
AWESOME: An Aspect Co-Weaving System for Composing Multiple
Aspect-Oriented Extensions ∗

Sergei Kojarski
College of Computer and Information Science

Northeastern University
360 Huntington Ave.,

Boston, Massachusetts 02115, USA
kojarski@ccs.neu.edu

David H. Lorenz
Dept. of Mathematics and Computer Science

The Open University of Israel
108 Ravutski St., P.O. Box 808,

Raanana 43107, Israel
lorenz@openu.ac.il

Abstract
Domain specific aspect-oriented language extensions of-
fer unique capabilities to deal with a variety of crosscut-
ting concerns. Ideally, one should be able to use several
of these extensions together in a single program. Unfortu-
nately, each extension generally implements its own spe-
cialized weaver and the different weavers are incompatible.
Even if the weavers were compatible, combining them is a
difficult problem to solve in general, because each extension
defines its own language with new semantics. In this paper
we present a practical composition framework, named AWE-
SOME, for constructing a multi-extension weaver by plug-
ging together independently developed aspect mechanisms.
The framework has a component-based and aspect-oriented
architecture that facilitates the development and integration
of aspect weavers. To be scalable, the framework provides a
default resolution of feature interactions in the composition.
To be general, the framework provides means for customiz-
ing the composition behavior. Furthermore, to be practically
useful, there is no framework-associated overhead on the
runtime performance of compiled aspect programs. To illus-
trate the AWESOME framework concretely, we demonstrate
the construction of a weaver for a multi-extension AOP lan-
guage that combines COOL and AspectJ. However, the com-
position method is not exclusive to COOL and AspectJ—it
can be applied to combine any comparable reactive aspect
mechanisms.

∗ This work was supported in part by NSF’s Science of Design program
under grants numbered CCF-0438971 and CCF-0609612.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

Categories and Subject Descriptors D.1.5 [Programming
Techniques]: Aspect-oriented Programming; D.2.12 [Soft-
ware Engineering]: Interoperability; D.3.4 [Programming
Languages]: Processors

General Terms Design, Languages

Keywords AOP, aspect extension, aspect mechanism, as-
pect weaver, composition, DSL, framework, pluggability.

1. Introduction
Aspect-oriented programming (AOP) [21] is celebrating a
decade of research and development and industry adop-
tion. New language features are continually being proposed.
These features need not only be implemented and evaluated,
but also tested to work with existing AOP languages. Facil-
itating the construction of new aspect extensions that incor-
porate new features and that can be composed with other
extensions is thus important for making research advances
accessible for experimentation and use in realistic settings.

Supporting the composition and use of newly developed
aspect extensions together with established main stream ex-
tensions can leverage and broaden their respective impact.
The ability to program in a multi-extension AOP language
can also help compare features. It can eliminate tradeoffs as-
sociated with choosing an extension with the most appropri-
ate features. Most importantly, it can help realize the vision
of domain specific aspect languages (aspect DSLs).

Unfortunately, despite the availability of extensible as-
pect weavers (e.g., [4, 5]) and extension composition frame-
works (e.g., [37, 36, 22]), implementing industry-quality
weavers that are composable remains a complex and costly
task. For example, abc [4, 5] is more extensible than ajc [17],
but does not support composition with foreign extensions.
Reflex [37] and XAspects [36] support composition, but
ignore foreign advising [28]: they lack the customizability
necessary for preventing aspects from “misadvising” foreign
aspects. Pluggable AOP [22] resolves the flawed foreign ad-
vising behavior found in Reflex and XAspects. However,

515

Spring

COOL

AspectJ Aspect

W
erkz

Figure 1. Pluggable weavers

Pl
at

fo
rm

specification
composition

Figure 2. Composition framework

Pluggable AOP is impractical for combining “real world”
AOP languages. It supports the customization of individual
extensions, but provides only limited customization of the
composition semantics. Also, Pluggable AOP composes ex-
tensions by constructing an interpreter, which is inefficient,
and thus deemed inappropriate for industrial use.

Today, potentially useful aspect extensions are not read-
ily available because either it is too difficult to implement
them or they are implemented but cannot be used together
with AspectJ [20]. The unattended need for combining
COOL [27] and AspectJ is a representative example. Soft-
ware engineering studies [32, 33, 40, 41] that compared
COOL and AspectJ have concluded that COOL code is eas-
ier to understand and debug than Java or AspectJ code. Yet,
COOL is not widely used; AspectJ programmers cannot em-
bed COOL code in their AspectJ programs.

1.1 The Composition Problem
There are two main impediments to overcome. The first is
the composition specification problem [24]: given a set
of n extensions, identify and resolve feature interactions in
their composition. For example, COOL extends Java with a
method synchronization mechanism; AspectJ extends Java
with an advice binding mechanism. In a composition of
COOL and AspectJ, coordinators and aspects may interact in
unexpected ways.1 These interactions need to be identified
and resolved.

The specification problem is inherently complex and dif-
ficult, and its resolution is outside the scope of this paper. It
is complex because for a choice of n extensions there are
O(n2) pairwise interactions to specify.2 It is difficult be-
cause several reasonable resolutions exist for each interac-
tion [24].

The second impediment, which is the main focus of this
paper, is the composition implementation problem: design
a composition framework such that, given n aspect weavers
(Figure 1) and a composition specification (Figure 2), plug-
ging them into the framework implements the composition
under the specification.

The implementation challenge is to design a framework
that has the following characteristics:

1 A coordinator in COOL is the equivalent of an aspect in AspectJ.
2 In the worst-case, there might be O(2n) combinations to consider.

Minimum performance overhead. To be practically use-
ful, the framework should construct weavers without in-
flicting performance degradation in the runtime of com-
piled aspect programs.

Maximum code reuse. The framework should provide li-
braries and abstractions that support rapid development
of individual weavers. Components that are common to
all AspectJ-compatible weavers should be reused when-
ever possible.3 New weavers should implement only the
necessary extension-specific operations. Avoiding unnec-
essary code repetitions in constructing different weavers
also improves their reliability.

Auto-configuration. The framework should support auto-
matic composition of multiple weavers into a multi-
weaver that exhibits a reasonable default behavior, thus
avoiding whenever possible the tedious task of resolving
all the interactions explicitly.

Manual override. Although the default multi-weaver be-
havior is likely to be appropriate for most cases, a compo-
sition specification might require to resolve some of the
feature interactions differently. The framework must al-
low the language designer to override parts of the default
configuration in order to comply with the specification.

