
0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E July/August 2009 I E E E S o f t w a r E 39

focus

One way to cope with this challenge is to con-
struct a software product line.1 You establish an
initial collection of rich, generic, reusable software
components. These shared assets of the product
line are then methodically assembled, custom-
ized, and fine-tuned for each production system.
But you must also have a reliable, concise customi-
zation process to go with your product line. Such
a process is necessary for performing pervasive
modifications to the shared assets quickly without
compromising their robustness.

Model-driven development (MDD) is often the
development process of choice.2 This is where do-
main-specific languages (DSLs) enter the picture.3
DSLs possess two, highly desirable characteris-
tics. First, they facilitate variability management
in MDD by providing the means for express-
ing customization concisely and often declara-
tively. They also support a producer-consumer
development process, in which one group of devel-
opers defines a DSL around components and con-
cerns, while other developers use that DSL to de-

claratively implement concrete requirements.
When considering broad adoption of DSLs in

the development organization, you should antici-
pate and carefully plan for increased DSL usage.
You wouldn’t want to end up with numerous,
disconnected DSLs, requiring your developers
to master many concrete syntaxes, development
styles, and tools. That might lead to a great cogni-
tive burden, ironically inhibiting the same agility
you were trying to achieve by establishing a DSL-
based development process in the first place.

Once you transition to DSL successfully and
manage DSL scalability wisely, you’ll discover that
much of your software development effort has suc-
cessfully shifted from writing imperative code to
writing declarative composition and customization
scripts. This is the case with ModelTalk, a DSL au-
thoring and execution framework.4

Approach
The ModelTalk motto is “Everything is a DSL.”
DSLs can be extended and composed. They’re

L arge-scale, complex, back-end business applications such as telecommunications
software constitute a highly competitive and demanding market. These appli-
cations feature deep integration with other business and operational support
systems. They must be tailored for each customer, and the customized systems

must meet strict extrafunctional requirements, commonly called “telco’s five 9s” (99.999
percent availability). All this, combined with the need for an agile development process
with a short time to market, presents a software development and business challenge.

ModelTalk, a model-
driven software
development
framework, supports
the creation of
product lines by
using domain-
specific languages
pervasively at
the core of the
development process.

Atzmon Hen-Tov, Assaf Pinhasi, and Lior Schachter, Pontis

David H. Lorenz, Open University of Israel

ModelTalk:
When Everything
Is a Domain-Specific Language

dom a in - sp e c i f i c m o de l ing

40 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

written in (meta) DSLs, specializing and containing
instances of other DSLs, all governed by the same
syntactical rules.

A system implementation in ModelTalk consists
of

declarative DSL code containing definitions of ■

stateful instances, classes, and metaclasses that
describe the system’s structure and configura-
tion; and
localized Java code containing methods that ■

define the system’s behavior separate from the
structure and configuration data.

DSL code is the dominant part of the system. For
example, Figure 1 depicts the distribution of DSL
and Java code in a subsystem of an actual com-
mercial business support system for the telecom-
munications market developed with ModelTalk.
The ModelTalk architectural layers—Core, Plat-

form, and Business—contain shared assets. At the
top layer (Customization), where final products are
assembled and customized, 83 percent of the code
is written in DSLs and just 17 percent in Java. The
relatively large amount of DSL code (approximately
200 Kbytes of LOC) reflects large variation among
final products. To achieve similar variability using
only Java would have required many more LOC
without providing the same compact, precise se-
mantics that DSLs offer.

The ModelTalk approach is based on three de-
sign principles that, when combined effectively,
enable programming with DSLs to scale up well:
textual DSLs, an integrated DSL-Java development
environment, and an interpretive approach.

textual DSLs
In ModelTalk, DSLs are textual rather than graphi-
cal. The concrete syntax for DSL code is XML. The
ModelTalk core provides a general-purpose lan-
guage with abstractions (Class, Property, and so on)
and syntax rules for defining DSLs. A developer
creates a new DSL by adding new and constraining
existing class properties to better describe the do-
main-specific concepts and terminology. In XML,
these are expressed via tag names, which constitute
the domain-specific terminology.

