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Abstract

Recognizing faces in unconstrained videos is a task of
mounting importance. While obviously related to face
recognition in still images, it has its own unique charac-
teristics and algorithmic requirements. Over the years sev-
eral methods have been suggested for this problem, and a
few benchmark data sets have been assembled to facilitate
its study. However, there is a sizable gap between the ac-
tual application needs and the current state of the art. In
this paper we make the following contributions. (a) We
present a comprehensive database of labeled videos of faces
in challenging, uncontrolled conditions (i.e., ‘in the wild’),
the ‘YouTube Faces’ database, along with benchmark, pair-
matching tests1. (b) We employ our benchmark to survey
and compare the performance of a large variety of exist-
ing video face recognition techniques. Finally, (c) we de-
scribe a novel set-to-set similarity measure, the Matched
Background Similarity (MBGS). This similarity is shown to
considerably improve performance on the benchmark tests.

1. Introduction
Although face recognition is one of the most well stud-

ied problems in Computer Vision, recognizing faces in on-
line videos is a field very much in its infancy. Videos nat-
urally provide far more information than single images [9].
Indeed, several existing methods have obtained impressive
recognition performances by exploiting the simple fact that
a single face may appear in a video in many consecutive
frames (e.g., [3, 10]). These methods, however, were pri-
marily developed and tested using either strictly controlled
footage or high quality videos from motion-pictures and TV
shows. People appearing in these videos are often collabo-
rative, are shot under controlled lighting and viewing condi-
tions, and the videos themselves are stored in high quality.

Videos found in on-line repositories are very different

1The database, image encoding, benchmark tests, and the code of
the baseline methods are available at www.cs.tau.ac.il/˜wolf/
ytfaces.

Figure 1. Example frames from the spectrum of videos available
in the YouTube Faces data set. The bottom row depict some of the
challenges of this set, including amateur photography, occlusions,
problematic lighting, pose, and motion blur.

in nature. Many of these videos are produced by amateurs,
typically under poor lighting conditions, difficult poses, and
are often corrupted by motion blur. In addition, bandwidth
and storage limitations may result in compression artifacts,
making video analysis even harder.

Recently, the introduction of comprehensive databases
and benchmarks of face images, in particular images ‘in
the wild’ (e.g., [6]), has had a great impact on the devel-
opment of face recognition techniques. In light of this
success, we present a large-scale, database, the ‘YouTube
Faces’ database, and accompanying benchmark for recog-
nizing faces in challenging, unconstrained videos (see, e.g.,
Fig. 1). Following [6] our benchmark is a simple yet effec-
tive pair-matching benchmark, allowing for standard testing
of similarity and recognition methods. We use this bench-
mark to survey and test existing state-of-the-art techniques
for face recognition.

We further present a novel set-to-set similarity measure,
the Matched Background Similarity (MBGS), used here to
evaluate the similarity of face videos. This similarity is de-
signed to utilize information from multiple frames while re-
maining robust to pose, lighting conditions and other mis-
leading cues. We consequently demonstrate a significant
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boost in accuracy over existing methods.

2. Previous work

Early work in video face recognition includes [11] which
use manifolds to represent the time varying appearances of
faces and [13] who focus on real-time face recognition in
videos. More recently [3, 14] focus on the task of align-
ing subtitle information with faces appearing in TV shows.
In [10] faces appearing in a TV show were clustered accord-
ing to subject identity across 11 years of broadcast. Search-
ing through people in surveillance videos [12, 16] is related
to recognition from web videos.
Set-to-set similarities. Frames of a video showing the same
face, are often represented as sets of vectors, one vector per
frame. Thus, recognition becomes a problem of determin-
ing the similarity between vector sets, which can be mod-
eled as distributions [12], subspaces [24, 26], or more gen-
eral manifolds [7, 11, 19]. Different choices of similarity
measures are then used to compare two sets [19, 20, 24].
The MBGS approach described in this paper differs in that
it models a set by a combination of a classifier and the set
itself. At its core, the similarity is asymmetric and uses the
classifier of one set to determine whether the vector set of
another set is more similar to the first set or to a preselected
subset background set. It is thus related to a recent fam-
ily of similarities [15, 22, 23] based on a background set of
examples and which employ classifiers.