1.2 Contribution
The main contribution of this paper is an Aspect co-WEaving
System for cOmposing Multiple Extensions (AWESOME).
The AWESOME framework is:

• Composable: enables third-party composition of aspect
weavers into a multi-weaver with a reasonable default
behavior.
• Customizable: provides means for customizing the be-

havior of the constructed multi-weaver to cater for the
composition specification; and
• Efficient: employs a compile-time weaving scheme.

In comparison to other frameworks (Table 1), AWESOME
is the only one to provide a flexible customization mech-
anism. The compile-time weaving scheme used by AWE-

3 By AspectJ-compatible we refer to a reactive join point and advice aspect
extension [23] that can be reduced to AspectJ, e.g., COOL, AspectWerkz [6],
CaesarJ [3].

516

Property / Framework Reflex XAspects Pluggable AOP AWESOME

Composition approach Reflection Preprocessing Interpretation Compilation
Composability - - + +
Customizability -4 - - +
Efficiency +5 + - +
Real-world languages - + - +
Specification - - + +
Evaluation - - + +

Table 1. Comparison of aspect extension composition frameworks.

SOME is more practical and efficient than the reflection-
based and dynamic weaving schema used by Reflex and
Pluggable AOP, respectively. The quality of the code woven
in AWESOME is comparable to that produced by standard
aspect compilers.

AWESOME is also the only composition framework to
be demonstrated and tested on real-world languages. We
demonstrate the construction of an AWESOME weaver for a
multi-extension AOP language, named COOLAJ, that com-
bines COOL and AspectJ. Although we are not the first to
pursue a combination of COOL and AspectJ, we are the
first to do so systematically by: (a) giving a specification
of COOLAJ; (b) constructing a weaver for COOLAJ; and
(c) evaluating the weaver by testing its behavior against the
COOLAJ specification. We also compare the woven code to
code produced by ajc [17] and other weaving algorithms.

Another contribution is the analysis of the extension com-
position problem; a set of requirements for an aspect exten-
sion composition framework; and a reasonable default reso-
lution of the feature interaction problem in a composition of
aspect extensions. To concretely illustrate the composition
problem and its solution, we include specific implementa-
tion details for the composition of COOL and AspectJ into
COOLAJ. While a specification and a weaver for COOLAJ
is a novel and useful contribution in and of itself, the com-
position approach is not specific to COOL and AspectJ. It
generalizes to a large category of (reactive) aspect mecha-
nisms [23].

Outline By way of background, we first explain how indi-
vidual weavers work. In Section 2 we review the working of
the ajc weaver for AspectJ, and in Section 3 we describe
the working of a weaver for COOL. The objective of this
overview is to provide the reader with a familiarity with the
internal components of a weaver and to introduce the neces-
sary terminology. In Section 4 we analyze the foreign- and
co-advising interactions, and we formulate the requirements
for the co-weaving system. A novel aspect-oriented archi-
tecture for the framework is presented in Section 5. In Sec-

4 Reflex provides support for resolving interactions between aspects, but not
between aspect extensions.
5 The reflection-based weaving scheme of Reflex may degrade the runtime
performance of the woven program.

tion 6 we refactor the implementation of the AspectJ and
the COOL weavers to reflect this new AOP design. In Sec-
tion 7, as a case study, we informally specify and describe
the implementation of a multi-weaver for COOLAJ. In Sec-
tion 8 we evaluate our AWESOME system and demonstrate
its pluggability, correctness, and efficiency.

2. An Aspect Compiler
An aspect compiler compiles aspect programs into an exe-
cutable. We begin by describing the high-level architecture
of an aspect compiler. For concreteness, we describe the ajc

compiler for AspectJ.
In general, an aspect compiler has a front-end and a back-

end. The front-end translates aspects to (annotated) classes
in the base language. For example, the front-end of ajc

translates aspects written in AspectJ (.java and .aj files) to
annotated classes in Java.6 The translation process in ajc is
mostly straightforward: an aspect is translated to a Java class
with the same name; an advice declaration is transformed
into a method declaration with the same body. The compiled
advice method is also annotated with attributes that store its
aspect-specific data (e.g., pointcut declarations). The annota-
tions distinguish aspect classes from other Java classes, and
provide pointcut designators for advice methods.

The back-end implements the semantics of the aspect ex-
tension. The semantics define the meaning of advice weav-
ing in terms of computations. A computation in this context
is a block of program execution, e.g., a method execution. It
encapsulates a sequence of operations that define a behavior
and a dynamic context that includes all arguments and other
values accessible by the computation. An advice is a com-
putation transformer [17, 22, 30, 31, 42]. It takes a compu-
tation and produces a transformed computation that runs the
advice body before, after, or instead of the original compu-
tation.

While the extension’s semantics define weaving in terms
of dynamic runtime abstractions, the weaver implements
the semantics statically by transforming the base and aspect
classes. The weaver transforms a computation by transform-
ing its shadow, a body of code that defines a computation’s

6 More precisely, the target classes are expressed in the Java Virtual Ma-
chine (JVM) bytecode language.

517

Listing 1. A weaver
public void weaveClass(ClassFile cf) {

Shadow[] shadows = reify(cf);
for(Shadow shadow:shadows) {

Advice[] advs = order(shadow, match(shadow));
mix(shadow, advs);
}
}

behavior. For example, the ajc weaver transforms Java byte-
code. At the bytecode level, an advisable shadow maps to a
continuous block of instructions with a well-defined begin
and end.

The weaver implements an abstract weaving process
that comprises four subprocesses, namely reify, match,
order, and mix (Listing 1). These (sub)processes are found
in all reactive aspect mechanisms [23]—mechanisms that
can be semantically modeled as a closed-loop feedback con-
trol system—including COOL and AspectJ.

The reify process takes as input a class file and con-
structs a weaver-specific representation of the class. For ex-
ample, the AspectJ weaver represents a class as a set of com-
putation shadows. Its reify process examines the input Java
class cf, and identifies all the shadows that can possibly be
advised. Each shadow references a list of instructions em-
bedded in one of cf’s methods (the body of the shadow), and
provides static and lexical descriptions of these instructions
(the static context of the shadow).

The match process associates elements of the program
representation (shadows) with pieces of advice. In AspectJ,
the weaver selects the set of advice by matching the descrip-
tion of the shadow (the static context) against the static part
of the advice pointcuts.