Integrated DSL-Java
Development Environment
ModelTalk comes with a unified IDE for DSL and
Java, implemented over Eclipse (see Figure 2). The
DSL development process in ModelTalk is analo-
gous to the Java development process. By provid-
ing IDE support for DSL scripting with the same
look and feel as for Java programming, Model-
Talk achieves instant productivity in the IDE and
easier assimilation and adoption of DSL-based
development.5

The ModelTalk IDE reflects changes in DSL def-
initions immediately, providing DSL programmers
with full support for autocompletion (during edit-
ing), navigation, and consistency checking. When
developers save their work, the Eclipse IDE auto-
matically invokes the ModelTalk DSL analyzer (a
DSL processor in Figure 2), performing incremental
cross-system validation similar to background com-
pilation in Java.

After the developers have modeled and cap-
tured the domain in a DSL, they implement the
behavior in Java. During this stage, the DSL ana-
lyzer monitors incompatibilities between the Java
and DSL elements and reports violations in the
IDE’s standard Problems view. Additional views
let developers browse and navigate the DSLs

0 50 100 150 200 250

Particular assets (15 final products)

Size (KLOC)

Core

Platform

Business

Customization

La
ye

rs

83.34%

59.82%

34.37%

Shared assets

9% Java lines of code
DSL lines of code

DSL: Domain-specific language

DSL and Java integrated
development environment

Runtime
platform

Java
sources

Executable
DSL code

Java
bytecode

DSL execution
engine

Java Virtual
Machine

DSL: Domain-speci�c language

Feedback

Feedback

Constrains Conforms

Java
processors

DSL sources DSL
processors

Figure 1. The ratio of Java (purple) to DSL (gold) code by architectural
layer in a product line of business support systems. Most of the
assembly and the customization of products is done with DSLs.

Figure 2. An integrated
environment for DSL
and Java development.
DSL development
mirrors Java
development, and DSL
code governs Java code.

 July/August 2009 I E E E S o f t w a r E 41

(between one DSL element and another, as well
as between DSL elements and their Java counter-
parts). A refactoring tool for DSLs is also avail-
able, and changes are propagated to Java when
necessary.

Interpretive approach
DSLs in ModelTalk are interpreted; they don’t
need to be transformed into Java (by a code gener-
ator). At runtime, instances of DSL classes are in-
stantiated and used as meta-objects for their corre-
sponding Java instances through a technique called
(model-driven) dependency injection.6 The DSL
execution engine is ModelTalk’s runtime compo-
nent, implemented as an inversion-of-control
container and a dependency injection framework
(in the Spring framework style). It can run either
inside a standard J2EE application server (for ex-
ample, JBoss) or inside a lightweight container.

The execution engine’s primary responsibility is
to maintain the relationships between the DSL and
Java elements. This includes object graph instanti-
ation and a reflection API.7 When a client requests
a DSL instance, the DSL engine finds the corre-
sponding Java class, instantiates it, and injects the
property values into its instance variables. This is
applied recursively for injected values of a complex
type. The DSL-to-Java mapping allows for DSL
classes without a Java counterpart. In such cases,
the DSL engine maps the class to its superclass’s
Java counterpart. Consequently, developers and
even users can change DSL definitions at runtime
without needing to also change the Java code.8

The DSL execution engine eliminates the ab-
straction gap between the rich ModelTalk meta-
model and the one provided in Java, bringing ex-
plicit metaclass9 and other advanced capabilities
into Java.

DSL-Based Software Development
In ModelTalk, the framework developer uses DSLs
to declaratively expose variability points in impera-
tive code. This exposure makes the variation man-
agement explicit and moves application assembly
from the realm of code-level development to that of
declarative composition.

DSL reuse
In ModelTalk, DSLs are interconnected (see Figure
3). A DSL can specialize another DSL by narrow-
ing the semantics to a more specific domain. A DSL
instance can contain an instance of another DSL.

DSL Supply Chain
Traditionally, developers (programmers) produce

DSLs for use by domain experts (nonprogram-
mers). In ModelTalk, however, developers both
produce and consume DSLs. Each developer
team specializes in a set of domains and shares
its expertise with other teams via DSLs. This cre-
ates a supply chain of DSLs in the development
organization while organizing the DSL artifacts
in layers.

