rd, each with intrinsic dimension kSi . Given a
query item Q in Rd, which can be either a point or a
subspace with intrinsic dimension kQ, denote by distðQ;SiÞ
the distance between the query item and Si, 1 � i � n. We
seek the subspace S� that is nearest to the query, i.e.,
S� ¼ arg mini distðQ;SiÞ. For notational simplicity, we omit
below the superscript index and refer to a database subspace
as S. The meaning should be clear from the context.

When the query is a point q and S is a linear or affine
subspace, distðq;SÞ is defined as the euclidean distance
between them. When the query is a subspace, the distance
definition is less straightforward. For example, there are
many possible definitions of the distance between two linear

subspaces [17]. Our particular choice of distance for linear
subspaces will be discussed in the following section. At this
point, we limit our discussion to the case of linear subspaces.
Later on, in Section 4.2, we will revisit the affine subspace
case and propose possible solutions. The case of subspace
queries with a data set of points is covered in Section 4.2.1.

Following [5], we approach the nearest subspace
problem by reducing the problem to the well-explored
nearest neighbor (NN) search problem for points. To
achieve such a reduction, we define two transformations,
u ¼ fðSÞ and v ¼ gðQÞ, which, respectively, map any given
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TABLE 1
Summary of the Different Combinations of Query and Database Entities Handled by Our Method



database subspace S and query item Q to points u;v 2 Rd0

for some d0, such that the euclidean distance kv� uk2

increases monotonically with distðQ;SÞ. In particular, we
derive below such mappings for which

kv� uk2
2 ¼ � dist2ðQ;SÞ þ ! ð1Þ

for some constants � and !.
This form of mapping was shown in [5] to be successful

for point queries. Here, we start by proposing a simple yet
general mapping that can handle both point queries as well
as subspace queries, when the database subspaces are all of
the same intrinsic dimension (Section 3.1). In Section 3.3, we
refine the mapping to obtain better error bounds. Later on,
in Section 4.1, we show how this mapping can be extended
to handle databases of subspaces of varying dimensions.

3.1 A Simple Reduction to Nearest Neighbor Search

We represent a linear subspace S 2 Rd in the database by a
d� kS matrix S with orthonormal columns. We represent
a point query by a d� 1 vector q and a subspace query as a
d� kQ matrix Q with orthonormal columns.

Next, we need to define the distance measure dist2ðQ;SÞ
between two subspaces. As was shown in [17], all common
distance definitions are based on the principal angles �� ¼
ð�1; �2; . . .Þ and are monotonic with respect to each other.
That is, sorting the database subspaces according to their
distance from the query subspace will produce the same
order, regardless of the distance definition. Therefore, the
choice of distance measure is based on its applicability to
mappings of the form in (1). After some investigation, we
chose to adopt the Projection Frobenius Norm (Projection
F-Norm) defined as dist2ðQ;SÞ ¼ k sin ��k2

2, where sin �� is the
vector of sines of the principal angles between the subspaces
S and Q. When Q and S are of the same dimension
kS ¼ kQ ¼ k, the vector sin �� is of length k, whereas when
they differ in dimension, its length is kmin ¼ minðkS; kQÞ.

This distance was selected since it has three important
properties:

. A linear function of the squared distance can be
obtained via the Frobenius norm of the difference
between the orthographic projection matrices of the
subspaces (hence its name):

kQQT � SSTk2
F ¼ kQ þ kS � 2

Xkmin

i¼1

cos2 �i

¼ kQ þ kS � 2kmin þ 2dist2ðQ;SÞ:
ð2Þ

. We can also use the projection F-norm to compute the
distance between a point query q 2 Rd and a database
subspace S since the squared euclidean distance
between them, denoted dist2ðq;SÞ, is, up to a linear
transformation, equal to the squared projection
F-norm between the 1D space through q and S:

kqqT � SSTk2
F ¼ kqqTk2

F þ kSSTk
2
F � 2qTSSTq

¼ kqk4 þ kS � 2kqk2 þ 2dist2ðq;SÞ:
ð3Þ

. Finally, we note that the Frobenius norm of a square
matrix A can be computed by summing the squares
of all of its entries: kAk2

F ¼
P

i;j A
2
ij. This implies that

it can also be computed as the L2 norm of a vector a
such that kAk2

F ¼ kak
2
2 and a is a vector containing

all entries of A.

These observations imply that a mapping based on
rearranging the projection matrices SST and QQT into
vectors could be of the form defined in (1). Since the
projection matrices are symmetric, naive rearrangement of
their entries will result in redundancy. We thus further define
the following operator: For a symmetric d� d matrix A, we
define an operator hðAÞ, where h rearranges the entries of A
into a vector by taking the entries of the upper triangular
portion of A, with the diagonal entries scaled by 1=

ffiffiffi
2
p

, i.e.,

hðAÞ ¼ a11ffiffiffi
2
p ; a12; . . . ; a1d;

a22ffiffiffi
2
p ; a23; . . . ;

addffiffiffi
2
p

� �T
2 Rd0 ; ð4Þ

and d0 ¼ dðdþ 1Þ=2. Our generalized mapping can now be
defined as follows:

u ¼: fðSÞ ¼ hðSST Þ;
v ¼: gðQÞ ¼ hðQQT Þ;

ð5Þ

and ku� vk2 ¼ ð1=2ÞkQQT � SSTk2.
This mapping is consistent with the desired distance

definition of (1) with � ¼ 1 when all database subspaces S
are of the same intrinsic dimension kS ¼ k 8S. The additive
constant ! depends on the query. One can show that for
subspace queries with kQ ¼ kS ¼ k, we get ! ¼ 0, while for
subspace queries of different dimension kQ 6¼ kS , we get
! ¼ 1

2 ðkS þ kQÞ � kmin, which is mutual to all database items,
implying a valid mapping. Moreover, this mapping applies to
point queries where we get ! ¼ 1

2 kqk
4 � kqk2 þ 1

2 k.
Note that these observations imply that the same mapped

database can be utilized for various query types without
knowing a priori which queries will be applied. This can be
useful in many applications, for example, in face recognition
the number of available images can vary depending on
application. At times only a single query image (represented
as a point) will be available, but when the face is captured, for
example, via a Webcam, many occurrences of it may be
available and can be used to fit a linear subspace, as was
proposed in [37]. The mapping of (5) allows using a single
database for all queries regardless of dimension.