The order process sorts and orders all pieces of advice
that match the same shadow into a correct application order.
The ajc weaver orders the pieces of advice according to the
rules defined by the AspectJ language semantics.

The mix process transforms an actual body of a shadow
by introducing code of advice (or calls to advice) that match
this shadow. The AspectJ weaver transforms the shadow’s
instruction list by sequentially introducing calls to the advice
methods before, after, or instead of the original code. The
advice pieces are woven in by sequentially transforming the
body of the shadow. An advice then injects new code inside
the body of the shadow, immediately before, immediately
after, or instead of the original code. The transformation
considers instructions that were woven earlier as if they were
a part of the original shadow. This way the advice pieces
“wrap” around each other in the transformed shadow.

The four processes provide a high-level description of
the advice weaving semantics. A concrete weaver may also
realize other kinds of transformations. For example, the
ajc weaver implements intertype declarations and advice

Listing 2. The AspectJ weaver
public void AJWeaver(ClassFile cf) {

applyIntroductions(cf);
weaveClass(cf);
}

weaving in two separate steps (Listing 2). First, the weaver
extends and transforms the class cf by applying the in-
tertype declarations (the call to applyIntroductions in List-
ing 2). Once the declarations are applied, the weaver calls
weaveClass, which implements the advice weaving behav-
ior. The additional transformations are normally static in na-
ture, and do not interfere with the dynamic advice weaving
behavior.

3. A Compiler for COOL

The architecture of a compiler for COOL is similar to that
of ajc. The front-end translates coordinators in COOL to
classes in Java. The back-end instruments the program with
calls to methods of coordinator classes. We explain by ex-
ample the basics of the COOL language and the internal
workings of its compiler. Consider the implementation of a
bounded stack in Java (Listing 3). Stack defines two pub-
lic methods: push and pop. An attempt to pop objects off
an empty stack or push objects onto a full stack throws an
exception.7

COOL relieves the implementor of Stack from dealing
with multi-threading. A separate Stack 8 coordinator (List-
ing 4) imposes the synchronization logic over push and pop
in an aspect-oriented manner. The Stack methods are not
synchronized. But in the presence of the Stack coordinator,
the stack object operates correctly even when multiple client
threads execute methods simultaneously.

The synchronization policy is expressed in COOL us-
ing declarations (mutex, selfex, condition), expressions
(requires), and statements (on_exit, on_entry). The
selfex declaration (line ) specifies that neither push nor
pop may be executed by more than one thread at a time.
The mutex declaration (line ) prohibits push and pop

from being executed concurrently. The requires expres-
sions (lines  and ) further guard push and pop exe-
cutions. If the guard is false, a thread suspends, even if the
mutex and selfex conditions are satisfied. The execution
resumes when the guard becomes true. full and empty are
condition boolean variables (line ).

The on_entry and on_exit blocks update the aspect
state immediately before and immediately after the execu-
tion of an advised method body, respectively. They are used
in this example to track the number of elements in the stack

7java.lang.ArrayIndexOutOfBoundsException
8 In COOL, the names of the coordinator and the coordinated class must be
the same.

518

Listing 3. A non-synchronized stack
 public class Stack {
 public Stack(int capacity) {
 buf = new Object[capacity];
 }
 public void push(Object obj){
 buf[ind] = obj;
 ind++;
 }
 public Object pop() {
 Object top = buf[ind-1];
 buf[--ind] = null;
 return top;
 }
 private Object[] buf;
 private int ind = 0;
 }

Listing 4. A coordinator in COOL
 coordinator Stack {
 selfex {push, pop};
 mutex {push, pop};
 int len=0;
 condition full=false,empty=true;
 push: requires !full;
 on_exit {
 empty=false;
 len++;
 if(len==buf.length) full=true;
 }
 pop: requires !empty;
 on_entry {len--;}
 on_exit {
 full=false;
 if(len==0) empty=true;
 }
 }

(lines  and ) and to keep the condition variables
full and empty current.

Java expressions within COOL statements have read and
write access to the coordinator’s fields. In addition, expres-
sions may inspect instance variables of the coordinatee, e.g.,
access the buf field of the Stack object (line ). Note that
the coordinator’s expressions may access not only public but
also package-protected and even private fields of the coordi-
natee object.

3.1 Front-end Translation
The COOL front-end translates a coordinator in COOL to
a coordinator class in Java. The name of the class is ob-
tained by appending “Coord” to the name of the aspect, e.g.,
StackCoord.

Listing 5. A translated COOL coordinator class
public class StackCoord {
public synchronized void
lock_push(Stack target) {
while (!(!full) ||
isRunByOthers(pushState) ||
isRunByOthers(popState))
try { wait(); }
catch (InterruptedException e) {}
pushState.add(Thread.currentThread());
}
public synchronized void
unlock_push(Stack target) {
pushState.remove(
Thread.currentThread());
empty = false;
len++;
if (len == target._buf().length)
full = true;
notifyAll();
}
public synchronized void
lock_pop(Stack target) {/∗omitted∗/}
public synchronized void
unlock_pop(Stack target) {/∗omitted∗/}
private synchronized boolean
isRunByOthers(List methState) {
return (methState.size() > 0 &&
!methState.
contains(Thread.currentThread()));
}
private boolean
empty = true,
full= false;
private List
pushState = new Vector(),
popState = new Vector();
private int len = 0;
}

StackCoord (Listing 5) implements the synchronization
logic via special synchronized methods and instance vari-
ables. The class provides a pair of lock_ and unlock_

methods and an instance variable for every method that is
advised by the coordinator. Specifically, the synchroniza-
tion for the Stack.push method is realized by lock_push

and unlock_push. Similarly, the synchronization logic for
Stack.pop is realized by lock_pop and unlock_pop. At
any point of the execution, the pushState (popState) in-
stance variable stores all threads that are currently executing
the push (pop) method on the coordinated object. The coor-
dinator class also includes all fields of its coordinator.

