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Abstract
We present a system for automatically generating custom, structured image-maps for input depth-maps. Our sys-
tem thus allows quick fitting of masses of objects with tailor-made image-maps.Given a depth-map of a novel
3D object, our method tiles it with intensities from similar, pre-collected, texturedobjects. These are seamlessly
merged to form the new image-map. This process is performed by optimizinga well defined target likelihood func-
tion, via a hard-EM procedure. We present results for varied object classes including human figures, and fish.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Color, shading, shadowing, and texture

1. Introduction
The growing demand for realistic 3D renderings has
prompted increasing interest in producing detailed image-
maps for 3D models. Manually producing such maps can
be a tedious task, made harder when rendering masses of
models (e.g., crowds), where separate image-maps must
be crafted for each individual object. Automatic methods
have mostly focused on texture synthesis on 3D surfaces
(e.g., [Tur01, WL01, YHBZ01]). Although high quality re-
sults have been demonstrated, these methods uniformly
cover models with texture samples. They thus avoid the
problem of producing realistic image-maps for non-textural
objects, which make up much of the world around us. Take
for example objects such as people. Although covering a 3D
model of a human, from head to toe with texture (e.g., grass,
hair), might look interesting, it will by no means be realistic.

To speed up the modeling pipeline and improve the qual-
ity of available image-maps, we propose a system forauto-
maticsynthesis of custom image-maps for novel shapes. We
observe that if objects have similar structures, they can of-
ten share similar appearances. Our system thus uses a data-
base of example objects and their image-maps, all from the
same class (e.g., fish, busts), to synthesize appearances for
novel objects of the same class. Of course, even in structured
object classes it is unlikely that example image-maps will
neatly fit the 3D features of similar objects. Given a novel
object, we thus borrowparts of example maps, and seam-
lessly merge them, producing an image-map tailored to each
object’s 3D structure. When a single database object is used,
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this effectively performs an automatic morph of the database
image-map to fit the 3D features of the input depth.

Our desired output is an image-map which both fits the
3D features of the input object, and appears similar to maps
in our database. We claim that this goal can be expressed as a
global target function, and optimized via a hard-EM process.
To summarize, this paper makes the following contributions.

• We present a method forautomaticallyproducing (possi-
bly structured) image-maps for objects.

• We show how hard-EM can be used to solve this prob-
lem. Moreover, we show how non-stationarity can be in-
troduced to the synthesis process, and how the process can
be expedited to quickly handle many examples.

• Finally, we demonstrate results on a multitude of test ob-
jects from three different classes.

Work is underway to extend this idea to colorize meshes.
We believe this can be done in much the same way texture
synthesis has extended from images to meshes.

2. Image-map synthesis

For a given depthD(x,y), we attempt to synthesize a match-
ing image-mapI(x,y). To this end we use examples of fea-
sible mappings from depths to images of similar objects,
stored in a databaseS= {Mi}

n
i=1 = {(Di , Ii)}

n
i=1, whereDi

and Ii respectively are the depth and image maps of exam-
ple objects. Our goal is to produce an image-mapI such that
M = (D, I) will also be feasible. Specifically, we seek an im-
ageI which will satisfy the following criteria: (i) For every
k×k patch of mappings inM, there is a similar patch inS. (ii)
Database patches matched with overlapping patches inM,
will agree on the colorsI(p), at overlapped pixelsp= (x,y).
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Figure 1: Image-map synthesis. Step (i) finds for every
query patch a similar database patch. Overlapping patches
provide color estimates for their pixels. (ii) These estimates
are averaged to determine the color at each pixel.

Our basic approach is as follows (see also Fig.1). At every
p in D we consider ak× k window aroundp, and seek a
matching window in the database, with a similar depth pat-
tern in the least squares sense (Fig.1.(i)). Finding such a
window, we extract its correspondingk×k intensities. We do
this for all p in D, matching overlapping depth patterns and
obtainingk2 intensity estimates at every pixel. The intensity
value at everyp is then selected as the Gaussian weighted
average of thesek2 estimates (Fig.1.(ii )).