All developers are consumers of DSLs residing
at the Core layer. The technical experts are pro-
ducers (and the application and customization de-
velopers are consumers) of DSLs at the Platform
layer. The application developers are producers
(and the customization developers and business
experts are the consumers) of DSLs at the Busi-
ness layer. The customization developers are pro-
ducers (and the business experts are consumers)
of DSLs at the Customization layer.

architectural Layers
ModelTalk’s Core layer resembles the Smalltalk
system core. This layer contains the DSL execu-
tion engine and provides the basic capabilities for
defining and executing DSLs. Because all DSLs
in ModelTalk are specializations of a (meta)
DSL defined in Core, they all share the same ba-
sic syntax and semantic characteristics. This is a
key enabler in achieving uniformity in user ex-
perience and tooling; for example, autocomple-
tion (during editing), navigation, and consistency
checking operate generically on all DSLs. Further-
more, ModelTalk’s interpretive nature eliminates
the need for tool regeneration when a metamodel
definition changes, as is commonly required in
other DSL frameworks.10

HappyHour

Meta DSL

Data-modelPersistency

EligibilityPromotionGoods

Subscription

Pr
od

uc
t

B

…

Pr
od

uc
t

Z

Cu
st

om
iza

tio
n

Bu
si

ne
ss

Co
re

Pl
at

fo
rm

Pa
rti

cu
la

r a
ss

et
s

Specializes

Product A: IEEE example

Sh
ar

ed
 a

ss
et

s

Contains

Figure 3. The ModelTalk
producer-consumer
layered architecture.
The bottommost layer
defines the most
generic Meta DSL.
DSLs at higher layers
specialize DSLs at
lower layers. The
topmost layer contains
the assembled products
(products A through Z).

42 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

The Platform layer defines a rich set of DSL
building blocks for creating business applications.
Many of the DSLs defined in the Platform layer
are bridges to third-party technologies, such as the
J2EE standard, the Spring framework, Hibernate,
and Apache Axis. Concrete examples of DSLs in
this layer include Persistency and Data-model. Persistency
wraps the Hibernate framework with a DSL for
handling persistency concerns (for example, que-
ries and object/relational mapping). The Data-model
DSL uses the Persistency DSL to define business enti-
ties. Wrapping a third-party framework in a DSL
hides in effect the technological complexity from
the application developers, enabling them to focus
on their domain’s business logic.

The Business layer is a collection of generic,
reusable DSLs and constitutes the business logic.
Example DSLs residing here for an online mar-
keting system include Goods, Promotion, and Eligibil-
ity. Goods defines the products and services offered
to the customer. Eligibility defines the notion of cus-
tomer segments and a set of operators that can
be applied to them. Promotion specializes Data-model
and uses Goods and Eligibility. It defines the notion
of a product being on sale—that is, the incentive
offered, the targeted segment, and the specific
goods.

At the top resides the Customization layer,
in which the complete customized systems (final
products) are assembled mainly from Business-
layer DSLs. DSLs from the Platform layer are also
used occasionally to customize deep aspects of the
system. The Customization layer is managed sep-
arately for each customer or group of customers,
and customer-specific features are developed here.
In the example, Subscription and HappyHour special-
ize Goods and Promotion, respectively, to the IEEE’s
specific needs.

Variability Management and Evolution
ModelTalk accommodates the evolution of DSLs.
A new DSL is initially implemented in the Custom-
ization layer as a one-off customer-specific effort.
At that stage, the need for variability is limited,
so the DSL exposes only a few variability points.
Gradually, as new requirements accumulate, the
DSL developer identifies and implements new vari-
ability points. When the DSL developer recognizes
a potential for significant reuse, additional develop-
ment effort is put into pushing the DSL upstream
in the supply chain—that is, moving the DSL to a
lower layer. The DSL evolves from being a particu-
lar asset to being a shared asset.

A variability point in ModelTalk is essentially
a DSL class property. When DSLs evolve, the IDE

alerts the developer about inconsistency between
existing DSL instances and their class definition.

