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Abstract. Subspaces offer convenient means of representing information in many
Pattern Recognition, Machine Vision, and Statistical Learning applications. Con-
trary to the growing popularity of subspace representations, the problem of ef-
ficiently searching through large subspace databases has received little attention
in the past. In this paper we present a general solution to the Approximate Near-
est Subspace search problem. Our solution uniformly handles cases where both
query and database elements may differ in dimensionality, where the database
contains subspaces of different dimensions, and where the queries themselves
may be subspaces. To this end we present a simple mapping from subspaces
to points, thus reducing the problem to the well studied Approximate Nearest
Neighbor problem on points. We provide theoretical proofs of correctness and er-
ror bounds of our construction and demonstrate its capabilities on synthetic and
real data. Our experiments indicate that an approximate nearest subspace can be
located significantly faster than the nearest subspace, with little loss of accuracy.

1 Introduction

Although the use of subspace representations has increased considerably over the years,
one fundamental question related to their use has so far received little attention: How
does one efficiently search through a database of subspaces? There are two main rea-
sons why we believe this question to be paramount. The first is the demonstrated utility
of subspaces as a (sometimes only) means for conveniently representing varying infor-
mation. The second is the ever-growing volume of information routinely collected and
searched through as part of Computer Vision and Pattern Recognition systems, infor-
mation often represented by subspaces. The goal of this paper is to address this question
by presenting a general framework for efficient subspace search.

In a recent paper [4] Basri et al. have presented a method for sub-linear approximate
nearest subspace (ANS) search. Their solution, however, was limited to a particular
scenario where the queries are high dimensional points. They thus ignore cases where
the query itself may be a subspace. Moreover, their method cannot handle databases
of subspaces with different dimensions, which may be the case if variable amounts of
information are available when the database is produced or when object representations
allow for different degrees of freedom. In this paper we extend their work and provide
the following contributions.
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– We present a general framework for efficient approximate nearest subspace search.
Our framework addresses circumstances where both query and database elements
may be either points or subspaces of different dimensions. This allows us in par-
ticular to handle cases in which the database subspaces are of varying dimensions.
This work thus facilitates the use of subspaces, and in particular subspace queries,
in a range of applications.

– We rework the math in [4], demonstrating the relation between the Euclidean and
the F-norm distance measures, thus obtaining simpler yet more general derivations.

– We provide empirical analysis on both synthetic and real data for the new scenarios
handled. In particular, we test the performance of our method on tasks related to
illumination, voice, and motion classification.

Because both query and database items may be subspaces, we define their distance
as the sum squared sines of the principal angles between them. To efficiently search
through a database of subspaces for ones which minimize this distance, we present
a simple reduction to the problem of efficient approximate nearest neighbor (ANN)
search with point queries and database elements [1, 2, 19]. We further show that the
particular circumstance handled by [4] is a special case of the mapping presented here.

We next survey related work, describe our method including theoretical proofs of
correctness and error bounds of our construction, and present both analytical and em-
pirical analysis.

2 Previous Work

The literature on subspace representations is immense and so is the number of appli-
cations utilizing them. The popularity of subspaces is due to the observation that a
single subspace can capture an infinite range of transformations applied to a single ob-
ject. For example, only one subspace is required to represent all possible images of a
Lambertian object viewed under different illuminations [5, 21]. Similar representations
were constructed for objects viewed under changing spatial transformations (e.g. using
the “tangent distance” [23]), viewpoint [24, 26], and articulation [10, 11, 25]. Subspaces
have additionally been used to represent an object’s identity [15, 28], classes of similar
objects [3, 8] and more.

Consider for example a typical scenario, where a database of high dimensional sub-
spaces is collected, each one representing different transformations of a certain object.
Given a query, this database is searched for the query’s nearest (or near) subspaces.
Basri et al. [4] presented an efficient search method for the particular case of the query
being a high-dimensional point and the database containing subspaces of identical di-
mensions. Although an important first step, their method is insufficient for the following
two reasons. The first is strong evidence that often the queries should and sometimes
they must be subspaces themselves. In [15], for example, Fitzgibbon and Zisserman
showed that for the purpose of face recognition subspace-to-subspace distance is a bet-
ter measure of similarity than point-to-subspace. A similar result was demonstrated
empirically even earlier by [27] for face recognition using video streams. Moreover,
when using subspaces to capture motion (e.g., [10, 11, 17, 25]) it is unclear how points
can even be used to represent queries; subspaces being the natural representation for
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both the database items and the queries. These last examples all demonstrate the second
shortcoming of [4], namely, in all these applications the database subspaces might differ
in dimensionality, a case not handled by their search method.