3.2 Is This a Good Mapping?

The quality and speed of the search depend highly on the

constants � and !. One can show that with mappings of the

form in (1) to guarantee an approximation ratio (error

bound) of 1þ E in the original distance r ¼ distðQ;SÞ, we

would need to select an approximation ratio 1þ � ¼
ð!=�þr

2ð1þEÞ2
!=�þr2 Þ1=2 in the search on the mapped points. We

would therefore like the ratio !=� to be minimized. A large

ratio !=� means that the entire database is pushed away

from the query, requiring longer search times and using

smaller values of � to maintain result quality. The mapping

of (5) is thus “ideal” with ! ¼ 0 for queries of dimension

equal to the database subspaces, but not so for queries of a

different dimension. Ideally, one would like to eliminate the
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additive constant ! also for the case of queries of different

dimension. Unfortunately, a nonzero additive constant ! is

inevitable when the query and database subspaces differ in

dimension. We prove this via the following lemma:

Lemma. Let f and g be two embeddings of subspaces of dimensions
kS and kQ (kQ 6¼ kS) in Rd into Rd0 , i.e., f : Gðd; kSÞ ! Rd0

and g : Gðd; kQÞ ! Rd0 , where Gðd; kÞ represents the set of all
k-dimensional subspaces in Rd. Suppose further that fðSÞ ¼
gðQÞ whenever Q � S or S � Q. Then, f and g must be trivial
embeddings, i.e., fðSÞ ¼ gðQÞ for all S 2 Gðd; kSÞ and
Q 2 Gðd; kQÞ.

Proof. Without loss of generality, assume that kQ < kS . Let S
and S0 be two subspaces in Gðd; kSÞ, then there exists a
chain of subspaces S ¼ S0; S1; . . . ; Sn ¼ S0 (n � kS) such
that dimðSi�1 \ SiÞ � kQ and, consequently, there exists a
corresponding chain Q1; . . . ; Qn such that Qi � Si�1 \ Si.
Consequently, fðS0Þ ¼ gðQ1Þ ¼ fðS1Þ ¼ gðQ2Þ ¼ 	 	 	 ¼
gðQnÞ ¼ fðSnÞ. tu

Corollary. Let u ¼ fðSÞ and v ¼ gðQÞ be nontrivial embeddings
such that ku� vk2 ¼ �dist2ðS;QÞ þ ! for all subspaces S 2
Gðd; kSÞ and Q 2 Gðd; kQÞ. Then, ! 6¼ 0.

Proof. Since distðS;QÞ ¼ 0 whenever either Q � S or S � Q,
then ! ¼ 0 would imply a trivial mapping. tu

As a graphic illustration of the proof, consider the
following example (Fig. 1): Let l be a subspace in the
intersection of two higher dimensional subspaces �1 and �2

(i.e., l � �1, l � �2). Let fðlÞ and gð�iÞ; i ¼ 1; 2 be mappings
such that ! ¼ 0. Since l � �1, then distðl; �1Þ ¼ 0 and, hence,
fðlÞ ¼ gð�1Þ. In addition, since l � �2, then distðl; �2Þ ¼ 0
and, hence, fðlÞ ¼ gð�2Þ. We therefore immediately get
that gð�1Þ ¼ fðlÞ ¼ gð�2Þ, i.e., all subspaces are mapped to
the same point. This implies that a nontrivial mapping
requires ! 6¼ 0.

Note that this is true for any mapping from subspaces to
points and is not limited to the mapping of the form chosen
in this paper. While ! cannot be eliminated the ratio !=� can
be further minimized, as is shown in the following section.

3.3 Improving the Error Bounds

First, we denote by tt ¼
ffiffiffi
2
p

hðIdÞ 2 Rd0 (Id denotes the d� d
identity matrix), a vector whose entries are one for each
diagonal entry in hð:Þ and zero elsewhere. Database
subspaces mapped using (5) lie on the intersection of a
sphere and a hyperplane; they lie on a sphere since all share
the same length kuk2 ¼ 1

2 kS , and they lie on a hyperplane
orthogonal to tt because ttTu ¼ kS=

ffiffiffi
2
p

(since the trace of a
projection matrix is constant). If the query is of a different
intrinsic dimension, it will be mapped onto the intersection
of different sphere and hyperplane (see Fig. 2). To reduce the
distance between the mapped query and the mapped
database items, we can modify our mapping such that all
mapped subspaces lie on the intersection of the same
hyperplane and the same sphere (see Fig. 2). This modifica-
tion maintains the monotonicity of the mapping.