Implementing DSLs in ModelTalk
To explain the steps in defining instances, properties,
classes, methods, and metaclasses in ModelTalk,
we’ll use a simplified example of an online market-
ing system that business experts use to launch tar-
geted promotions on specific goods.

Instances
Figure 4a shows a DSL instance named IEEE_HH.
This instance “is kind of” Promotion (in the Smalltalk
sense)—specifically, a member of HappyHour (see the
listing in Figure 4b). It defines a happy-hour dis-
count on subscriptions to IEEE Software targeted
at students: $20 off during October 2009. While
specifying this promotion, the DSL programmer
is constrained by the type HappyHour. All properties
must be assigned a value—that is, who is eligible for
the promotion (Figure 4a, lines 2−6), the campaign
time frame (lines 7−10), the incentive given to buy-
ers (lines 11−14), and the goods participating in the
promotion (line 15).

Properties
When editing a DSL instance, you may assign val-
ues only to properties that are defined in the DSL
class. The assigned value must be of a type that
matches the constraints defined in the DSL class.
For properties of a complex (user-defined) type, you
must specify an explicit type attribute. In the reward
property (Figure 4a, line 11), any subclass of Benefit-
Giver can serve as the type. For example, the menu
in Figure 5e lists FixedAmountDiscount, FixedPercentage-
Discount, and SubscriptionPeriodExtension as subclasses of
BenefitGiver.

Choosing the type of a complex property is
significant. At the semantic level, the type deter-
mines the system behavior. At the mechanical
level, the type determines the inner properties that
the user should fill in. Setting Fixed PercentageDiscount
as the type of benefit instead of FixedAmount Discount
(Figure 4a, line 11) would require the user to
specify the discount percentage instead of the
amount and currency. The ModelTalk IDE au-
tocompletion feature relieves the programmer
from memorizing the valid choices. This compo-
sition process is recursive, supporting the defini-
tion of nested instance graphs. To promote reuse,
ModelTalk also supports references to external
instances as an alternative to inline definitions;
see, for example, the reference to IEEE_Software_
Subscription (denoted by the suffix Ref—that is, by
business:SubscriptionRef in Figure 4a, line 15).

In ModelTalk,
the framework

developer
uses DSLs

to declaratively
expose

variability
points in

imperative
code.

 July/August 2009 I E E E S o f t w a r E 43

Classes
The syntax for a DSL class definition is the same
as for instances. For example, HappyHour (see Fig-
ure 4b) is an EntityClass (and a “kind of” ModelTalk
class). It extends the Promotion class, thus inheriting
its structure and behavior. It defines an additional
dateOfPurchase property (Figure 4b, lines 10–16) in
which users can set the effective time of the promo-
tion campaign.

Methods
The DSL producer writes the HappyHour behavior di-
rectly in Java (see Figure 6a). The ModelTalk DSL
engine combines on demand the structural and the
behavioral definitions. For example, when a client
code requests a DSL instance, perhaps by invoking
ModelTalk.getInstance(”IEEE_HH”), the HappyHour class in
Figure 6a is instantiated in the Java Virtual Ma-
chine and injected (via dependency injection) with
the values specified in IEEE_HH (see Figure 4a). The
injected values are then readily available to the cli-
ent. For example, the call getDateOfPurchase (see Fig-
ure 6a, line 5) returns a TimeWindow instance (see
Figure 6b), injected with the dateOfPurchase value
(Figure 4a, lines 7−10). This object is then used to
determine whether the end user is eligible for the
promotion.

The HappyHour promotion also exemplifies how
declarative composition controls the system behav-
ior. The specified dateOfPurchase constraint could be
an instance of any subclass of ScheduleDef (Figure 4b,
line 12), including TimeWindow, Weekends, and so on.
The choice is specified by the type attribute in IEEE_
HH (Figure 4a, line 7). The DSL user may configure
different HappyHour instances to have different types
of dateOfPurchase. For example, the user can declare
dateOfPurchase to be of type Weekends, in which case
the isInTimeFrame method of Weekends is invoked.