We should note that subspace search problems have received considerable attention
also in theoretical fields of Computer Science. For example, subspaces have been used
to solve the so called “Partial Match” problem on strings [12] and related problems.
These problems usually use subspaces to represent binary strings with unknown values.
The subspaces they handle are therefore parallel to the world axes and only span two
values in each coordinate. As such, they present a special case of the one handled here.
In his paper [20] Magen proposed an efficient solution to the nearest subspace search
problem by a reduction to the vertical ray shooting problem. However, besides being
applicable only to point queries, his solution requires preprocessing time exponential in
the subspace dimension and so is impractical in many applications.

3 Nearest Subspace Search

The nearest subspace search problem is defined as follows. Let {S1,S2, . . . ,Sn} be
a collection of linear (or affine) subspaces in Rd, each with intrinsic dimension kSi .
Given a query subspace Q ⊂ Rd, with intrinsic dimension kQ, denote by dist(Q,Si)
a distance measure between the subspaces Q and Si, 1 ≤ i ≤ n. We seek the subspace
S∗ that is nearest to Q, i.e., S∗ = arg mini dist(Q,Si). For notational simplicity we
omit below the superscript index and refer to a database subspace as S. The meaning
should be clear from the context.

There are many possible definitions of the distance between two linear subspaces [13].
Our particular choice of distance will be discussed in the following section. To the best
of our knowledge there is no accepted distance measure between affine subspaces. We
will thus limit our discussion at this point to the case of linear subspaces. Later on, in
Section 3.5 we will revisit the affine subspace case and propose possible solutions.

Following [4] we approach the nearest subspace problem by reducing the problem
to the well explored nearest neighbor (NN) search problem for points. To achieve such
a reduction we define two transformations, u = f(S) and v = g(Q), which respec-
tively map any given database subspace S and query subspace Q to points u,v ∈ Rd′

for some d′, such that the Euclidean distance ‖v − u‖2 increases monotonically with
dist(Q,S). In particular, we derive below such mappings for which

‖v − u‖22 = µdist2(Q,S) + ω (1)

for some constants µ and ω.
This form of mapping was was shown [4] to be successful for point queries. Here

we start by proposing a simple yet general mapping that can handle both point queries
as well as subspace queries, when the database subspaces are all of the same intrinsic
dimension (Section 3.1). In Section 3.3 we refine the mapping to obtain better error
bounds. Later on, in Section 3.4 we show how this mapping can be extended to handle
databases of subspaces of varying dimensions.
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3.1 A Simple Reduction to Nearest Neighbor Search

We represent a database linear subspace S ⊂ Rd by a d×kS matrix S with orthonormal
columns. We represent a point query by a d×1 vector q and a subspace query as a d×kQ
matrix Q with orthonormal columns.

Next, we need to define the distance measure dist2(Q,S) between two subspaces.
As was shown in [13], all common distance definitions are based on the principal an-
gles θ = (θ1, θ2, ...) and are monotonic with respect to each other. That is, sorting
the database subspaces according to their distance from the query subspace will pro-
duce the same order, regardless of the distance definition. Therefore, the choice of
distance measure is based on its applicability to mappings of the form in Eq. (1).
After some investigation, we chose to adopt the projection Frobenius norm defined
as dist2(Q,S) = ‖ sinθ‖22, where sinθ is the vector of sines of the principal an-
gles between the subspaces S and Q. When Q and S are of the same dimension
kS = kQ = k the vector sinθ is of length k, while when they differ in dimension
its length is kmin = min(kS , kQ).