We implement this modification as follows: We start by
modifying our mapping such that the mapped query is
projected onto the hyperplane of mapped subspaces. We
first translate the hyperplane of mapped database sub-
spaces so that it goes through the origin by setting �u ¼
uþ � tt with � ¼ �kS=ðd

ffiffiffi
2
p
Þ. The hyperplane after this

translation is given by ttT �u ¼ 0. Given a query Q and its
mapped version v, we seek to project v onto this translated
hyperplane. That is, we seek a scalar � such that �v ¼ vþ �tt
lies on the hyperplane ttT ðvþ �ttÞ ¼ 0. Using the identities
ttTv ¼ kQ=

ffiffiffi
2
p

and ttT tt ¼ d, we obtain � ¼ �kQ=ðd
ffiffiffi
2
p
Þ.
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Fig. 1. Graphic illustration of the proof. Subspace l is in the intersection

of two higher dimensional subspaces �1 and �2. If ! ¼ 0, then all three

subspaces will be mapped to the same point.

Fig. 2. The geometry of the mapped subspaces. (a) Slicing through mapped subspaces of intrinsic dimensions 4, 6, and 8 in a 10-dimensional space
shows that the basic mapping of (5) maps subspaces of different dimensions onto different intersections of spheres and hyperplanes. (b) The refined
mapping of (6) aligns these spheres. (c) Example of 1D subspaces in R2, color coded according to distance from a query point, and (d) shows their
mapping. In the basic construction (5), the database lines and potential queries are mapped, respectively, to a ring and a cone in R3. The figure
shows the query mapped to the cone, then projected to the hyperplane and scaled to lie on the ring.



Next, we wish to uniformly scale the query to bring it to
the same sphere as the database items. Such uniform scaling
also maintains the monotonicity of the mapping. To simplify
notations, we scale both database items and the query to have
unit norm. Our final mapping is as follows:

u ¼: fðSÞ ¼ 1

cS
hðSST Þ � kS

d
ffiffiffi
2
p tt

� �
;

v ¼: gðQÞ ¼ 1

cQ
hðQQT Þ � kQ

d
ffiffiffi
2
p tt

� �
;

ð6Þ

with

cS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
kSð1� kS=dÞ

r

and

cQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
kQð1� kQ=dÞ

r
:

This mapping implies kv� uk2
2 ¼ � dist2ðQ; SÞ þ !, where

� ¼ 1
cScQ

and ! ¼ 2� kmin

cScQ
þ kSkQ

dcScQ
.

The constants � > 0 and ! � 0 depend only on kS , kQ, and
d and are thus both mutual to all database items and maintain
monotonicity with respect to the true distance between
subspaces. When the query and database have equal intrinsic
dimensions, i.e., kS ¼ kQ, we get � ¼ 2d=ðkd� k2Þ and ! ¼ 0,
implying that the mapping of (6) reduces to the mapping of
(5), up to a scale factor. When the intrinsic dimension of the
query and database subspaces are significantly smaller than
the ambient space dimension, i.e., kS; kQ 
 d, we get � �
2=

ffiffiffiffiffiffiffiffiffiffiffi
kSkQ

p
and ! � 2ð1� kmin=

ffiffiffiffiffiffiffiffiffiffiffi
kSkQ

p
Þ.

3.4 The Case of Point Queries

The case of point queries is the simplest and most common
in practice and, hence, received detailed analysis in [5]. In
Section 3.1, we proposed an ostensibly different mapping
which was shown to apply to both subspace queries as well
as point queries. In fact, for the case of point queries, the
mapping of (5) and that of [5] are equivalent, albeit in [5], it
is formulated in terms of the null space of S, while (5) is
formulated in terms of the orthogonal basis spanning S.

Thus, similarly to Basri et al. [5] and Section 3.3, we
improve the mapping of (5) by applying the same
procedure of translation and scaling. The resulting formula
differs slightly since for points we have ttTv ¼ kqk2=

ffiffiffi
2
p

, and
therefore,

v ¼: gðqqÞ ¼ 1

cq
hðqqqqT Þ � kqqk

2

d
ffiffiffi
2
p tt

 !
; ð7Þ

with cq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kqk4

2 ð1� 1
dÞ

q
.

This mapping too implies kv� uk2
2 ¼ � dist2ðQ; SÞ þ !,

where now

� ¼ 2d

kqk2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kSðd� kSÞðd� 1Þ

p
and ! ¼ 2ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d�kS
kSðd�1Þ

q
Þ. In particular, � ¼ 2d

kqk2ðd�1Þ and ! ¼ 0

when kS ¼ 1 for all d and � � 2
kqk2 ffiffiffiffikSp and ! � 2ð1� 1ffiffiffiffi

kS
p Þ

when kS 
 d.

4 EXTENSIONS TO ADDITIONAL SCENARIOS

The derivations and observations presented in the previous
section apply to the case of a database of linear subspaces of
a fixed intrinsic dimension. In this section, we build on
these and propose mappings of the form presented in (1),
extending them to three additional database types: sub-
spaces of varying dimension, affine subspaces, and a
database of points (where the queries maybe subspaces).

4.1 A Database of Subspaces of Varying Dimension

As previously mentioned, in some applications, the database
itself can contain subspaces of varying dimension. This may
be the case, for example, when the database contains visual
descriptions of different articulated objects with varying
degrees of freedom. It could also arise in face recognition
when varying numbers of images (from one to many) are
available for different faces. The mapping of (5) cannot be
used in such scenarios since it implies that ! depends on kS
and is thus not mutual to all database items, breaking the
monotonicity. Next, we propose mappings that remove the
dependence on the database subspace dimension, thus
allowing handling within a single framework databases
with subspaces of varying intrinsic dimensions.