Metaclasses
The HappyHour listing in Figure 4b is an instance of
a specialized metaclass for persistent classes, called
EntityClass (see Figure 4c). HappyHour specifies the per-
sistency trait using the Persistency DSL (Figure 4b,
lines 2–8). The same rules that apply to instance
composition also apply to classes (and metaclasses).

Evaluation and Discussion
Since ModelTalk’s inception, we’ve been collect-
ing data (duration of edit-execute cycles, compila-
tion times, error logs, and other code metrics) to as-
sess its effectiveness. Figure 7 presents the growth
over time of the code base (net user-written code,

01 <Promotion ID=”IEEE_HH” type=”ieee:HappyHour”>
02 <eligibility type=”business:EligibilityBySegments”>
03 <includedSegmentsList>
04 <item type=”business:SegmentRef” ref=”IEEE_Students”/>
05 </includedSegmentsList>
06 </eligibility>
07 <dateOfPurchase type=”business:TimeWindow”>
08 <fromTime>2009-10-01T00:00:00</fromTime>
09 <toTime>2009-11-01T00:00:00</toTime>
10 </dateOfPurchase >
11 <reward type=”business:FixedAmountDiscount”>
12 <amount>20</amount>
13 <currency>USD</currency>
14 </reward>
15 <product type=”business:SubscriptionRef” ref=”IEEE_Software_Subscription”/>
16 </Promotion>
(a)

01 <Class ID=”HappyHour” type=”platform:EntityClass” extends=”business:Promotion”>
02 <persistenceSpec type=”platform:ClassPersistencySettings”>
03 <tableName>HAPPYHOUR</tableName>
04 <fetchStrategy type=”EagerFetcher”>
05 <fullDepth>true</fullDepth>
06 <retrieveReferences>false</retrieveReferences>
07 </fetchStrategy>
08 </persistenceSpec>
09 <properties>
10 <property type=”core:ComplexType”>
11 <name>dateOfPurchase</name>
12 <type>ScheduleDef</type>
13 <description>
14 Schedule in which the happy hour is active
15 </description>
16 </property>
17 </properties>
18 </Class>
(b)

01 <Class ID=”EntityClass” type=”core:Class” extends=”core:Class”>
02 <properties>
03 <property type=”core:ComplexType”>
04 <name>persistenceSpec</name>
05 <type>PersistenceSettings</type>
06 </property>
07 </properties>
08 </ Class >
(c)

Figure 4. Three example DSL instances:
(a) a DSL instance named IEEE_HH; (b) a DSL
class named HappyHour; (c) a DSL metaclass
named EntityClass. The ModelTalk metalevel
architecture treats instances, classes, and
metaclasses uniformly.

44 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

excluding tool-generated code) per architectural
layer. System evolution, new features, and enhance-
ments account for the growth in shared assets (in
the Core, Platform, and Business layers). New cus-
tomers and customized products account for the ag-

gregated code growth in the Customization layer.
DSL code has both the largest share in our code

base as well as the sharpest growth rate. This in-
dicates that DSLs are at the center of gravity in
the ModelTalk-driven development process. This

Figure 5. The ModelTalk development environment. A set of Eclipse plug-ins offers Java-like programming tool support
for DSL authoring: (a) Eclipse standard navigator view; (b) ModelTalk instance-of hierarchy view; (c) ModelTalk
source code editor; (d) ModelTalk documentation tool tip; (e) ModelTalk autocompletion menu; (f) Eclipse problems
view; (g) ModelTalk toolbar.

01 public class HappyHour extends Promotion {
02 public boolean isEligible() {
03 boolean result = super.isEligible();
04 if (result)
05 result=getDateOfPurchase().isInTimeFrame();
06 return result;
07 }
08 }
(a)

01 public class TimeWindow extends ScheduleDef {
02 public boolean isInTimeFrame() {
03 boolean result = false;
04 Calendar currentTime=Calendar.getInstance();
05 if (currentTime.after(getFromTime()))
06 result=currentTime.before(getToTime());
07 return result;
08 }
09 }
(b)

Figure 6. Java code
samples show the
behavior of (a) HappyHour
and (b) TimeWindow
instances.