This distance was selected since it has three important properties:

• A linear function of the squared distance can be obtained via the Freobenius norm of
the difference between the orthographic projection matrices of the subspaces (aka its
name):

‖QQT − SST ‖2F = kQ + kS − 2
kmin∑
i=1

cos2 θi

= kQ + kS − 2kmin + 2dist2(Q,S). (2)

• We can use the projection F-norm also to compute the distance between a point query
q ∈ Rd and a database subspace S, since the Euclidean distance between them, denoted
dist(q,S), is, up to a linear transformation, equal to the projection F-norm between the
1D space through q and S:

‖qqT − SST ‖2F = ‖qqT ‖2 + ‖SST ‖2 − 2qTSSTq

= ‖q‖4 + kS − 2‖q‖2 + 2dist2(q,S). (3)

• Finally, we note, that the Frobenius norm of a square matrix A can be computed by
summing the squares of all its entries: ‖A‖2F =

∑
i,j A

2
ij . This implies that it can also

be computed as the L2 norm of a vector a such that ‖A‖2F = ‖a‖22 and a is a vector
containing all entries of A.

These observations imply that a mapping based on rearranging the projection ma-
trices SST and QQT into vectors could be of the form defined in Eq. (1). Since the
projection matrices are symmetric, naı̈ve rearrangement of their entries will result in
redundancy. We thus further define the following operator: For a symmetric d× d ma-
trix A we define an operator h(A), where h rearranges the entries of A into a vector by
taking the entries of the upper triangular portion of A, with the diagonal entries scaled
by 1/

√
2, i.e.,

h(A) = (
a11√

2
, a12, ..., a1d,

a22√
2
, a23, ...,

add√
2

)T ∈ Rd
′

(4)



5

and d′ = d(d+ 1)/2. Our generalized mapping can now be defined as follows:

u .= f(S) = h(SST )
v .= g(Q) = h(QQT ). (5)

This mapping is consistent with the desired distance definition of Eq. (1) with µ =
1 when all database subspaces S are of the same intrinsic dimension kS = k ∀S.
The additive constant ω depends on the query. One can show that for subspace queries
with kQ = kS = k we get ω = 0, while for subspace queries of different dimension
kQ 6= kS we get ω = 1

2 (kS + kQ) − kmin which is mutual to all database items,
implying a valid mapping. Moreover, this mapping applies to point queries where we
get ω = 1

2‖q‖
4 − ‖q‖2 + 1

2k.
Note, that these observations imply that the same mapped database can be utilized

for various query types without knowing a-priori which queries will be applied. This can
be useful in many applications, for example, in face recognition the number of available
images can vary depending on application. At times only a single query image will be
available, but when the face is captured, for example, via a web-cam many occurrences
of it may be available and can be used to fit a linear subspace as was proposed in [27].
The mapping of Eq. (5) allows using a single database for all queries regardless of
dimension.

3.2 Is this a Good Mapping?

The quality and speed of the search depend highly on the constants µ and ω. One can
show that with mappings of the form in Eq. (1) to guarantee an approximation ratio
(error bound) of 1 +E in the original distance r = dist(Q,S) we would need to select

an approximation ratio 1+ε =
(
ω/µ+r2(1+E)2

ω/µ+r2

)1/2

in the search on the mapped points.
We would therefore like the ratio ω/µ to be minimized. A large ratio ω/µ means the
entire database is pushed away from the query requiring longer search times and using
smaller values of ε to maintain result quality. The mapping of Eq. (5) is thus “ideal” with
ω = 0 for queries of dimension equal to the database subspaces, but not so for queries
of a different dimension. Ideally, one would like to eliminate the additive constant ω
also for the case of queries of different dimension. Unfortunately, a non-zero additive
constant ω is inevitable when the query and database subspaces differ in dimension.

Lemma: Let S and Q be subspaces ∈ Rd with intrinsic dimensions kS and kQ,
respectively and kS 6= kQ. Let u = f(S) and v = g(Q), be their mapping into points
u,v ∈ Rd′

for some d′, such that the distance between the mapped points is of the form
‖v − u‖22 = µdist2(Q,S) + ω. Then ω 6= 0.