The lock_ methods implement the semantics for mutex,
selfex, and requires, and run on_entry blocks. A
while loop suspends the execution of the current thread
if a guard condition is violated. Specifically, the while loop

519

Listing 6. A synchronized bounded stack
 public class Stack {
 public Stack(int capacity) {
 buf = new Object[capacity];
 _coord = new StackCoord();
 }
 public void push(Object obj) {
 _coord.lock_push(this);
 try{
 buf[ind] = obj;
 ind++;
 } finally {_coord.unlock_push(this);}
 }
 public Object pop() {/∗omitted∗/}
 public Object[] _buf() {return buf;}
 private Object[] buf;
 private int ind = 0;
 private StackCoord _coord;
 }

in the lock_pushmethod suspends the execution of the cur-
rent thread (by invoking wait on the coordinator object) so
long as either one of the requires, selfex, or mutex con-
ditions is in violation. The requires condition is checked
by the !(!full) expression (line ). selfex fails if push
is run by another thread (line ); and mutex fails if pop is
run in parallel (line ). If all the guard conditions are sat-
isfied, the thread executes all the existing on_entry state-
ments, and locks the coordinated push method by adding its
Thread object to the pushState list (line ).

The unlock_ methods unlock the coordinated method
and run the on_exit statements. Specifically, unlock_push
unlocks the coordinated push method by removing the cur-
rent Thread object from the pushState list (line ). It
then executes the on_exit statement (lines –) and
notifies the other threads waiting on the lock that the coor-
dinated method is free (line ). Note that accesses to the
coordinated object fields (instance variables) are translated
into method calls on the coordinated object. Specifically, ac-
cess to the buf field of the coordinated object is translated
into a _buf() method call (line ). This is the way in
which the coordinator class gains access to protected or pri-
vate fields of the coordinated class. The method is generated
in the coordinated class by the COOL weaver, and simply
returns the value of the corresponding field.

3.2 Back-end Weaving
The COOL weaver applies four kinds of transformations to a
coordinated class, namely method transformation, construc-
tor transformation, field introduction, and method introduc-
tion. When applied to the non-synchronized Stack (List-
ing 3), these transformations yield a synchronized stack
(Listing 6). The weaver associates a coordinator with a co-
ordinatee by introducing a _coord field in the coordinated

Listing 7. The COOL weaver
public void COOLWeaver(ClassFile cf) {
ClassFile coordAspect = findAspect(cf);
if (coordAspect!=null) {
addCoordField(cf, coordAspect);
transformConstructor(cf, coordAspect);
addGetterMethods(cf, coordAspect);
weaveClass(cf);
}
}


Method[] reify(ClassFile cf) {cf.getMethods();}


Method[] match(Method shadow) {
ClassFile coordAspect = findAspect(
shadow.getClass());
Method lock = findLock(
shadow.getSignature(), coordAspect);
Method unlock = findUnlock(
shadow.getSignature(), coordAspect);
if (lock==null) return new Method[0];
return new Method[]{lock, unlock};
}


Method[] order(Method shadow, Method[] advs) {
return advs;
}


void mix(Method shadow, Method[] advs) {
if (advs.length>0) {
addCallBefore(shadow, advs[0].getSignature());
addCallAfter(shadow, advs[1].getSignature());
}
}

class (line ), and adding an initialization statement in the
constructor (line ). The weaver also introduces public
getter methods (_buf()) for protected and private fields of
the coordinated class that need to be accessed by the coordi-
nator.

The weaver transforms the coordinated methods by intro-
ducing calls to the coordinator’s lock_ and unlock_ meth-
ods before and after the original body. To ensure invocation
of the unlock_ method, the weaver also introduces a try-
finally block around the original body.

In sum, the COOL weaver realizes the COOLWeaver
algorithm (Listing 7). Given a class file cf to be trans-
formed, the weaver searches for its coordinator (findAspect,
line ).9 If found, the weaver introduces a coordinator field
(addCoordField, line ), transforms the constructors to ini-
tialize that field (transformConstructor, line ), and gen-
erates getter methods for protected and private cf fields that
are read by the coordinator (addGetterMethods, line ).

9 In COOL, each class can be associated with at most one coordinator.

520

Then, the weaver synchronizes the methods of cf by im-
posing locking and unlocking advice before and after their
bodies, respectively. Advice weaving in COOL follows the
same four-process model as in AspectJ (call to weaveClass,
line ). In terms of this four-process model, a shadow in
COOL is a method of cf, and the advice are the lock_ and
unlock_ methods of the coordinator class.

The reify process of the COOL weaver represents an
input class file as a set of methods (the reify method,
line ). The match process uses the signature of a yet-
to-be-coordinated method to select a pair of lock_ and
unlock_ advice methods (the match method, lines –
). For every coordinated method, the weaver finds the
corresponding lock_ and unlock_ methods in the coor-
dinator class (findLock, line ; findUnlock, line ). The
order process of the weaver is empty (the order method,
lines –). Lastly, the mix process (mix, lines –)
introduces a call to the lock_ method before the method
body (addCallBefore, line ), and a call to unlock_ after
the method body (addCallAfter, line ).

4. Analysis and Design
Now that we have reviewed the working of a weaver, we
move on to the main focus of this paper: the problem of com-
posing aspect weavers. Our goal is to build a weaver compo-
sition framework for implementing a multi-extension AOP
language. Given a set of aspect weavers and a composition
specification, the framework should construct an appropriate
multi-weaver. In the previous sections we discussed the four-
process model of an abstract weaver. In this section we ex-
amine the composition specification; and then we derive the
design requirements for the composition implementation.

The specification needs to resolve the feature interactions
between the composed extensions. There are two main kinds
of interactions that the specification should address, namely
foreign advising and co-advising [28]. We reason about the
specification by analyzing these interactions, using the com-
position of COOL and AspectJ as a running example.

4.1 Foreign Advising
A multi-extension AOP language is an AOP language that
combines multiple aspect extensions. We call a program
in this language a multi-extension program. In a multi-
extension program, an aspect can generally interact with
foreign aspects by advising join points in their execution.
The foreign advising interaction determines how aspects in
one extension advise foreign aspects in other extensions.
Particularly, in a composition of COOL and AspectJ the for-
eign advising interaction controls the weaving of AspectJ
advice into foreign COOL coordinators, and the weaving of
COOL advice into foreign AspectJ aspects. For example,
consider running a Logger aspect in AspectJ (Listing 8)
together with our Stack coordinator in COOL (Listing 4).
Logger logs all join points in a program execution, includ-

Listing 8. A logger aspect in AspectJ
public aspect Logger {
pointcut scope(): !cflow(within(Logger));

before(): scope() {
System.out.println("before " +

thisJoinPoint);}

Object around(): scope() {
System.out.println("around" +

thisJoinPoint);
return proceed();

}

after(): scope() {
System.out.println("after" +

thisJoinPoint);
}

}

ing join points within executions of the Stack coordinator.
A resolution of the foreign advising interaction must deter-
mine what join points Logger advises within the Stack

coordinator, and how. But neither the AspectJ nor the COOL
specification define how AspectJ aspects advise COOL coor-
dinators.