 July/August 2009 I E E E S o f t w a r E 45

observation is reinforced by the near absence of
unmanaged code (Java code not governed by Mod-
elTalk) in the Business layer.

Currently, the framework contains 6,327 classes,
of which 292 are metaclasses. Tens of thousands of
instances are expressed in 381K lines of DSL code.
Users have done most of the customization (83 per-
cent of Customization LOC) declaratively, further
indicating that the ModelTalk approach scales well.

organization Perspective
An organization considering adopting an approach
similar to ModelTalk should take into account a
substantial initial investment in building the infra-
structure and tools. In ModelTalk, the initial in-
vestment was more than 10 person-years. There’s
also an ongoing cost for maintaining the develop-
ment environment.

From the human-resources and skills-set per-
spective, metaprogramming tends to be highly
abstract and generic, so it requires highly capable
individuals who might also need an adjustment pe-
riod before becoming productive. We also learned
over time that our approach is less effective in do-
mains for which rich graphical tools are mature,
such as user interface design and online analytical
processing.

Nevertheless, once a development approach
such as ModelTalk is in place, the benefits for the
organization are tangible. Specifically, the time-to-
market and the cost of producing individual, cus-
tomized products drop significantly. In a particular
project, we needed to integrate a system with eight
other systems and support up to 200 transactions
per second per machine. We went from kickoff to a
live system in 17 calendar weeks (10 person-weeks
of customization work, see Figure 8).

Developer Perspective
Overall, developers report satisfaction using
ModelTalk and specifically praise the short edit-
execute cycle. Our data corroborate this: the av-
erage incremental build time is less than 10 sec-
onds per build. Customization developers enjoy
especially short build times because changes in
the top layer have less impact on the system. To
maintain these short build times, we periodically
devote development resources to improving the
DSL processors. Developers appreciate the fact
that DSL scripting and Java programming take
place in a unified, integrated environment and
that they can work on incomplete or inconsistent
models. Developers express some dissatisfaction
with the lack of diagramming capabilities or in-
teroperability with UML modeling tools.

D omain-specific languages aim to im-
prove the development process by rais-
ing the level of abstraction around a

specific area of the problem. Typically, develop-
ers introduce and apply DSLs on a per-case ba-
sis only after identifying a specific component
or concern that might benefit from having a
DSL around it. In large systems, this approach
might result in a number of ad hoc, discon-
nected DSLs. Our work here shows the ben-
efit in embracing DSLs not only for a small
number of components or concerns but also as
building blocks for systematically constructing
large software systems.

(a)

(b)

(c)

(d)
0

50

100

0

50

100

0

50

100

Date
09/06 12/06 03/07 06/07 09/07 12/07 03/08 06/08 09/08

Si
ze

 (K
LO

C)
Si

ze
 (K

LO
C)

Si
ze

 (K
LO

C)
Si

ze
 (K

LO
C)

Core

Platform

Business

Customization

0

50

100

150

200
DSL
Java (managed)
Java (unmanaged)

DSL
Java (managed)
Java (unmanaged)

DSL
Java (managed)
Java (unmanaged)

DSL
Java (managed)
Java (unmanaged)

Figure 7. The amount
of different kinds of
code in each layer:
(a) Customization,
(b) Business,
(c) Platform, (d) Core.
The gold lines represent
DSL code, the gray lines
represent managed Java
(Java code governed
by ModelTalk), and the
blue lines represent
unmanaged Java code.

46 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

Acknowledgments
We thank Zvi Ravia and the anonymous reviewers for
their helpful comments on the article. ModelTalk was
influenced by the TGP (Type, Generic class, Profile)
methodology developed by Shay Ben-Yehuda. We’re
grateful to Pontis, a leading vendor of online market-
ing automation solutions for the telecommunications
market, for granting us access to their development
process and data. This work was supported partly by
the Israel Science Foundation under grant 926/08 and
by the office of the chief scientist of the Israel Minis-
try of Industry Trade and Labor.

References
 1. P. Clements and L. Northrop, Software Product

Lines—Practices and Patterns, Addison-Wesley, 2001.
 2. M. Voelter and T. Stahl, Model-Driven Software Devel-

opment: Technology, Engineering Management, John
Wiley & Sons, 2006.