Proof: When S ⊂ Q or Q ⊂ S then by definition dist2(Q,S) = 0. If ω = 0 we
get u = v. That is, any two subspaces with non-trivial intersection must be mapped to
the same point. Since there exists a chain of intersections between any two subspaces,
the only possible mapping in the case that ω = 0 is the trivial mapping. �

Note, that this is true for any mapping from subspaces to points and is not limited
to the mapping of the form chosen in this paper. While ω cannot be eliminated the ratio
ω/µ can be further minimized, as is shown next.
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3.3 Improving the Error Bounds

First, we denote by t =
√

2h(Id) ∈ Rd
′

(Id denotes the d × d identity matrix), a vec-
tor whose entries are one for each diagonal entry in h(.) and zero elsewhere. Database
subspaces mapped using Eq. (5) lie on the intersection of a sphere and a hyperplane;
they lie on a sphere since all share the same length ‖u‖2 = 1

2kS , they lie on a hyper-
plane orthogonal to t because tTu = kS/

√
2 (since the trace of a projection matrix

is constant). If the query is of a different intrinsic dimension it will be mapped onto
the intersection of different sphere and hyperplane (see Fig. 1). To reduce the distance
between the mapped query and the mapped database items we can modify our mapping
such that all mapped subspaces lie on the intersection of the same hyperplane and the
same sphere (see Fig. 1). This modification maintains the monotonicity of the mapping.

We implement this modification as follows. We start by modifying our mapping
such that the mapped query is projected onto the hyperplane of mapped subspaces.
We first translate the hyperplane of mapped database subspaces so that it goes through
the origin, by setting ū = u + αt with α = −kS/(d

√
2). The hyperplane after this

translation is given by tT ū = 0. Given a query Q and its mapped version v we seek
to project v onto this translated hyperplane. That is, we seek a scalar β such that v̄ =
v + βt lies on the hyperplane tT (v + βt) = 0. Using the identities tTv = kQ/

√
2 and

tT t = d we obtain β = −kQ/(d
√

2).
Next, we wish to uniformly scale the query to bring it to the same sphere as the

database items. Such uniform scaling too maintains the monotonicity of the mapping.
To simplify notations, we scale both database items and the query to have unit norm.
Our final mapping is as follows,

u .= f(S) =
1
cS

(
h(SST )− kS

d
√

2
t

)
v .= g(Q) =

1
cQ

(
h(QQT )− kQ

d
√

2
t

)
, (6)

with cS =
√

1
2kS(1− kS/d) and cQ =

√
1
2kQ(1− kQ/d). This mapping implies

‖v − u‖22 = µ dist2(Q,S) + ω, where µ = 1
cScQ

and ω = 2− kmin
cScQ

+ kSkQ

dcScQ
.

The constants µ > 0 and ω ≥ 0 depend only on kS , kQ and d and are thus both
mutual to all database items and maintain monotonicity with respect to the true distance
between subspaces. When the query and database have equal intrinsic dimensions, i.e.,
kS = kQ, we get µ = 2d/(kd − k2) and ω = 0 implying that the mapping of Eq. (6)
reduces to the mapping of Eq. (5), up to a scale factor. When the intrinsic dimension
of the query and database subspaces are significantly smaller than the ambient space
dimension, i.e., kS , kQ � d we get µ ≈ 2/

√
kSkQ and ω ≈ 2(1− kmin/

√
kSkQ).

3.4 Subspaces of Varying Dimension

In some applications the database itself can contain subspaces of varying dimension.
This may be the case, for example, when the database contains visual descriptions of
different articulated objects with varying degrees of freedom. It could also arise in face
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Fig. 1. The geometry of the mapped
subspaces. Left: Slicing through
mapped subspaces of intrinsic dimen-
sions 4,6 and 8 in a 10 dimensional
space, shows that the basic mapping
of Eq. (5) maps subspaces of different
dimensions onto different intersections
of spheres and hyperplanes. Right:
The refined mapping of Eq. (6) aligns
the spheres.

recognition when varying number of images (from one to many) are available for differ-
ent faces. The mapping of Eq. (5) cannot be used in such scenarios since it implies that
ω depends on kS and is thus not mutual to all database items, breaking the monotonic-
ity. Next, we propose mappings that remove the dependence on the database subspace
dimension, thus allowing handling within a single framework databases with subspaces
of varying intrinsic dimensions.
kQ > kS, ∀S : When the intrinsic dimension of the query subspace is larger than that
of all database subspaces, i.e., kQ > kS ∀S, we can modify the mapping so that it does
not depend on kS .

u .= f(S) = h(SST )

v .= g(Q) =
1
2
h(QQT ), (7)

and consequently ‖v − u‖22 = 1
8kQ + 1

2kS −
1
2‖ cosθ‖2 = 1

8kQ + 1
2dist2(Q,S).