The first recent background similarity method to emerge
is the One-Shot-Similarity (OSS) [21, 22]. Given two vec-
tors x1 and x2, their OSS score is computed by considering
a training set of background sample vectors B. This set of
vectors contains examples of items different from both x1

and x2, and which are otherwise unlabeled. First, a dis-
criminative model is learned with x1 as a single positive
example and B as a set of negative examples. This model
is then applied to the second vector, x2, obtaining a classi-
fication score. In [21] an LDA classifier was used, and the
score is the signed distance of x2 from the decision bound-
ary learned using x1 (positive example) and B (negative
examples). A second such score is then obtained by repeat-
ing the same process with the roles of x1 and x2 switched:
this time, a model learned with x2 as the positive example
is used to classify x1, thus obtaining a second classification
score. The symmetric OSS is the sum of these two scores.

3. The Matched Background Similarity

A set-to-set similarity designed for comparing the frames
of two face-videos, must determine if the faces appearing in
the two sets are of the same subject, while ignoring similar-
ities due to pose, lighting, and viewing conditions. In order
to highlight similarities of identity, we train a discrimina-
tive classifier for the members of each video sequence. Do-

Similarity = MBGS(X1, X2, B)
B1 = Find_Nearest_Neighbors(X1,B)
Model1 = train(X1, B1)
Confidences1 = classify(X2, Model1)
Sim1 = stat(Confidences1)

B2 = Find_Nearest_Neighbors(X2, B)
Model2 = train(X2, B2)
Confidences2 = classify(X1, Model2)
Sim2 = stat(Confidences2)

Similarity = (Sim1+Sim2)/2

Figure 2. Computing the symmetric Matched Background Similar-
ity for two sets, X1 and X2, given a set B of background samples.
The function stat represents either the mean, median, minimum or
maximum over the confidences.

ing so allows us the freedom to choose the particular type
of classifier used, but more importantly, provides us with
the opportunity to train a classifier using a ‘negative’ set
selected to best represent misleading sources of variation.
This negative set is selected from within a large set of back-
ground videos put aside for this purpose. For example, in
our benchmark, the video sequences in the training splits
are used as the background set (see Sec. 4).

Assume a set B = {b1, . . . , bn} of background sam-
ples bi ∈ Rd, containing a large sample of the frames in a
‘background-videos’ set, encoded using a feature transform
(e.g., LBP [8]). Given two videos,X1 andX2, likewise rep-
resented as two sets of feature vectors in Rd, we compute
their MBGS as follows (Fig. 2). We begin by locating for
each member of X1, its nearest-neighbor in B. We aggre-
gate all these matched frames discarding repeating ones. If
the size of the resulting set of nearest frames is below a pre-
determined size C, we move on to the 2nd nearest neighbor
and so on until that size is met, trimming the set of matches
in the last iteration such that exactly C frames are collected.
This set, call it B1 ⊂ B, |B1| = C, is the set of background
samples matching the vectors in X1. Provided that this set
does not contain images of the same individual appearing
in X1, B1 captures similarities to members of X1 resulting
from factors other than identity. We now train a discrimi-
native classifier (e.g., SVM) to distinguish between the two
sets X1 and B1. A key observation is that the resulting dis-
criminative model is trained to distinguish between similar
feature vectors representing different identities.

Using the model, we now classify all members of X2 as
either belonging to X1 or B1. For each member of X2 we
thus obtain a measure of classification confidence. These
confidence values can be, for example, the signed distances
from the separating hyperplane when using an SVM clas-
sifier. Each such confidence value reflects the likelihood
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that a member of X2 represents the same person appearing
in X1. We take the mean (or alternatively, the median, the
minimum, or the maximum) of all these values, obtained
for all of the members of X2 as the one-sided MBGS. This
provides a global estimate for the likelihood that X2 repre-
sents the same person appearing inX1. The final, two-sided
MBGS is obtained by repeating this process, this time re-
versing the roles of X1 and X2 and selecting a set B2 ⊂ B,
|B2| = C of background samples matching the members
of X2. The average of the two one sided similarities is the
final MBGS score computed for the video pair.