On its own, this approach has the following shortcom-
ings. (a) Each pixel’s intensity is selected independently of
its neighbors, thus not guaranteeing satisfaction of our crite-
ria. To achieve this, we describe a strong global optimization
procedure in Sec.2.1. (b) Similar depths may originate from
different semantic parts with different intensities, thus spoil-
ing result quality. We propose introducing non-stationarity
to the process by constraining patch selection to use rela-
tive position as an additional cue for matching (Sec.2.2). (c)
Searching through even small databases can take impractical
amounts of time. We speed this process in Sec.2.3.

2.1. Optimization scheme

We take the image produced as described in Fig.1 as an
initial guess for the object’s image-map, and refine it by it-
eratively repeating the following process, until convergence.
At every step we seek for every patch inM, a database patch
similar in both depth as well as intensity, usingI from the
previous iteration for the comparison. Having found new
matches, we compute a new color estimate for each pixel
by taking the Gaussian weighted mean of itsk2 estimates (as
in Fig. 1.(ii )). Note that a similar optimization scheme was
used for depth reconstruction from single images in [HB06].

It can be shown that this process optimizes the following
global target function, which in turn satisfies our two criteria.
Denote byWp a k×k window from the queryM centered at
p, containing both depth values and (unknown) intensities,
and denote byV a similar window in someMi ∈S. Our target
function can now be defined as

P(I |D,S) = ∑
p∈M

max
V∈S

Sim(Wp,V),

with the similarity measureSim(Wp,V) being:

Sim(Wp,V) = exp

(

−
1
2
(Wp−V)TΣ−1(Wp−V)

)

,

whereΣ is a constant, diagonal matrix, its components rep-
resenting the individual variances of the intensity and depth
components of patches. These are provided by the user as
weights (see also Sec.3.1). We claim that the matching
process can be considered a hard E-step, and computing
the mean estimates to produceI is an M-step of a hard-EM
process [KMN97]. Note that hard-EM is guaranteed to con-
verge to a local maximum of the target function. Detailed
proofs fall outside the scope of this paper.

2.2. Inducing non-stationarity

The scheme described in Sec.2.1, makes an implicit station-
arity assumption. Simply put, the probability for the color of
any pixel, given those of its neighbors, is the same through-
out the output image. This holds for textures, but it is gen-
erally untrue for structured images, where pixel colors of-
ten depend on position. For example, the probability for a
pixel being lipstick red, is different at different locations of
a face. Methods such as [ZWT∗05] overcome this problem
by requiring the modeler to explicitly form correspondences
between regions of the 3D shape and different texture sam-
ples. Here, we enforcenon-stationarity by adding additional
constraints to the patch matching process. Specifically, we
encourage selection of patches from similar semantic parts,
by favoring patches which match not only in depth and color,
but also in position relative to the centroid of the input depth.
This is achieved by adding relative position values to each
patch of mappings in both the database and the query image.

Let p = (x,y) be the (normalized) coordinates of a pixel
in M, and let(xc,yc) be the coordinates of the centroid of
the area occupied by non-background depths inD. We add
the values(δx,δy) = (x− xc,y− yc), to each patchWp and
similar values to all database patches (i.e., using the cen-
troid of eachDi for (xc,yc)). These values force the matching
process to find patches similar in both mapping and position.

2.3. Accelerating synthesis

Partial databases. Although over 50 mappingsMi were col-
lected for some of our setsS, in practice, we use only small
subsets of these databases. Selecting the mappingsMi used
for each synthesis depends on the modeler’s intentions, as
follows. (a) For automatic\ mass image-map production,
at the onset of synthesis, we automatically choose them
mappingsMi with the most similar depth-map toD (i.e.,
(D−Di)

2 is minimal,D andDi centroid aligned), where nor-
mally m<< |S|. (b) Alternatively, the modeler can manually
select specific mappings with desired image-maps.

Multi-scale processing. The optimization is performed
in a multi-scale pyramid ofM, using similar pyramids for
eachMi . This both speeds convergence and adds global in-
formation to the process. Starting at the coarsest scale, the
process iterates until intensities converge. Final coarse scale
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selections are then propagated to the next, finer scale (i.e.,
by multiplying the coordinates of the selected patches by 2),
where intensities are then sampled from the finer scale exam-
ple mappings. We thus upscale by interpolating selection co-
ordinates, not intensities. This was found to better preserve
fine scale high frequencies.