This implies we have obtained a mapping for which ‖v − u‖22 = µ dist2(Q,S) + ω,
where µ = 1

2 and ω = 1
8kQ. This distance is independent of the database subspace

dimension kS and thus the mapping of Eq. (7) can be used for all subspaces even when
their intrinsic dimensions vary.
kQ ≤ kS, ∀S: When the intrinsic dimension of the query subspace is smaller than
that of all database subspaces, i.e., kQ ≤ kS ∀S, we can eliminate the dependence on
kS by introducing an additional entry to the mapped subspaces, as follows.

u .= f(S) = [h(SST ) ,
√

0.5(kmax − kS)]
v .= g(Q) = [h(QQT ) , 0], (8)

where kmax = maxS kS . Consequently, ‖v − u‖22 = µ dist2(Q,S) + ω, where µ = 1
and ω = 1

2kmax − 1
2kQ. Hence, Eq. (8) provides a valid mapping such that the dis-

tance between mapped subspaces is a linear function of the true distance with constants
mutual to all database items.
Arbitrary query dimension. This leaves us with the case that the query dimension is
smaller than the dimension of some elements in the database and larger than others.
Unfortunately, we cannot obtain a single mapping in which the distance between the
mapped subspaces is independent of kS when kS is free to be larger or smaller than
kQ. The reason for this is that the true distance between two subspaces is obtained
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by summing over kmin = min(kS , kQ) angles and thus this distance depends on the
relation between kQ and kS .

When the query dimension kQ is known a-priori and fixed for all queries, we pro-
pose to pre-process the database twice, once with the mapping of Eq. (7), which is ap-
propriate for database subspaces with kQ > kS and once with the mapping of Eq. (8),
which is appropriate for database subspaces with kQ ≤ kS . We apply each mapping
only to the appropriate portion of the database. Given a query, we perform a search
in each of the two mapped databases. From each search we obtain a candidate near-
est neighbor, compute the true distance to the two and select the closer one. This does
not modify the pre-processing time and memory requirement, but it does make running
time slightly slower. Still, it is much faster than full linear search (see Sec. 4).

When kQ is unknown a-priori and can vary we apply each mapping to the entire
database. Given a query, we search both of the mapped databases. From each search we
obtain an a-priori chosen number of candidate nearest neighbors and compute the true
distance to those that are appropriate for the corresponding mapping. We then select
the nearest neighbor out of those. This doubles the pre-processing time, running time
and memory requirement, but is still faster than full linear search. A problem with this
approach is that since each of the two mappings is appropriate for only part of the
database subspaces, we cannot guarantee that the extracted candidate near neighbors
are appropriate and consequently we cannot guarantee bounds on the error.

An alternative solution is to pre-process the database for all possible values of kQ.
For each possible kQ we split the database into two subsets, one including all subspaces
kS ≥ kQ and the other with all subspaces such that kS < kQ. Given a query we
proceed as above, searching the two appropriate pre-processed databases. Note that
at most we need to pre-process the database for max(kS) − min(kS) + 1 values of
kQ. This increases the pre-processing time and memory requirement by a factor of
(max(kS) − min(kS) + 1), however, running time is still only doubled. Yet another
alternative is to create max(kS)−min(kS) + 1 mapped databases, each including only
subspaces of one possible value of kS . The runtime in such a solution would be slower
since we will need to search max(kS)−min(kS)+1 databases instead of two, however,
the required space would be significantly smaller as each database subspace is mapped
and stored only once.

Refining the mapping as was proposed in Eq. (6), is impossible in this case since
the database subspaces are mapped onto different hyperplanes, depending on kS .

3.5 Affine Subspaces

As far as we know, there is no accepted distance measure between affine subspaces.
This is probably since affine subspaces are defined by two different components with
different natures: a linear part, defining the subspace orientation, and an offset vector
from the origin. The distance between two affine subspaces can depend on both the
difference in orientation and the difference in offset, however, these distances are not
defined in the same units, one is an angular difference while the other is a length, and
thus cannot be easily combined into a single unified metric.