4.1.1 Query Dimension Larger than the Dimensions of

Database Items

When the intrinsic dimension of the query subspace is larger
than that of all database subspaces, i.e., kQ > kS 8S, we can
modify the mapping so that it does not depend on kS .

u ¼: fðSÞ ¼ hðSST Þ;

v ¼: gðQÞ ¼ 1

2
hðQQT Þ;

ð8Þ

and consequently, kv� uk2
2 ¼ 1

8 kQ þ 1
2 kS � 1

2 k cos ��k2 ¼
1
8 kQ þ 1

2 dist2ðQ;SÞ. This implies we have obtained a
mapping for which kv� uk2

2 ¼ � dist2ðQ;SÞ þ !, where
� ¼ 1

2 and ! ¼ 1
8 kQ. This distance is independent of the

database subspace dimension kS and thus the mapping of
(8) can be used for all subspaces even when their intrinsic
dimensions vary.

4.1.2 Query Dimension Smaller than Database Items

Dimension

When the intrinsic dimension of the query subspace is
smaller than that of all database subspaces, i.e., kQ � kS 8S,
we can eliminate the dependence on kS by introducing an
additional entry to the mapped subspaces as follows:

u ¼: fðSÞ ¼ ½hðSST Þ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5ðkmax � kSÞ

p
�;

v ¼: gðQÞ ¼ ½hðQQT Þ; 0�;
ð9Þ

where kmax ¼ maxSkS . Consequent ly , kv� uk2
2 ¼

� dist2ðQ;SÞ þ !, where � ¼ 1 and ! ¼ 1
2 kmax � 1

2 kQ. Hence,
(9) provides a valid mapping such that the distance between
mapped subspaces is a linear function of the true distance
with constants mutual to all database items.

4.1.3 Arbitrary Query Dimension

This leaves us with the case that the query dimension is
smaller than the dimension of some elements in the database
and larger than others. Unfortunately, we cannot obtain a
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single mapping in which the distance between the mapped
subspaces is independent of kS when kS is free to be larger or
smaller than kQ. The reason for this is that the true distance
between two subspaces is obtained by summing over kmin ¼
minðkS; kQÞ angles and thus this distance depends on the
relation between kQ and kS .

When the query dimension kQ is known a priori and fixed
for all queries, we propose preprocessing the database twice,
once with the mapping of (8), which is appropriate for
database subspaces with kQ > kS , and once with the
mapping of (9), which is appropriate for database subspaces
with kQ � kS . We apply each mapping only to the appro-
priate portion of the database. Given a query, we perform a
search in each of the two mapped databases. From each
search, we obtain a candidate nearest neighbor, compute the
true distance to the two, and select the closer one. This does
not modify the preprocessing time and memory require-
ment, but it does make the running time slightly slower. Still,
it is much faster than full linear search (see Section 5).

When kQ is unknown a priori and can vary, we apply each
mapping to the entire database. Given a query, we search
both of the mapped databases. From each search, we obtain
an a priori chosen number of candidate nearest neighbors
and compute the true distance to those that are appropriate
for the corresponding mapping. We then select the nearest
neighbor out of those. This doubles the preprocessing time,
running time, and memory requirement, but is still faster
than full linear search. A problem with this approach is that,
since each of the two mappings is appropriate for only part of
the database subspaces, we cannot guarantee that the
extracted candidate near neighbors are appropriate and,
consequently, we cannot guarantee bounds on the error.

An alternative solution is to preprocess the database for all
possible values of kQ. For each possible kQ, we split the
database into two subsets, one including all subspaces kS �
kQ and the other with all subspaces such that kS < kQ. Given a
query, we proceed as above, searching the two appropriate
preprocessed databases. Note that at most we need to
preprocess the database for maxðkSÞ �minðkSÞ þ 1 values of
kQ. This increases the preprocessing time and memory
requirement by a factor of ðmaxðkSÞ �minðkSÞ þ 1Þ; however,
running time is still only doubled. Yet another alternative is to
create maxðkSÞ �minðkSÞ þ 1 mapped databases, each in-
cluding only subspaces of one possible value of kS . The
runtime in such a solution would be slower since we will need
to search maxðkSÞ �minðkSÞ þ 1 databases instead of two;
however, the required space would be significantly smaller as
each database subspace is mapped and stored only once.

Finally, we note that refining the mapping, as was
proposed in (6), is impossible in this case since the database
subspaces are mapped onto different hyperplanes, depend-
ing on kS .

4.2 A Database of Affine Subspaces

The case of affine subspace differs from that of linear
subspaces. A popular measure is the minimal euclidean
distance (i.e., the minimum distance between any pair of
points of the two subspaces). This measure, however,
ignores the angular difference between spaces and there-
fore is irrelevant for certain applications. Furthermore,
since euclidean distances between affine subspaces do not

form a metric (no triangle inequality), one cannot map
affine subspaces into a metric space of points (which we
use). An alternative distance considers only the angular
difference. This reduces the problem to the case of linear
subspaces that was addressed in the previous sections.
Finally, one could propose measures which combine the
euclidean and angular distances; however, it is not clear
what the practical uses of such measures are. Therefore,
we separate between two cases, that of point queries,
where the euclidean distance is appropriate, and the case
of affine subspace queries, where we propose a distance
measure appropriate for a particular application.

4.2.1 Point Queries

An affine subspace A that is parallel to a linear subspace S,

given by a d� k matrix S with orthonormal columns, can be

represented as an intersection of affine hyperplanes,

parameterized by a d� ðd� kÞ matrix Z with orthonormal

columns such that ZZT ¼ Id � SST (Id representing the d�
d identity matrix), and a vector of offset values t 2 Rd�k.