Foreign advising is not solvable by merely using a weaver
for COOL (AspectJ) to weave the foreign aspects (coordi-
nators), because the one language does not recognize the
syntax or semantics of the other. Even though the weavers
for COOL and AspectJ may both use Java classes as their
intermediate representation, applying the COOL (AspectJ)
weaver to the Java representation of foreign aspects (coordi-
nators) will not do the job either. This is because the classes
embed synthetic code that is generated during the transla-
tion to the intermediate representations, e.g., calls to wait

and notifyAll in the coordinator class StackCoord (List-
ing 5). This synthetic code is specific to a particular imple-
mentation of the foreign compiler. The code cannot be traced
back to the original source aspect, and exposing it to a for-
eign weaver may result in the latter advising it, thereby caus-
ing unexpected behavior in the program.

In terms of the abstract weaving process, foreign advising
is a problem of representing foreign aspects correctly, and is
the responsibility of the reify process. For example, the in-
correct behavior observed in translation-based composition
frameworks (e.g., XAspects and Reflex) is a result of the
reify process of the framework’s weaver failing to provide
a correct representation of the foreign aspect classes. Conse-
quently, the weaver erroneously includes shadows also for
implementation-specific operations that are introduced by
the front-end translator into the intermediate aspect classes

521

4.2 Co-advising
In a multi-extension program, a join point can generally
be advised by several aspects that are written in different
extensions. We refer to this behavior as co-advising. The
co-advising interaction controls the collaborative application
of multi-extension advice at the same join point, which is
undefined at the level of the individual extensions.

In a composition of COOL and AspectJ, the co-advising
interaction coordinates the weaving of COOL and AspectJ
advice into the same program element. For example, con-
sider again running the Logger aspect in AspectJ (Listing 8)
together with the Stack coordinator in COOL (Listing 4)
and the Stack class in Java (Listing 3). The Logger and the
Stack coordinator collaboratively advise executions of the
Stack methods. A resolution of the co-advising interaction
of the composition must determine in what order the pieces
of advice of the aspect and the coordinator execute.

In terms of the abstract weaving process, co-advising is
a problem of coordinating the match, order, and mix pro-
cesses of the composed weavers. This problem cannot be
resolved just by a sequential application of the individual
weavers. If weavers were scheduled to run one after the other
sequencely, then (at the same join point) advice that is ap-
plied later would always “wraps” around advice that is ap-
plied earlier. This would results in a very restrictive behavior
that does not support the flexible ordering needed in general
for co-advising. Moreover, a weaver may erroneously advise
advice binding operations (e.g., calls to advice or coordina-
tor methods) that were introduced into the shadow by previ-
ously applied weavers.

4.3 Resolving Feature Interactions
Our analysis clarifies why the feature interaction problem
is so complex and difficult. First, in a composition of mul-
tiple extensions, the foreign advising interaction generally
occurs between every pair of composed extensions. Fur-
thermore, because the interaction involves features that are
unique to the interacting parties, the behavior is specific
to the composed extensions. For example, a foreign advis-
ing interaction between COOL and AspectJ involves terms,
expressions, and constructs that are unique to COOL, e.g.,
requires, on_entry, and on_exit.

Moreover, there is no single correct way to resolve these
interactions. For example, a foreign advising interaction be-
tween COOL coordinators and AspectJ aspects may allow
the aspects to only advise access to fields of coordinated
objects (that are made from within the coordinators), e.g.,
access to the field buf of the Stack class from within the
Stack coordinator (Listing 4, line ). Alternatively, the
interaction can be resolved by letting the aspects advise all
field access operations within the requires, on_entry,
and on_exit expressions of a coordinator. It can also be
resolved to allow the aspects to advise all field access plus
(un)lock COOL computations (e.g., as advice-execution join

points). Each of the three options can be advocated [24], and
many more reasonable options exist.

4.4 System Design Requirements
Next, we use the terminology and abstractions from the anal-
ysis to formulate three design requirements for the com-
position implementation. The requirements are: decoupling,
composability, and customizability.

4.4.1 Decoupling
The composition framework should decouple abstractions
that are common to all AspectJ-compatible weavers from
abstractions that are weaver-specific. This reduces the re-
sponsibility of the individual weaver to implementing only
the extension-specific weaving operations. By reusing the
framework’s abstractions as much as possible, the develop-
ment of new weavers is drastically simplified.

4.4.2 Composability
The framework should support the composition of multi-
ple aspect weavers into a default multi-weaver that resolves
interactions automatically in a well-defined and reasonable
way. This requirement targets the scalability problem that is
inherent to the feature interaction problem. It enables an ex-
tensible and scalable solution to the problem of composing
weavers.

We define the default multi-weaver behavior according to
the following principles:

1. Preserving behavior of individual weavers: a default
multi-weaver preserves the behavior of the individual
composed weavers as observed when weaving their
respective single-extension programs. For example, a
multi-weaver for a composition of COOL and AspectJ
would weave pure AspectJ (COOL) programs in ex-
actly the same manner as a stand-alone AspectJ (COOL)
weaver would have.

2. Default foreign advising. Syntactically, an aspect is a
mixture of Java code and extension-specific terms. The
default foreign advising behavior allows an aspect to ad-
vise a foreign aspect by advising Java statements within
its source code, and only those statements. For exam-
ple, a COOL coordinator embeds Java expressions within
requires, on_exit, and on_entry constructs. In a
default composition of COOL and AspectJ, AspectJ as-
pects advise COOL coordinators by advising only their
Java expressions. Under this behavior, the Logger as-
pect (Listing 8) advises all field access join points within
requires, on_exit, and on_entry expressions of the
Stack coordinator (Listing 4).