A possible approach to incorporating the angular distance and the offset distance
is, given an affine subspace A of intrinsic dimension kA in Rd, to embed A as a linear
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Fig. 2. Synthetic data tests. log-scale run times compared for an exact linear search, linear search
with a preprocessed database and our ANS method with ANN ε = 100. The following tests were
performed. Varying n: Database subspaces of kS = 30 embedded in d = 60 space, tested
with 1000 queries of dimension kQ = 10. Varying kQ: Database contains 1000 subspaces with
kS = 30, tested with 1000 queries. Varying d: Database contains 1000 subspaces with kS = 30,
tested with 1000 queries of dimension kQ = 10. Err rate for our method remained at an almost
constant 0.01 in all three experiments, through all values tested.

subspace in Rd+1 with intrinsic dimension kA + 1. The distance between two affine
subspaces is then defined as the distance between the corresponding higher-dimensional
embedded linear subspaces. This is inspired by the computation of distance between
optical flow directions, proposed in [6]. Having reduced the problem to that of linear
subspaces we can use the appropriate mapping as proposed in the previous sections.

4 Complexities

Given a query, our search routine starts by mapping it to O(d2)-space using Eqs. (5)
or (6) (or (7),(8) in case of a database with subspaces of varying dimension), and then
searching for an approximate nearest neighbor using a point based method (e.g. [2, 1]).
Mapping the query requires O(kQd2) time, giving us the following general expression
for the query runtime: O(kQd2) + TANN (n, d2), where TANN (n, d2) is the running
time for a choice of an ANN algorithm, on a database of n points inRd2 .

One ANN method is the search-tree based approaches (e.g. [2]). Given an accept-
able error rate ε > 0 these methods report a point whose distance from the query is
at most a (1 + ε)-factor larger from the distance of the nearest point from the query.
Their runtime is TANN (n, d) = O(dd+1ε−d log n). Despite the exponential term these
methods tend to run much faster than a sequential scan even in fairly high dimensions.

An alternative approach for ANN is the Locality Sensitive Hashing (LSH) scheme
(e.g., [1]), designed to solve the near neighbor problem. Given r and ε these meth-
ods seek a neighbor of distance at most r(1 + ε) from the query, providing that the
nearest neighbor lies within distance r from the query. LSH finds a near neighbor in
O(dn1/(1+ε)2+O(1)) operations. An ANN can then be found using an additional binary
search on r, increasing the overall runtime complexity by a O(log n/ε) factor.

The preprocessing time includes applying our mapping to the n database subspaces,
and then inserting them into a search structure, giving us: O(nkSd2) + TpANN (n, d2),
with TpANN (n, d2) being the preprocessing running time for a choice of an ANN algo-
rithm. For the LSH scheme [1], for example, TpANN (n, d2) = O(d2n1+1/(1+ε)2+O(1)),
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depending on the acceptable ε error rate, while for the kd-tree scheme [2] this value is
O(d2n log n). Finally, the space required by our method depends on the ANN method
used and is, e.g., O(nd2) for the kd-tree scheme of [2], used in our experiments.

Note, that an exact sequential search for a nearest subspace using the distance
||QQT − SST ||2F , requires O(kQd2 + nkSd

2). Of course, computing SST can be per-
formed at preprocessing, resulting in a query runtime complexity ofO(kQd2)+O(d2n)
(see Fig. 2 for empirical evaluations). We therefore obtain that the runtime difference
between our method and a linear search is the difference between an exact and approx-
imate point search on points in O(d2). The exact search can alternatively be performed
by computing SV D(STQ) to obtain the cosines of the angles between the query and
each database subspace. The complexity of this method is O(kQkSd+ max(kQ, kS)3)
and is therefore preferable when both kQ, kS � d. Finally, we note that when the given
subspaces lie in high dimension we can use a number of random projections of the
subspaces [20] or their mapped versions [18] onto an O(log n) dimension to reduce
complexity while sacrificing some accuracy.