Below, we denote by Ẑ the ðdþ 1Þ � ðd� kÞ matrix whose

first d rows contain Z and last row contains tT , i.e., Ẑ ¼ ½ZtT �.
Given a query q 2 Rd we use homogenous coordinates,

denoting q̂ ¼ ðqT ; 1ÞT .
We use Ẑ and q̂ to define a mapping similar to that of

linear spaces. The columns of Ẑ are not orthonormal due to

the additional last row. We can account for this by

introducing an additional entry, as follows:

u ¼ f̂ðAÞ ¼ �ðhðẐẐT Þ; ĉðAÞÞ 2 Rd̂0 ;

v ¼ ĝðqÞ ¼ ðhðq̂q̂T Þ; 0Þ 2 Rd̂0 :
ð10Þ

u and v lie in Rd̂0 , where now d̂0 ¼ ðdþ 1Þðdþ 2Þ=2þ 1. The

last entry is added to make the norm of u equal across the

database. To achieve this, we set

ĉðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM4 � kẐẐTk2

F Þ=2

q
;

where kẐẐTk2
F ¼ kZZTk

2
F þ 2kZtk2 þ ktk2 ¼ d� kþ 3ktk2

and M is a positive constant; M must be sufficiently large

to allow taking the square root for all the affine subspaces in

the database (thus it is determined by the affine space with

largest ktk). Note that we set the last entry of v to zero so

that the last entry of u does not affect the inner product of

uTv. Therefore, kuk2 ¼ ð1=2ÞM4, kvk2 ¼ ð1=2Þkq̂k4, and

uTv ¼ � 1
2 q̂T ẐẐT q̂ ¼ � 1

2 dist2ðq;AÞ, where distðq;AÞ de-

notes the euclidean distance between q and A, and

consequently, we obtain

ku� vk2 ¼ dist2ðq;AÞ þ 1

2
ðM4 þ kq̂k4Þ; ð11Þ

where the additional constant depends on the query point q

and is independent of the database subspace A.
Similarly to the case of linear subspaces, the affine

subspaces too are mapped to the intersection of a sphere (of

radius M2=
ffiffiffi
2
p

) and a hyperplane �
ffiffiffi
2
p

ttTu ¼ d� k, and so

the query can be projected into this hyperplane in the same

way as in Section 3.3.
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4.2.2 Affine Subspace Queries

As previously mentioned, we know of no accepted distance
measure between two affine subspaces. This is probably
because affine subspaces are defined by two different
components with different natures: a linear subspace part,
defining the subspace orientation, and an offset vector from
the origin. The distance between two affine subspaces can
depend on both the difference in orientation and the
difference in offset; however, these distances are not defined
in the same units, one is an angular difference while the other
is a length and thus cannot be easily combined into a single
unified metric.

A possible approach to incorporating the angular distance
and the offset distance is, given an affine subspace A of
intrinsic dimension kA inRd, to embedA as a linear subspace
in Rdþ1 with intrinsic dimension kA þ 1. The distance
between two affine subspaces is then defined as the distance
between the corresponding higher dimensional embedded
linear subspaces. This is inspired by the computation of
distance between optical flow directions, proposed in [8].
Having reduced the problem to that of linear subspaces, we
can use the appropriate mapping as proposed in the
previous sections.

4.3 A Database of Points

Our approach allows us to also handle cases where the roles
of database and queries are reversed; the database now
containing points and the queries are the subspaces.
Examples for such cases include systems which compare
noisy incoming signals to “clean” examples. Indeed, such
scenarios were the motivation behind the study of the
“partial match” problem on strings [15].

To handle point database elements, we apply the
following heuristic. We add a component to each database
point, thus increasing the ambient space to dimension dþ 1.
Let p be a database point and S be a linear query subspace.
We replace p by p̂ ¼ ðpT ; aÞT , where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kpk2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kpk2 þ c

qr
; ð12Þ

subject to c � maxpkpk4 � 2kpk2. For S, we define Ŝ by
adding a zero row at its bottom.

Consequent to this construction, we get

kp̂p̂t � ŜŜtk2 ¼ cþ ks þ 2dist2ðp; SÞ; ð13Þ

and we can further eliminate redundancies by using the

mappings u ¼ fðp̂Þ ¼ hðp̂p̂T Þ and v ¼ gðŜÞ ¼ hðŜŜT Þ. Note

that if all kpk �
ffiffiffi
2
p

, then we can use c ¼ 0 and, consequently,

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kpk2 þ

ffiffiffi
2
p
kpk

q
:

A similar construction can be developed for the case of
an affine subspace query and a database of points. For a
database point p, we add two new entries (increasing the
ambient dimension to dþ 2) as follows: ~p ¼ ðpT ; 1; ~aÞT ,
where ~a2 ¼ ~c� kpk2 � 1 with a sufficiently large constant c.
The affine subspace query is represented by a ðdþ 2Þ �
ðd� kÞ matrix ~Z composed of the matrix Ẑ (defined in the
previous section) to which we add a row of zeros at its
bottom. Consequently,

k~p~pt þ ~Z ~Z
tk2 ¼ 2dist2ðp; SÞ þ c2 þ d� ks þ 3ktk2; ð14Þ

and the constants are mutual for all the points in the

database. As in the linear case, we can further eliminate

redundancies by using the mappings u ¼ fð~pÞ ¼ hð~p~pT Þ
and v ¼ gð ~ZÞ ¼ �hð ~Z ~Z

T Þ.

5 COMPLEXITIES

Given a query, our search routine starts by mapping it to
Oðd2Þ-space using (5) or (6) (or (8), (9) in case of a database
with subspaces of varying dimension), and then searching
for an approximate nearest neighbor using a point-based
method (e.g., [3], [1]). Mapping the query requires OðkQd2Þ
time, giving us the following general expression for the
query runtime: OðkQd2Þ þ TANNðn; d2Þ, where TANNðn; d2Þ is
the running time for a choice of an ANN algorithm, on a
database of n points inRd2

. Note that here we take kQ ¼ 1 for
point queries.