4. The ‘Youtube Faces’ set and benchmark

In designing our video data set and benchmarks we fol-
low the example of the ‘Labeled Faces in the Wild’ (LFW)
image collection [6]. Specifically, our goal is to produce
a large scale collection of videos along with labels indi-
cating the identities of a person appearing in each video.
In addition, we publish benchmark tests, intended to mea-
sure the performance of video pair-matching techniques on
these videos. Finally, we provide descriptor encodings for
the faces appearing in these videos, using well established
descriptor methods. We next describe our database assem-
bling process and associated benchmark tests.

Collection setup We begin by using the 5, 749 names of
subjects included in the LFW data set [6] to search YouTube
for videos of these same individuals. The top six results
for each query were downloaded. We minimize the num-
ber of duplicate videos by considering two videos’ names
with edit distance less than 3 to be duplicates. Downloaded
videos are then split to frames at 24fps. We detect faces
in these videos using the VJ face detector [17]. Automatic
screening was performed to eliminate detections of less than
48 consecutive frames, where detections were considered
consecutive if the Euclidean distance between their detected
centers was less than 10 pixels. This process ensures that
the videos contain stable detections and are long enough to
provide useful information for the various recognition algo-
rithms. Finally, the remaining videos were manually ver-
ified to ensure that (a) the videos are correctly labeled by
subject, (b) are not semi-static, still-image slide-shows, and
(c) no identical videos are included in the database.

The screening process reduced the original set of videos
from the 18, 899 originally downloaded (3, 345 individu-
als) to 3, 425 videos of 1, 595 subjects. An average of 2.15
videos are available for each subject (See Table 1 for a dis-
tribution of videos per subject). The shortest clip duration is
48 frames, the longest clip is 6, 070 frames, and the average
length of a video clip is 181.3 frames.

# videos 1 2 3 4 5 6
# people 591 471 307 167 51 8

Table 1. YouTube faces. Number of videos available per subject.

Database encodings All video frames are encoded using
several well-established, face-image descriptors. Specifi-
cally, we consider the face detector output in each frame.
The bounding box around the face is expanded by 2.2 of its
original size and cropped from the frame. The result is then
resized to standard dimensions of 200×200 pixels. We then
crop the image again, leaving 100 × 100 pixels centered
on the face. Following a conversion to grayscale, the im-
ages are aligned by fixing the coordinates of automatically
detected facial feature points [2], and we apply the follow-
ing descriptors: Local Binary Patterns (LBP) [8], Center-
Symmetric LBP (CSLBP) [5] and Four-Patch LBP [21].

Benchmark tests Following the example of the LFW
benchmark, we provide standard, ten-fold, cross validation,
pair-matching (‘same’/‘not-same’) tests. Specifically, we
randomly collect 5, 000 video pairs from the database, half
of which are pairs of videos of the same person, and half
of different people. These pairs were divided into 10 splits.
Each split containing 250 ‘same’ and 250 ‘not-same’ pairs.
Pairs are divided ensuring that the splits remain subject-
mutually exclusive; if videos of a subject appear in one split,
no video of that subject is included in any other split. The
goal of this benchmark is to determine, for each split, which
are the same and which are the non-same pairs, by train-
ing on the pairs from the nine remaining splits. We note
that this split design encourages classification techniques to
learn what makes faces similar or different, rather than learn
the appearance properties of particular individuals.

One may consider two test protocols. First, the restricted
protocol limits the information available for training to the
same/not-same labels in the training splits. This protocol
is the one used in this paper. The Unrestricted protocol,
on the other hand, allows training methods access to subject
identity labels, which has been shown in the past to improve
recognition results in the LFW benchmark [15].