3. Default co-advising. The co-advising behavior controls
matching and ordering of multi-extension advice at a
join point. The default matching policy is to unify the
individual matching results of the composed extensions.
The selected multi-extension advice include all pieces of

522

advice that match the join point under the semantics of
their extensions. Each individual aspect weaver selects
advice only from its own aspects, and does not interfere
with the matching in foreign weavers.
The default ordering policy relies on the advice types be-
ing similar in all AspectJ-compatible extensions. An as-
pect advises a program by transforming computations at
certain join points. We identify three types of transfor-
mations: to add advice before a join point computation,
to add the advice after the computation, and to introduce
the advice instead of (around) the computation. When
the multi-weaver selects multi-extension advice at a join
point, the default multi-extension ordering behavior is
to run multi-extension before advice first, then multi-
extension around advice, and finally the multi-extension
after advice. For example, a default multi-weaver for a
composition of COOL and AspectJ would order lock and
unlock (COOL advice) to execute before and after As-
pectJ’s around advice, respectively. The multi-weaver
also preserves a partial order of same-extension advice
within the selected multi-extension advice.

4.4.3 Customizability
Although the default multi-weaver implements a reason-
able behavior, a composition specification may define spe-
cial foreign advising and co-advising behavior. For example,
a foreign advising specification for a composition of COOL
and AspectJ might choose to allow AspectJ aspects to ad-
vise COOL’s (un)lock computations as advice-execution join
points. Hence, the framework must also allow the language
designer to configure the multi-weaver to comply with the
composition-specific foreign advising and co-advising spec-
ifications.

5. Aspect-Oriented Architecture
This section introduces a practical component-based and
aspect-oriented architecture that facilitates the development
of aspect weavers, and supports the integration of indepen-
dently developed aspect weavers into a multi-weaver. We
introduce the architecture in three steps. First, we explain
the design decisions for decoupling extension-specific from
common components. We refer to the extension-specific
components as the aspect mechanism, and to the common
components as the platform. The platform is implemented
once; it provides facilities that, if reused, significantly ease
the development of new weavers. Second, we present the de-
sign principles and decisions that allow the multiple aspect
mechanisms and the platform to be automatically composed
into a default multi-weaver. Third, we present a solution to
the multi-weaver customizability problem. The architecture
provides support for configuring the default multi-weaver to
comply with a specialized composition specification.

<<aspect>>

<<interface>>

+ order(Shadow, Advice[]) : Advice[]
+ match(Shadow): Advice[]
around():exec(Platform.reify(..))

AJMechanism

mechanism : Mechanism
Platform

+ reify(ClassFile) : Shadow[]

+ weaveClass(ClassFile) : void
+ mix(Shadow, Advice[]) : void

Mechanism

+ order(Shadow, Advice[]) : Advice[]
+ match(Shadow): Advice[]

Figure 3. A stand-alone weaver

5.1 Decoupling
We use the four-process weaver model [23] to identify the
extension-specific and the common weaver components.

The reify process of a weaver constructs shadows for
the base language classes and the extension aspects. As a
part of its functionality, the process realizes a base represen-
tation function, i.e., a function that builds shadows for base
program classes. Because the weaver is AspectJ-compatible,
it can be realized using the base shadow domain and the base
representation function of AspectJ.10 Thus, the base shadow
domain and the base representation function of AspectJ can
be shared by all AspectJ-compatible weavers.

If a weaver’s extension does not allow an aspect to advise
aspects (e.g., a coordinator in COOL cannot advise other co-
ordinators), then the common base representation function
realizes the weaver’s reify process in full. However, in the
more general case (e.g., in AspectJ, an aspect can advise
itself, as well as other aspects), a weaver needs to realize
an extension-specific representation function, i.e., a function
that builds shadows for aspects. The reify process of the
weaver is thus a composition of the common base represen-
tation function and the specific representation function for
aspects.

The match and order processes of a weaver are extension-
specific. An individual weaver matches advice in its own
aspects; and orders only extension-specific advice. The mix
process weaves the ordered pieces of advice by transforming
the shadow. Since an advice defines a shadow transformer
function, mix can be modeled as a common extension-
independent process that iteratively applies the advice trans-
formers to the shadow.

Figure 3 depicts the design of an AspectJ weaver as a
composition of common and AspectJ-specific components.

10 The base shadow domain of AspectJ includes all shadows except for
advice-execution.

523

<<aspect>>

<<abstract aspect>>

<<aspect>>

+ match(Shadow): Advice[]

after() : init(Platform.new())
+ order(Shadow, Advice[][]) : Advice[]
+ mix(Shadow, Advice[]) : void

mechanisms : Mechanism[]

+ weaveClass(ClassFile) : void

+ match(Shadow): Advice[][]
+ reify(ClassFile) : Shadow[]

*
Platform

COOLMechanism

Mechanism

+ order(Shadow, Advice[]) : Advice[][]

around() : exec(Platform.reify(..))
+ match(Shadow): Advice[]

AJMechanism

+ order(Shadow, Advice[]) : Advice[][]

around() : exec(Platform.reify(..))

+ match(Shadow): Advice[]
+ order(Shadow, Advice[]) : Advice[][]

Figure 4. A default multi-weaver

There are two main architectural parts: (a) a platform that
provides common facilities; (b) a mechanism that imple-
ments extension-specific behavior. The platform’s behavior
is realized by the Platform class. The mechanism is realized
by an aspect that implements the Mechanism interface. The
dashed arc in the figure denotes advising.

5.1.1 Platform
The platform provides the base shadow domain. Its meth-
ods reify, mix, and weaveClass implement the common
weaver’s operations: reify uses base shadows to repre-
sent base classes; mix weaves advice at each shadow; and
weaveClass implements the high-level weaving algorithm
(Listing 1).

5.1.2 Mechanism
Each mechanism is realized as an aspect that implements
the Mechanism interface by realizing the extension-specific
matching and ordering processes via the implementation of
the methods match and order, respectively. If a mecha-
nism’s extension allows an aspect to advise other aspects,
then the mechanism realizes the extension-specific represen-
tation function as an around advice that refines executions of
the platform’s reify method. The methods and the advice
are implemented with the following conception: the mecha-
nism uses base shadows as a representation domain for base
classes; the advice uses base and extension-specific shadows
as a representation domain for aspects;11 and the advice de-
fers to the platform the representation of base classes.