One ANN method is the search-tree-based approach (e.g.,
[3]). Given an acceptable error rate � > 0, these methods
report a point whose distance from the query is at most a
ð1þ �Þ-factor larger from the distance of the nearest point
from the query. The runtime of [3] is TANNðn; dÞ ¼
Oðddþ1��d lognÞ. Despite the exponential term, these meth-
ods tend to run much faster than a sequential scan even in
fairly high dimensions.

An alternative approach for ANN is the Locality
Sensitive Hashing (LSH) scheme (e.g., [1]), designed to
solve the near neighbor problem. Given r and �, these
methods seek a neighbor of distance at most rð1þ �Þ from
the query, providing that the nearest neighbor lies within
distance r from the query. LSH finds a near neighbor in
Oðdn1=ð1þ�Þ2þOð1ÞÞ operations. An ANN can then be found
using an additional binary search on r, increasing the
overall runtime complexity by an Oðlogn=�Þ factor.

The preprocessing time includes applying our mapping to
the n database subspaces, and then inserting them into a
search structure, giving us: OðnkSd2Þ þ TpANNðn; d2Þ, with
TpANNðn; d2Þ being the preprocessing running time for a
choice of an ANN algorithm. For the LSH scheme [1], for
example, TpANNðn; d2Þ ¼ Oðd2n1þ1=ð1þ�Þ2þOð1ÞÞ, depending on
the acceptable � error rate, while for the kd-tree scheme [3],
this value is Oðd2n lognÞ. Finally, the space required by our
method depends on the ANN method used and is, e.g.,
Oðnd2Þ for the kd-tree scheme of [3], used in our experiments.

Note that an exact sequential search for a nearest subspace
using the distance kQQT � SSTk2

F requiresOðkQd2 þ nkSd2Þ.
Of course, computing SST can be performed at preproces-
sing, resulting in a query runtime complexity of OðkQd2Þ þ
Oðd2nÞ (see, e.g., Fig. 3 for empirical evaluations). We
therefore obtain that the runtime difference between our
method and a linear search is the difference between an exact
and approximate point search on points in Oðd2Þ. The exact
search can alternatively be performed by computing
SVDðSTQÞ to obtain the cosines of the angles between the
query and each database subspace. The complexity of this
method is OðnðkQkSdþmaxðkQ; kSÞ3ÞÞ and is therefore
preferable when both kQ; kS 
 d.

Our formulation maps subspaces and points of dimen-
sion d to points of dimension d0 ¼ Oðd2Þ. As was shown by
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Muja and Lowe [27], this higher dimensionality does not
pose a problem when applying kd-tree-based approximate
nearest neighbor search. Nevertheless, in many vision
applications, this maybe intolerably large. We can approach
this problem by projecting the mapped database and query
onto a space of lower dimension and applying nearest
neighbor search to the projected points. Random projections
are commonly used in ANN searches whenever d
 logn.
For a set of n points, the celebrated Johnson-Lindenstrauss
Lemma [24] guarantees with high probability that a random
projection into Oð��2 lognÞ dimension does not distort
distances by more than a factor of 1þ �. Magen [26] (see
also [28]) has extended this lemma to affine spaces, showing
that, for a set of n affine spaces of rank k, a random
projection into Oð��3k logðknÞÞ dimension distorts distances
by no more than a factor of 1þ �. Utilizing these results, we
can first map the subspaces in the database to points and
then project to a lower dimensional space which is
logarithmic in n. Alternatively, we can first project the
subspaces to a space of lower dimension and then map the
projected subspaces to points, this time obtaining a
polylogarithmic dimension in n.

In the experiments reported below, we have sometimes
found that good results can be obtained with significant
speedup, if both the database and queries are first projected
to a low dimension, before mapping. We do this for
NP projections, each of dimension b. We perform multiple
projections as any particular projection may distort the
distances between the query and database objects. Thus, on
each random projection, we extract c approximate nearest
neighbors and compute the true distance between the query
and all cNP candidates. Finally, we report the closest match
across all these projections. Our overall query running time
is thus NP ðOðbdkQÞ þOðkQb2Þ þ TANNðn; b2Þ þ cOðd2kÞÞ,
where OðbdkQÞ is the time for projecting onto a
b dimensional subspace, and OðdkÞ the time for measuring
the true distance between the query and a candidate
database subspace (k ¼ minðkQ; kSÞ). This is summarized
in Table 2.

6 EXPERIMENTS

To evaluate the performance of our ANS scheme, we adopt
the conventional tests in the field (e.g., [1], [3]). These are

based on synthetic data with varying parameters as this is the
best way to evaluate asymptotic behavior empirically. In
addition to these tests, we further demonstrate the applic-
ability of our ANS search method to a number of real
applications. Our experiments show that the ANS scheme can
indeed significantly expedite the search for a near subspace,
with only a small penalty in accuracy. Our implementation is
in C and uses the ANN kd-tree code of [3]. OpenCV was used
for all of our matrix routines.

6.1 Synthetic Data

6.1.1 Subspace Queries

We tested our ANS scheme on data sets containing
thousands of synthetically produced queries and database
elements, of fairly large dimensions (Fig. 3). The tests
compare our ANS scheme to a linear search and a linear
search with a preprocessed database (see Section 5).
Runtimes for linear search using SVD were significantly
slower than the ones reported here, and so are not displayed.
Note that we use an ANN � ¼ 100 as a stand-in for the value
of “infinity,” that is, “the fastest, least exact search.” For
stability, tests were performed three times and the median
result is reported. Both subspaces and queries were
randomly selected from a uniform distribution.