5 Experiments

To evaluate the performance of our ANS scheme we adopt the conventional tests in the
field (e.g., [1, 2]). These are based on synthetic data with varying parameters as this
is the only way to evaluate asymptotic behavior empirically. In addition to these tests,
we further demonstrate the applicability of our ANS search method to a number of
real applications. Our experiments show that the ANS scheme can indeed significantly
expedite the search for a nearest subspace, with only a small penalty in accuracy. Our
implementation is in C and uses the ANN kd-tree code of [2]. OpenCV was used for all
our matrix routines.

Synthetic data. We tested our ANS scheme on data sets containing thousands
of synthetically produced queries and database elements, of fairly large dimensions
(Fig. 2). The tests compare our ANS scheme to a linear search, and a linear search with
a preprocessed database (see Sec. 4). Run-times for linear search using SVD were sig-
nificantly slower than the ones reported here, and so are not displayed. Note that we use
an ANN ε = 100 as a stand-in for the value of “infinity”, that is, “the fastest, least exact
search”. For stability, tests were performed three times and the median result is reported.
Both subspaces and queries were randomly selected from a uniform distribution.

We report for each test its running time and its effective distance error [2, 19], de-
fined as Err = (1/nQ)

∑
Q(Dist′/Dist∗ − 1), where nQ is the number of queries,

Dist′ is the distance from query Q to the subspace selected by our algorithm, and
Dist∗ is the distance between Q and its true nearest subspace, computed off line. Our
tests demonstrate that the ANS scheme is significantly faster than both linear search
methods. In addition, in all our tests, the Err values measured were fairly constant,
maintaining the low rate of 0.01. The fact that close matches can be recovered even
considering the high value for ε, is a well documented property of the kd-trees method.

Scene classification. We next test our method on real image data using the scene
classification data of [14]. We randomly selected 10 “training” images and 10 (differ-
ent) “testing” images of three categories. 50 random coordinates were selected in each
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Scene classification Speaker recognition
Method Run time Correct

ANS (our result) 2.3 sec. 63%
Exact with preprocessing 13.8 sec. 63%
Exact nearest patch 135 sec. 55%

Method Run time Correct
ANS (our result) 4.6 sec. 100%
Exact with preprocessing 44.5 sec. 100%
Exact nearest subspace 232 sec. 100%

Fig. 3. ANS is approximately an order of magnitude faster with no loss of accuracy.

image. Then, 9 different, overlapping 9 × 9 patches around each coordinate were used
to produce a k = 5 subspace by taking their 5 principal components. Subspaces orig-
inating from “training” images were stored in our subspace database and those from
“testing” images were used as queries.

For each query subspace the database was searched for the nearest neighbor provid-
ing the category it originated from. For each “testing” image we counted the number
of nearest neighbors originating from each category and adopted the maximum as the
class label for that image. Figure 3 compares running time and classification results of
our method and exact linear search. It shows that while classification results are com-
parable our method is almost an order of magnitude faster. In addition, all the extracted
patches were stored for a point (patch) database and query. Patch results were inferior,
probably since subspaces are a richer and more invariant representation of appearance.

Speaker recognition. We tested our method on voice data from [9], consisting of 31
subjects uttering the same short phrase (2-3 seconds long), three times over a phone con-
nection (a total of 93 samples). Each sample was represented by standard mel-frequency
cepstrum frame descriptors for time-frames of 25msec, with overlaps of 50%. One sam-
ple per subject was taken for the query set and the other two were used to produce the
database. We produced both queries and subspaces in the same manner. The concate-
nated descriptors of 3 consecutive time-frames were taken as points. 20 such points,
overlapping by two time-frames, were used to produce a single linear subspace of di-
mension kQ = kS = 13. Each sample thus contributed 20–30 such subspaces for a total
of 1280 database and 647 query subspaces.

We search the database for an item to match each query. Each selected database
item votes for the identity of the query’s subject. The speaker is identified based on the
majority vote of the queries from each sample. We ran approximate and linear search
with and without preprocessing the database. In all cases recognition rate was 100%,
however, even on such a small database, our ANS search was an order of magnitude
faster (see Figure 3). To simulate cases of partial query data, we ran these tests again,
with kQ = 6, 7, 8 and 9. Results remained similar, except for an occasional single
recognition error made by the ANS algorithm. Note, that similar recognition rates were
reported on the same data set in [9].