 3. D.S. Batory et al., “Achieving Extensibility through
Product Lines and Domain-Specific Languages: A
Case Study,” Software Reuse: Advances in Software
Reusability, Proc. 6th Int’l Conf. (ICSR 00), LNCS
1844, Springer, 2000, pp. 117−136.

 4. A. Hen-Tov, D.H. Lorenz, and L. Schachter, “Model-
Talk: A Framework for Developing Domain-Specific
Executable Models,” Proc. 8th Ann. OOPSLA Work-
shop Domain-Specific Modeling (DSM 08), ACM
Press, 2008; www.dsmforum.org/events/DSM08.

 5. M. Fowler, “Language Workbenches: The Killer-
App for Domain-Specific Languages?” 2005; http://
martinfowler.com/articles/languageWorkbench.html.

 6. M. Fowler, “Inversion of Control Containers and
the Dependency Injection Pattern,” 2004; http://
martinfowler.com/articles/injection.html.

 7. D.H. Lorenz and J. Vlissides, “Pluggable Reflection:
Decoupling Meta-interface and Implementation,”
Proc. 25th Int’l Conf. Software Eng. (ICSE 03), IEEE
CS Press, 2003, pp. 3−13.

 8. R. Razavi et al., “Language Support for Adaptive
Object-Models Using Metaclasses,” Computer
Languages, Systems and Structures, vol. 31, nos.
3−4, 2005, pp. 188−218.

 9. J.P. Briot and P. Cointe, “Programming with Explicit
Metaclasses in Smalltalk-80,” ACM SIGPLAN Notices,
vol. 24, no. 10, 1989, pp. 84−96.

 10. B. Selic, “A Systematic Approach to Domain-Specific
Language Design Using UML,” Proc. 10th IEEE Int’l
Symp. Object and Component-Oriented Real-Time
Distributed Computing, IEEE CS Press, 2007, pp. 2−9.

0

2

4

6

8

10

Day 1
Development
starts

Day 21
First major
quality assurance
version

Day 46
Ready for integration

Day 89
Integration
tests start

DSL

Java (managed)

Java (unmanaged)

Day 121
Project
goes live

Timeline

Si
ze

 (K
LO

C)

72%

26%

(a) (b)

0

2

4

6

8

10

Day 1
Development
starts

Day 21
First major
quality assurance
version

Day 46
Ready for integration

Day 89
Integration
tests start

DSL

Java (managed)

Java (unmanaged)

Day 121
Project
goes live

Timeline

Si
ze

 (K
LO

C)

72%

26%

(a) (b)

Figure 8. A case study of a customization project from kickoff to deployment: (a) the growth of customization code;
(b) breakdown into kinds of code. Once an approach such as ModelTalk is in place, the organizational benefit is clear:
a short time to market.

About the Authors
Atzmon Hen-Tov is the chief software architect at Pontis and has led the develop-
ment of ModelTalk since its inception. He’s interested in model-driven development and other
methods for software development industrialization. Hen-Tov is a member of the ACM and
the IEEE. Contact him at atzmon@ieee.org.

Assaf Pinhasi is a senior software architect at Pontis. His interests include domain-
specific languages, Web technologies, and scalable software architecture. Pinhasi has
a BSc in computer science and mathematics from Tel-Aviv University. Contact him at
assafpinhasi@yahoo.com.

David H. Lorenz is an associate professor in the Department of Mathematics and
Computer Science at the Open University of Israel. His research interests include aspect-
oriented software engineering and programming, particularly involving multiple domain-
specific languages. Lorenz has a PhD in computer science from the Technion-Israel Institute
of Technology. He’s a member of the ACM and the IEEE. Contact him at lorenz@openu.ac.il.

Lior Schachter is a senior software architect at Pontis and head of the ModelTalk
Core team. His interests include model-driven development, domain-specific languages, and
adaptive systems. Schachter has a BSc in electrical engineering and computer science from
Tel-Aviv University. He’s a member of the IEEE. Contact him at liors@ieee.org.