We report for each test its running time and its effective
distance error [3], [25], defined as Err ¼ ð1=nQÞ

P
QðDist0=

Dist� � 1Þ, where nQ is the number of queries, Dist0 is the
distance from query Q to the subspace selected by our
algorithm, and Dist� is the distance between Q and its true
nearest subspace, computed ofline. Our tests demonstrate
that the ANS scheme is significantly faster than both linear
search methods. In addition, in all of our tests, theErr values
measured were fairly constant, maintaining the low rate of
0.01. The fact that close matches can be recovered even
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Fig. 3. Synthetic data tests. Log-scale runtimes compared for an exact linear search, linear search with a preprocessed database, and our ANS
method with ANN � ¼ 100. The following tests were performed: (a) Varying n: Database subspaces of kS ¼ 30 embedded in d ¼ 60 space, tested
with 1,000 queries of dimension kQ ¼ 10. (b) Varying kQ: Database contains 1,000 subspaces with kS ¼ 30, tested with 1,000 queries. (c) Varying d:
Database contains 1,000 subspaces with kS ¼ 30, tested with 1,000 queries of dimension kQ ¼ 10. Err rate for our method remained at an almost
constant 0.01 in all three experiments, through all values tested.

TABLE 2
Summary of Complexities



considering the high value for � is a well documented
property of the kd-trees method [3]. This is a point worth
noting, especially since statistics of our data show that, on
average, each database item has approximately 0.3 percent
neighbors within 1þ 0:01 times the distance to the nearest
neighbor.

6.1.2 Point Queries

Similar tests were applied also for the case of point
queries. Here, random projections were used to speed up
query runtimes. We used NP ¼ 23 random projections,
measuring the true distance to the best c ¼ 15 subspaces in
each projection and reporting the best one. Database
subspaces were selected uniformly, at random. Following
[38], we generate point queries such that at least one
database subspace is at a distance of no more than ð1þ
�Þ2R

ffiffiffi
d
p

from each query, where R ¼ 0:1 and � ¼ 0:0001.
The results, presented in Fig. 4, show that our algorithm is
faster than sequential database scan, while maintaining
fairly low Err rates.

6.2 Image Approximation

We next demonstrate how subspaces can be used to capture
local translations of intensity patches. Our goal here is to
approximate the intensities of a query image by tiling it
with intensity patches obtained from an image of an
altogether different scene. A similar procedure is frequently
used in the so-called “by-example” patch-based methods
for applications including segmentation [12] and recon-
struction [21].

A collection of 1,000 points were selected at random in a
single image (Fig. 5). Then, 16 different, overlapping 5� 5
patches around each coordinate were used to produce a
k ¼ 4 subspace by taking their four principal components.
These were stored in our subspace database. In addition, all
16 patches were stored for our point (patch) database.

Given a novel test image, we subdivided it into a grid of
nonoverlapping 5� 5 patches. For each such patch, we
searched the point database for a similar patch using
sequential (exact) and point-ANN-based search methods.
The selected database patch was then used as an approx-
imation to the original input patch. Similarly, we used both
sequential (exact) and ANS search schemes for selecting a
matching subspace in the subspace database for each patch.
The point on the selected subspace, closest to the query
patch, was then taken as its approximation.

Fig. 6 presents the results obtained by each of the
methods.1 Note the improved quality of the subspace-based
reconstructions over the point-based methods, evident also
in the mean L1 error reported in Fig. 5. In addition, with the
exception of the point ANN method, which did the worst in
terms of quality, our ANS method was fastest, implying
that an ANS method can be used to quickly and accurately
capture local translations of image patches.

6.3 Scene Classification

We next test our method on real image data using the
scene classification data of [18]. We randomly selected
10 “training” images and 10 (different) “testing” images of
three categories. Fifty random coordinates were selected in
each image. Then, nine different, overlapping 9� 9 patches
around each coordinate were used to produce a k ¼ 5

subspace by taking their five principal components. Sub-
spaces originating from “training” images were stored in
our subspace database and those from “testing” images
were used as queries.

For each query subspace, the database was searched for the
nearest neighbor providing the category it originated from.
For each “testing” image, we counted the number of nearest
neighbors originating from each category and adopted the
maximum as the class label for that image. Fig. 7 compares
running time and classification results of our method and
exact linear search. It shows that while classification results
are comparable, our method is almost an order of magnitude
faster. In addition, all of the extracted patches were stored for
a point (patch) database and query. Patch results were
inferior, probably since subspaces are a richer and more
invariant representation of appearance.

6.4 Speaker Recognition

We tested our method on voice data from [11], consisting of
31 subjects uttering the same short phrase (2-3 seconds long),
three times over a phone connection (a total of 93 samples).
Each sample was represented by standard mel-frequency
cepstrum frame descriptors for time frames of 25 msec, with
overlaps of 50 percent. One sample per subject was taken for
the query set and the other two were used to produce the
database. We produced both queries and subspaces in the
same manner. The concatenated descriptors of three
consecutive time frames were taken as points. Twenty such
points, each point overlapping its neighbors by two time
frames, were used to produce a single linear subspace of
dimension kQ ¼ kS ¼ 13. Each sample thus contributed
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Fig. 4. Synthetic data, point queries with linear subspace data sets.
(a) Comparing ANS with nearest subspace search, where ambient
dimension is d ¼ 60 and database subspace dimension is kS ¼ 4.
(b) Comparing ANS with nearest subspace search, where database size
is n ¼ 5;000 and database subspace dimension is kS ¼ 4.

1. Additional image approximation results can be downloaded from
http://www.wisdom.weizmann.ac.il/~vision/ANS/.



20-30 such subspaces for a total of 1,280 database and

647 query subspaces.
We search the database for an item to match each query.