5. Experiments
We test the performance of several baseline face recog-

nition methods and compare them to the MBGS described
in this paper. Several types of methods were considered.
One group consists of methods employing comparisons be-
tween pairs of face images taken from the two videos. An-
other group uses algebraic methods such as distances be-
tween projections. Such methods often appear in the liter-
ature as methods of comparing vector sets, particularly sets
of face images. A third group includes the Pyramid Match
Kernel and the Locality-constrained Linear Coding meth-
ods, which were proven extremely effective in comparing
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sets of image descriptors. We also include the performance
obtained by using the straightforward heuristic of detecting
an approximately frontal pose in each sequence and using
this image to represent the entire set when comparing two
videos. We next expand on these methods, and relate spe-
cific experiments to the rows of Table 2.
1. All pairs comparisons. Each video is represented by
a set of vectors, each one produced by encoding the video
frames using one of a number of existing face descriptors.
Let X1 be the matrix whose columns are the encoding of
the frames of one video, and let X2 be the corresponding
matrix for the other video. We compute a distance matrix
D where Dij = ||X1(:, i)−X2(:, j)||, X1(:, i) denotes the
i-th column of matrix X1. Four basic similarity measures
are then computed usingD: the minimum ofD, the average
distance, the median distance, and the maximal distance. In
addition we also compute the ‘meanmin’ similarity in which
for each image (of either set) we match the most similar
image from the other set and consider the average of the
distances between the matched pairs.
2. Pose based methods. Presumably, the easiest image to
recognize in each image set is the one showing the face in
a frontal pose. We therefore locate the frontal-most pose in
each sequence by using the web API of face.com to obtain
the three rotation angles of the head. Comparing two se-
quences then involves measuring the similarity between the
descriptors of the representative frames of the two videos.

Another baseline method uses one face image from each
sequence by considering pairs of images with the smallest
head rotation angle between them. Rotation is estimated
from each image as before and all frames from one se-
quence are compared to all frames from the other sequence.
3. Algebraic methods. Algebraic methods view each ma-
trix X1 or X2 as a linear subspace that is spanned by the
columns of the matrix. A recent work [20] provides an ac-
cessible summary of large number of such methods. Many
of the methods are based on the analysis of the principle
angles between the two subspaces.

Let Uk, k = 1, 2 be any orthogonal basis for the sub-
space spanned by the columns ofXk. The SVD of U>

1 U2 =
WSV > provides the principle angles between the column
subspaces of the two matrices X1 and X2. Specifically, the
inverse cosine of the diagonal of S are the principle angles,
i.e., S = diag(cos θ), where Θ is the vector of principle
angles of X1 and X2. Note that this vector is sorted from
the least angle to the largest.

Several distances are defined based on these notations:
The max correlation is defined by the minimal angle θ(1);
The projection metricis given by ||U1U

>
1 − U2U

>
2 ||F =

|| sin Θ||; The norm ||U>
1 U2||F seems to be relatively ef-

fective; Finally, the Procrustes metric [1] is computed from
the vector-norm || sin(Θ/2)|| (here and above, the sin of a
vector is taken element by element).

Care should be taken when the number of frames differs
between the sequences or if the number of samples is larger
than the dimensionality of the representation. It is a good
practice to restrict U1 (U2) to be the first r singular vec-
tors of the subspace spanned by the columns of Xk. This
is justified by the fact that the projections UkU

>
k , k = 1, 2

provide the closest possible projection by a rank r projec-
tion to the vectors of Xk. In our experiments we found the
value of r = 10 to provide relatively good performance.

The last algebraic method we compare to is the CMSM
method [27]. This method utilizes a training set and is es-
sentially a max correlation method after the vectors have
been projected to the subspace spanned by the smallest
eigenvectors of the matrix that is the sum of all projection
matrices of the training set. The projection is followed by
a normalization step and an orthogonalization step. Lastly,
the max correlation, sometimes called MSM, is computed
as the score. Alternatively, as is done in the code made
available by the authors [27], the average of the largest
t = 10 canonical correlations can be used.
4. Non-algebraic Set methods. We next consider methods
that have emerged as effective ways to represents sets, not
necessarily in the context of computer vision.