PCA patches. Before the first matching process of each
scale commences, separate PCA transformation matrices are
learned from the depth and intensity bands of the database
subset used for synthesis. In practice, we keep a fifth of
the basis vectors with the highest variance. The matching
process thus finds the most similar PCA reduced patches in
the database. This provides a speedup factor of about 5, by
loosing some information, however, in all our tests this did
not seem to effect the quality of our results.

Approximate nearest neighbor (ANN) search. We
speed searching for matching patches by using a sub-linear
ANN search [AMN∗98]. This does not guarantee finding the
most similar patches, but we have found the optimization ro-
bust to these approximations, and the speedup substantial.

3. Implementation and results

3.1. Representation of Examples

The depth component of eachMi and similarlyM is taken to
be the depth itself and its high frequency values, as encoded
in the Gaussian and Laplacian pyramids ofD. We synthesize
three Laplacian pyramids for each of the YCbCr bands of
the image-map. The final result is produced by collapsing
these pyramids. Consequently, a low frequency image-map
is synthesized at the course scale of the pyramid and only
refined and sharpened at finer scales.

Different patch components contribute different amounts
of information in different classes, as reflected by their dif-
ferent variance. The modeler can thus amplify different com-
ponents of eachWp by weighting them differently. We use 6
weights, one for each of the two depth components, three for
the YCbCr bands, and one for relative position. Although se-
lected manually, these weights were set once for each object
class, and left unchanged in all our experiments.

3.2. Implementation

Our algorithm was implemented in MATLAB, except for the
ANN code, which was used as a stand alone executable. Our
data sets were 5 human objects courtesy of Cyberware Inc.,
76 busts from [USF], and 57 fish objects from [Tou]. We as-
sume that test depths are aligned with depths in the database.
If not, depths can be aligned using, e.g., [MPD06].

3.3. Experiments

We ran leave-one-out tests on all three data sets, automati-
cally selecting database examples for each synthesis. Para-
meters are reported in Table1. Some results are presented
in Fig. 2-6. To evaluate the quality of our results, we have
poled 10 subjects, asking “how many image-maps are faulty

or otherwise inferior to those in the database”. 28% and 24%
faults were counted on average in the Fish and Face data-
bases, respectively. Note again that no parameter optimiza-
tion was carried out for individual depths. With 5 shapes, the
humans set was too small for statistics.

Our average running time using un-optimized code, was
approximately 712 minutes for 200× 150 pixel images us-
ing m= 2 examples of similar dimensions, on a Pentium 4,
2.8GHz computer with 2GB of RAM.

DB Name m k Weights

Humans 1 7, 9, 9 0.08, 0.06, 8, 1.1, 1.1, 10
Busts 2 7, 11, 9 0.08, 0.06, 8, 1.1, 1.1, 10
Fish 2 7, 11, 9 0.08, 0.06, 8, 1.1, 1.1, 0.1

Table 1: DB parameters. m - Number of mappings Mi used
for synthesis. k - Patch width and height, from fine to coarse
scale of three pyramid levels. Weights for depth, depth high-
frequencies, Y, Cb, Cr, and relative position components.
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(a) (b) (c) (d) (e)

Figure 2: Fish image-maps. (a) Input depth-map. (b) Automatically selected DB objects (image-mapsdisplayed). (c) Output
image marked with the areas taken from each DB image. (d) Input depth rendered with, from top to bottom, result image and
DB image-maps. Note the mismatching features when using the DB images. (e) Textured 3D view of our output.

Figure 3: Fish image-maps. Top row, input depth-maps; bottom row, our output image-maps.

Figure 4: Human image-maps. Three human figure results. Using a single DB object, our method effectively morphs the DB
image, automatically fitting it to the input depth’s 3D features. For each result,displayed from left to right, are the input depth,
depth textured with automatically selected DB image-map (in red, depth areasnot covered by the DB map,) and our result.

Figure 5: Bust image-maps. Three bust results. For each result, displayed from left to right, are the input depth, our result and
the two DB objects used to produce it.

Figure 6: Failures. Bust failures caused by differently colored DB image-maps. Fish failures are due to anomalous input depths.
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