Each selected database item votes for the identity of the

query’s subject. The speaker is identified based on the

majority vote of the queries from each sample. We ran

approximate and linear search with and without preproces-

sing the database. In all cases, recognition rate was

100 percent; however, even on such a small database, our

ANS search was an order of magnitude faster (see Fig. 7). To

simulate cases of partial query data, we ran these tests again,

with kQ ¼ 6, 7, 8, and 9. Results remained similar, except for

an occasional single recognition error made by the ANS

algorithm. Note that similar recognition rates were reported

on the same data set in [11].

6.5 Yale-B Face Recognition

Subspaces are commonly used to capture the appearance of

faces under varying illuminations in recognition systems

(e.g., [7], [20]). Here, we test the performance of our

approach on a similar application using real data from the

Yale-B face data set [20] (see Fig. 9 for example images).
For every subject and pose combination in the Yale-B data

set, we randomly chose 18 illuminations as the database
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Fig. 7. Numerical results on real data. ANS is approximately an order of magnitude faster with no loss of accuracy.

Fig. 5. Image reconstruction details. (a) The single database image used for reconstruction, (b) mean runtimes for each method, and (c) L1 error
reconstruction error for each of the test images. Both database and query images were taken from the Corel data set.

Fig. 6. Image reconstruction results. Reconstructed using a single outdoor scene image. See Fig. 5 for runtimes and error rates.



examples, and fit a subspace of dimension kS ¼ 9 to these
images. Since the information available at query time may
vary, we ran tests with query subspaces of dimensions 4, 9,
and 13. For each test, we randomly select sets of 4, 9, or
13 images not used for the database, from each subject+pose
combination, and use them to fit the query subspaces. Our
goal is to recognize the correct face under these conditions.
Fig. 8 reports our success rate compared to an exact search.
With only 90 subject+pose combinations, our database is far
too small to give our method a running time advantage. Still,
our ANS method correctly recognized the face at 99.2 percent,
98.4 percent, and 98.4 percent, for kQ ¼ 4, 9, and 13,
respectively. These results imply that the performance of
our method is mostly influenced by the particular illumina-
tions used to produce the database and queries, and not by
the dimension of the query subspaces. For all of our tests, we
used an ANN � ¼ 10. Better results can be obtained, at the
price of slower processing speeds, for lower � values.

6.6 Motion-Based Action Recognition

Given a video sequence of a person performing an action,
we try to classify the action based on example videos of
other individuals. Our motion-based similarity measure is
motivated by the work of Shechtman and Irani [31]. Their
method represents a small space-time (ST) patch P by a
matrix GP ¼ ½Px;Py;Pt�, where Px, Py, and Pt are column
vectors containing the x, y, and temporal gradients for the
pixels of P . Two ST patches P and Q are assumed to
represent the same motion if they essentially span the same
3D subspace.

In our tests, we use the action database of [9] (see
example frames in Fig. 10), containing 10 actions performed
by the same nine individuals. For each video sequence, we
extract 7� 7� 3 patches around a random selection of

ST pixels with a temporal gradient higher than a constant
threshold. We use these to produce the matrices GP of
dimension 147� 3, which we then orthonormalize using
SVD, for a total of 3,200 database subspaces (approximately
40 subspaces per database video sequence). Given a query
video of an as yet never seen subject, we similarly construct
500 matrices GQ for a random selection of its pixels. We
then find, for each of the query’s 3D subspaces represented
by the matrices GQ, the nearest database subspace GP.
Here again, the final action label is determined by taking
the majority vote over the selected database labels.

We compared exact linear subspace search with our
approximate subspace search method. Both search methods
obtained the same classification rate of 78.9 percent
(although different mistakes were made by each method).
More importantly, the mean running time for the linear
search was 140 seconds, whereas 99 seconds, on average,
were required for the approximate search. We expect this
running time advantage to grow with larger databases and
suitable selection of ANN parameters. Note that although
[9] report better classification results of 97 percent, their
method takes advantage of additional information. In
particular, unlike their method, ours was applied to the
unsegmented raw data.
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Fig. 8. Yale-B face recognition. Subject mismatches on the Yale-B database [20]. A database of 90 subspaces was produced by fitting subspaces
with kS ¼ 9 to 18 randomly selected illuminations for each subject+pose combination. Ninety queries were likewise produced by fitting subspaces of
kQ ¼ 4, 9, and 13 to randomly selected sets of 4, 9, or 13 images from the remaining illuminations. x-axis corresponds to different illumination
selections. Recognition rates for our method is 99.2 percent, 98.4 percent, and 98.4 percent, for kQ ¼ 4, 9, and 13, respectively. Linear search
resulted in zero errors; hence, the corresponding line unites with the x-axis in the figures.

Fig. 9. Yale-B faces. Example images from the Yale-B data set [20].

Fig. 10. Motion-based action recognition. Sample frames (cropped) from
the action database of [9] used in our action recognition tests.



7 CONCLUSIONS

We have presented a sublinear, approximate nearest sub-
space search method. A single general mapping from
subspaces to points was described (with various optimiza-
tions), allowing both query and database items to be
subspaces, the query to be of a different dimension than
the database items, and the database items themselves to
vary in dimensions. Once mapped, standard ANN methods
can be used to efficiently search the database for nearest
neighbors. We believe this method is useful for a wide
range of applications, and indeed demonstrated its cap-
abilities in a range of experiments.

Although already a practical solution, challenges still lie
ahead. The reduction to points introduces an error which
deteriorates the quality of results. We therefore wish to
further search for better reductions with lower errors. It
would also be interesting to design solutions tailored for the
case of subspaces, and not via a reduction to points. Finally,
not only points and subspaces are used to represent
information in pattern recognition applications; other
frequently used geometric entities include, for example,
multidimensional Gaussians and spheres. We are therefore
currently interested in looking for efficient techniques for
searching through databases of objects of such kinds.
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