The Pyramid Match Kernel (PMK) [4] is an effective
kernel for encoding similarities between sets of vectors.
PMK represents each set of vectors as a hierarchical struc-
ture (‘pyramid’) that captures the histogram of the vectors
at various levels of coarseness. The cells of the histograms
are constructed by employing hierarchical clustering to the
data, and the similarity between histograms is captured by
histogram intersection. In our experiments, we construct
the bins by clustering the nine training splits of each test.
This is then applied to the tenth split in order to measure the
similarities between the videos in that set.

We also test sparsity based methods, and specifically
methods based on locality constrained encoding. In such
methods, a face image is represented as a linear combina-
tion of a small subset of faces taken from a large dictionary
of face images. Sparse representation methods were shown
to enable accurate recognition despite of large variations in
illumination and even occlusions [25].

As far as we know, such methods were not previously
used for multi-frame identification. However, similar meth-
ods have been used for visual recognition based on sets
of visual descriptors. The emerging technique, which we
adopt in our experiments, is to represent the set by the max-
imal coefficients (one coefficient per dictionary vector) over
all set elements. In order to maintain a reasonable run-
time, in our experiments we employ the LLC method [18],
in which the sparse coefficients are computed based on the
k-nearest dictionary vectors to each set element. The dictio-
nary itself was constructed, as is often the case, by k-means
clustering of the training frames.
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Figure 3. Success rate for MBGS using the LBP descriptor and the
mean statistic as a function of the matched set size parameter C.

5. Matched Background Similarity. In MBGS samples
from a large set B of background samples are matched to
each set sample. In our experiments, random 1, 000 frames
from each training split were used for this purpose. The
matching itself is performed by the smallest L2 metric of the
descriptor. Four methods are compared for combining the
individual classification scores (there is one per frame in the
second set) into one similarity value: mean, median, max
and min. To combine the two asymmetric scores, the aver-
age of the two scores is always used. A value of C = 250
seems to provide good results. A graph showing the sensi-
tivity of MBGS to this parameter is shown in Figure 3. As
can be seen, plainly using the entire background set (with-
out matching and selecting) is suboptimal.

Results are presented in Table 2. ROC curves of selected
methods are presented in Figure 4. As detailed in Sec. 4,
these results were obtained by repeating the classification
process 10 times. Each time, we use nine sets for training,
and evaluate the results on the tenth set. Results are reported
by constructing an ROC curve for all splits together (the
outcome value for each pair is computed when this pair is a
testing pair), by computing statistics of the ROC curve (area
under curve and equal error rate) and by recording average
recognition rates ± standard errors for the 10 splits.

The results indicate that the newly proposed MBGS
method outperforms the existing methods when consider-
ing all measures: recognition rate (‘accuracy’), area un-
der curve, and equal error rate. The simplest min distance
method is a solid baseline. The pose based heuristics, while
popular, are not entirely effective. The algebraic methods
are not better than the min-distance method. PMK and
our adaptation of LLC underperform, although more explo-
ration of their parameter space might improve their results.

To gain further insight into the challenges of the bench-
mark and the limitations of the current methods, Figure 5
presents the most confident cases according the variant of
the MBGS method based on L2-norm matching and the
mean operator. The most confident same-person predictions
are of video sequences that are captured at the same scene,
and the ‘easiest’ not-same are where there are multiple dis-

Figure 4. ROC curves averaged over 10 folds. The plots com-
pare the results obtained for LBP and FPLBP using the baseline
mindist and ||U1>U2||F methods and the MBGS method, where
the scores are combined by the mean operator.
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Figure 5. Most confident MBGS results (L2 norm, mean opera-
tor). The Same/Not-Same labels are the ground truth labels, and
the Correct/Incorrect labels indicate whether the method predicted
correctly. For example, the top right quadrant displays same-
person pairs that were most confidently labeled as not-same.

criminating factors. The method can sometimes be fooled
by motion blur, hats, and variation in illumination.
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