Yale-B face recognition. Subspaces are commonly used to capture the appearance
of faces under varying illuminations in recognition systems (e.g., [5, 16]). Here, we test
the performance of our approach on a similar application using image data from the
Yale-B face data set [16] (see Fig. 5 for example images).

For every subject and pose combination in the Yale-B data set, we randomly chose
18 illuminations as database examples, and fit them with a subspace of dimension
kS = 9. Since the information available at query time may vary, we tested query sub-
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Fig. 4. Yale-B face recognition. Subject mismatches on the Yale-B database [16]. A database of
90 subspaces was produced by fitting subspaces with kS = 9 to 18 randomly selected illumina-
tions for each subject+pose combination. 90 queries were likewise produced by fitting subspaces
of kQ = 4, 9, and 13 to randomly selected sets of 4,9, or 13 images from the remaining illumi-
nations. x-axis corresponds to different illumination selections. Recognition rate for our method
is 99.2%, 98.4%, and 98.4%, for kQ = 4, 9, and 13.

Fig. 5. Yale-B faces. Example images from the Yale-B data set [16].

spaces of dimensions 4, 9, and 13. For each test we randomly select sets of 4, 9, or 13
images, not used for the database, and used them to fit the query subspaces. Our goal
is to recognize the correct face under these conditions. Fig. 4 reports our success rate
compared to an exact search. With only 90 subject+pose combinations, our database
is far too small to give our method a running time advantage. Still, our ANS method
correctly recognized the face at 99.2%, 98.4%, and 98.4%, for kQ = 4, 9, and 13, re-
spectively. These results imply that the performance of our method is mostly influenced
by the particular illuminations used to produce the database and queries, and not by the
dimension of the query subspaces. For all our tests we used an ANN ε = 10. Better
results can be obtained, at the price of slower processing speeds, for lower ε values.

Motion-based action recognition. Given a video sequence of a person perform-
ing an action, we try to classify the action based on example videos of other indi-
viduals. Our motion-based similarity measure is motivated by the work of Shechtman
and Irani [22]. Their method represents a small space-time (ST) patch P by a matrix
GP = [Px,Py,Pt], where Px, Py, and Pt are column vectors containing the x, y,
and temporal gradients for the pixels of P . Two ST patches P and Q are assumed to
represent the same motion if they essentially span the same 3-dimensional subspace.

In our tests, we use the action database of [7] (see example frames in Fig. 5), con-
taining ten actions performed by the same nine individuals. For each video sequence,
we extract 7 × 7 × 3 patches around a random selection of ST-pixels with a temporal
gradient higher than a constant threshold. We use these to produce the matrices GP

which we then orthonormalize using SV D, for a total of 3200 database subspaces (ap-
proximately 40 subspaces per database video sequence). Given a query video of an as
yet never seen subject, we similarly construct 500 matrices GQ for a random selection
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Fig. 6. Motion-based action recog-
nition. Sample frames (cropped)
from the action database of [7] used
in our action recognition tests.

of its pixels. We then find for each of the query’s 3D subspaces, represented by the
matrices GQ, the nearest database subspace GP. Here again, the final action label is
determined by taking the majority vote over the selected database labels.

We compared exact linear subspace search with our approximate subspace search
method. Both search methods obtained the same classification rate of 78.9% (although
different mistakes were made by each method). More importantly, the mean running
time for the linear search was 140 seconds whereas 99 seconds on average were re-
quired for the approximate search. We expect this running time advantage to grow with
larger databases and careful selection of ANN parameters. Note that although [7] report
better classification results, their method takes advantage of additional information. In
particular, unlike their method, ours was applied to the unsegmented raw data.

6 Conclusions
We have presented a sub-linear, approximate nearest subspace search method. A single
general mapping from subspaces to points was described (with various optimizations),
allowing both query and database items to be subspaces, the query to be of a different
dimension than the database items, and the database items themselves to vary in di-
mensions. Once mapped, standard ANN methods can be used to efficiently search the
database for nearest neighbors. We believe this method useful for a wide range of ap-
plications, and indeed demonstrated its capabilities in a range of experiments. We now
plan both to further improve the quality of our mapping to obtain faster search times,
and in addition explore various additional problems where it might be applied.
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