5.2 Composability
The architecture supports the compositions of multiple
aspect mechanisms into a multi-weaver. Figure 4 illus-
trates the extended architecture by showing a default multi-
weaver for a composition of COOL and AspectJ. In the
extended architecture, the multi-weaver is realized by the
platform. The platform mediates between the composed

11 Extension-specific shadows represent constructs, declarations, and ex-
pressions that are specific to the extension, e.g., the advice-execution
shadow in AspectJ.

mechanisms, and manages their collaborative application.
Furthermore, the Mechanism interface is replaced with the
abstract Mechanism aspect, which defines the abstract meth-
ods match and order. In addition, the aspect advises the
Platform’s constructor to register the mechanisms with the
platform.12

At an abstract level, the multi-weaver implements the
same high-level weaving process as a stand-alone weaver
(Listing 1). The four subprocesses of the multi-weaver are
built by integrating and unifying the corresponding pro-
cesses of the individual weavers. The reify process of the
multi-weaver represents base classes, and aspects that are
written in different extensions. The match and order pro-
cesses of the multi-weaver select and order multi-extension
advice, respectively. In the extended architecture, Platform
provides the methods match and order to realize these pro-
cesses. The mix process weaves the ordered multi-extension
advice by transforming the shadow.

We enable composability of aspect mechanisms by intro-
ducing additional design principles:

5.2.1 Mandatory Aspect Representation
To enable a default foreign advising behavior, an aspect
mechanism must realize an extension-specific aspect repre-
sentation function, even if the function is not normally re-
quired for its own stand-alone operation. This policy ensures
that a multi-weaver builds shadows for all aspects in a multi-
extension program, thus letting an aspect observe and advise
Java shadows in any foreign aspect. For example, a stand-
alone weaver for COOL does not advise coordinators, and
thus does not need to represent them. A multi-weaver for
a composition of COOL and AspectJ, in contrast, uses the
COOL representation function for exposing the coordinators
to AspectJ aspects. The aspects can then advise Java shad-
ows within the coordinators.

Intuitively, the aspect representation function provides
the most fine-grained representation of an aspect that in-
cludes all base shadows for its Java fragments, and ded-

12 This behavior could have been realized in an object-oriented manner, but
AOP enables a more elegant design.

524

<<aspect>>

<<abstract aspect>>

<<aspect>>
<<aspect>>

around() : exec(Platform.reify(..))

+ order(Shadow, Advice[]) : Advice[][]

AJMechanism

+ match(Shadow): Advice[]
around() : exec(Platform.reify(..))

around() : exec(Platform.*(..))
+ order(Shadow, Advice[]) : Advice[][]

Mechanism

COOLMechanism

Platform

Config

*

around() : exec(AJMechanism.*(..))
around() : exec(COOLMechanism.*(..))

+ reify(ClassFile) : Shadow[]
+ match(Shadow): Advice[][]

+ weaveClass(ClassFile) : void

mechanisms : Mechanism[]

+ mix(Shadow, Advice[]) : void
+ order(Shadow, Advice[][]) : Advice[]

after() : init(Platform.new())
+ match(Shadow): Advice[]

+ match(Shadow): Advice[]

+ order(Shadow, Advice[]) : Advice[][]

Figure 5. A customized multi-weaver

icated extension-specific shadows for all the extension-
specific computations. For example, a function for represent-
ing coordinators must build shadows for all Java fragments
within a coordinator’s code (e.g., Java expressions within
a requires statement), and on entry, on exit, requires, lock,
and unlock shadows for all the respective computations.

5.2.2 Parallel Matching of Multi-extension Advice
To enable a default multi-extension advice matching be-
havior, the match method of the platform should run the
match methods of the composed mechanisms in parallel.
The multi-extension advice selected at a shadow is then a
list of extension-specific advice sets that are produced by the
composed aspect mechanisms.

5.2.3 Uniform Advice Types
To enable a default multi-extension advice ordering behav-
ior, an aspect mechanism should partition advice into three
ordered sets, namely before, around, and after. In terms of
the architecture, the order method of a mechanism returns a
list of three advice arrays, the first contains before advice, the
second contains around advice, and the third contains after
advice. The platform’s order method then runs the order
methods of the composed mechanisms in parallel, and lin-
earizes their results into a single advice vector in accordance
with the default multi-extension ordering policy.

A composition of the aspect mechanisms with the plat-
form produces a multi-weaver with a default behavior. The
aspect representation principle enables a default foreign ad-
vising behavior, and the other principles enable a default
co-advising behavior. The multi-weaver uses as its common
shadow domain the union of the common base shadow do-
main and all the extension-specific shadow domains.13 It
represents the multi-extension aspects and the base classes
as appropriate for the composed mechanisms. It has a well-
defined multi-extension advice matching and weaving be-
havior; and it uses the order method of the platform for
ordering advice.

13 For simplicity, we assume that the intersection of extension-specific
shadow domains is empty [22].

5.3 Customizability
Of course, the default behavior of the multi-weaver may dif-
fer from the actually desired one. The specification may dic-
tate foreign advising and co-advising rules that involve sev-
eral extensions. For example, the specification may require
an aspect in AspectJ to advise executions of lock and unlock
in COOL as advice-execution join points. Generally, the for-
eign advising rules alter the semantics of the individual ex-
tension for advising foreign aspects. The co-advising rules
specify a collaborative behavior for multi-extension aspects
that advise the same join point. These rules are composition-
specific and thus cannot be defined on the level of an indi-
vidual extension.

To this end, the architecture provides a Config aspect that
customizes the behavior of the default multi-weaver (Fig-
ure 5). The configuration aspect implements the composition-
specific foreign advising behavior by extending and overrid-
ing the match and order methods of the aspect mecha-
nisms. The aspect specializes the co-advising behavior by
advising the match and order methods of the platform.

The architecture thus supports the construction of a
multi-weaver with a customized behavior. The multi-weaver
reify method recognizes and represents properly aspects
of all the composed extensions using a common shadow
domain. The adapted match and order methods of the
individual mechanisms select and order extension-specific
advice according to the foreign advising specification. The
customized multi-weaver match and order methods select
and order the multi-extension advice in accordance with the
co-advising specification.

In sum, the architecture (Figure 5) establishes the funda-
mental principles for designing composable aspect mecha-
nisms. In Section 6 we apply these principles to build a con-
crete co-weaving system for composing multiple extensions
(AWESOME). Using AWESOME, we then implement an as-
pect mechanism for COOL, another for AspectJ, and then
combine the two to produce an AWESOME weaver for the
AOP language COOLAJ, which is described in Section 7.

525

6. Implementation by Refactoring AspectJ
As a proof of concept, we realized the weaving system and
the mechanisms by refactoring the ajc compiler and the
COOL weaver. In the ajc code, shared and AspectJ-specific
operations are intertwined. Through refactoring we untan-
gled and separated these two kinds of operations, moving the
ones in common to the Platform and modularizing the rest
in the AspectJ mechanism.14 The weaver for COOL, on the
other hand, uses methods to represent Java classes, and does
not have a representation for coordinator classes. In our sys-
tem, we use AspectJ shadows (with the exception of advice-
execution shadows) as a base shadow domain. The refactor-
ing here involved the use of method-execution shadows for
advice matching and weaving; and providing a shadow rep-
resentation for the coordinator classes.

6.1 Implementing a Platform
The platform is realized by the Platform class. A list of
plugged aspect mechanisms is stored in the mechanisms in-
stance variable. weaveClass is a TEMPLATE METHOD [15]
that implements the weaving process (Listing 1) using
reify, match, order, and mix.

The reify method represents a Java class as a set of
shadows. We implemented it by factoring out all opera-
tions that represent aspects from the representation function
reify of the original AspectJ weaver. The match method
selects advice by calling its match counterparts in the indi-
vidual mechanisms:

public Advice[][] match(Shadow shadow) {
Advice[][] result = new Advice[mechanisms.length][0];
for (int i=0;i<mechanisms.length;i++)

result[i] = mechanisms[i].match(shadow);
return result;
}

The order method calls the order methods of the individ-
ual mechanisms, and then linearizes the multi-extension ad-
vice:

public Advice[] order(Shadow shadow,
Advice[][] multiAdvs) {

Advice[] bfAdv = new Advice[0];
Advice[] ardAdv = new Advice[0];
Advice[] afAdv = new Advice[0];
for (int i=0;i<mechanisms.length;i++) {

Advice[][] mechAdvs =
mechanisms[i].order(shadow, multiAdvs[i]);

bfAdv = addAll(bfAdv, mechAdvs[0]);
ardAdv = addAll(ardAdv, mechAdvs[1]);
afAdv = addAll(afAdv, mechAdvs[2]);
}
return addAll(ardAdv, addAll(bfAdv, afAdv));
}

14 We also moved the shadow transformation functionality in the
Shadow.transform method to the Advice class.

where addAll is an auxiliary method that takes two argument
arrays, and concatenates them by appending the second one
to the first one. The order method schedules around advice
to be woven first, so that before and after advice “wrap” any
around advice at the same shadow. Note that weaving order
is not the same as execution order.

Finally, the mixmethod sequentially applies advice trans-
formers to the shadow:

void mix(Shadow shadow, Advice[] advs) {
for(Advice a:advs) a.transform(shadow);
}

The transform method integrates the advice instructions into
the shadow.

6.2 An Abstract Aspect Mechanism
We implemented the mechanisms for AspectJ and COOL
as aspects that extend the abstract SINGLETON [15] aspect,
named Mechanism:

public abstract
aspect Mechanism {
after(Platform mw):

initialization(Platform.new(..)) && this(mw) {
mw.mechanisms =

addAll(mw.mechanisms, new Mechanism[]{this});
}
public abstract
Advice[] match(Shadow shadow);
public abstract
Advice[][] order(Shadow shadow, Advice[] advs);
}

The after advice ensures that aspect mechanism instances are
created and plugged into the platform as soon as the platform
is instantiated. The concrete mechanisms (AJMechanism and
COOLMechanism) provide an implementation for match
and order and override the Platform.reify method by ad-
vising it with around advice.

6.3 Implementing an AspectJ Mechanism
The AJMechanism aspect advises the representation reify
method of the platform. If the argument class is an AspectJ
aspect, then the advice provides a shadow representation for
it; otherwise, the advice proceeds:

Shadow[] around(ClassFile cf): args(cf) &&
execution(Shadow[] Platform.reify(ClassFile)) {
return isAJAspect(cf) ? reifyAspect(cf) : proceed(cf);
}

where isAJAspect determines whether or not the argu-
ment class represents an aspect; and reifyAspect constructs
shadow representation of the aspect class. The aspect rep-
resentation includes AspectJ-specific advice-execution shad-
ows.

The before advice to the weaveClass method introduces
to the multi-weaver an intertype declaration mechanism:

526

before(ClassFile cf): args(cf) &&
execution(void Platform.weaveClass(ClassFile)) {
applyIntroductions(cf);
}

The match and the order methods are copied from the
original code. We omit them, as well as isAJAspect and
reifyAspect, due to space considerations.

6.4 Implementing a COOL Mechanism
The refactoring of the COOL mechanism includes a change
to the front-end for translating source COOL coordinators
into annotated Java classes. The annotations mark the lock_
and unlock_ methods of the coordinator class and identify
the requires, on_entry, and on_exit instruction blocks
within these methods.

The COOL mechanism introduces shadow types for lock,
unlock, requires, on enter, and on exit computations. The lock
and unlock shadows represent executions of the lock_ and
unlock_ methods. The requires, on enter, and on exit shad-
ows represent executions of the corresponding COOL ex-
pressions and statements. They map to blocks of instructions
within the lock_ and unlock_ methods. The bodies of the
requires, on_entry and on_exit constructs are Java ex-
pressions and statements. The mechanism represents them
using the base shadow domain (field-get and field-set shad-
ows).

The COOLMechanism aspect advises the weaveClass and
the reify methods of the platform. The after advice to the
weaveClass method introduces into a coordinated (target)
class a coordinator field and getter methods, and transforms
the constructor of the class:

after(ClassFile cf): args(cf) &&
execution(void Platform.weaveClass(ClassFile)) {
ClassFile coordAspect = findAspect(cf);
if (coordAspect!=null) {

addCoordField(cf, coordAspect);
transformConstructor(cf, coordAspect);
addGetterMethods(cf, coordAspect);

}}
The advice around the reify method is similar to the

corresponding advice in the AJMechanism aspect: if the ar-
gument class is a COOL coordinator class, then the advice
provides a shadow representation for it; otherwise, the ad-
vice proceeds.

The COOL mechanism also provides an implementation
for match and order. match selects lock and unlock

pieces of advice by matching the coordinator classes against
the method-execution shadows. The order method schedules
the lock advice to run before the unlock advice.

7. Case Study: An AWESOME Weaver for
COOLAJ

Plugging the AJMechanism and the COOLMechanism as-
pects into the composition Platform produces a multi-weaver

with a default behavior. It lets aspects advise join points
within requires, on_entry, and on_exit expressions of
coordinators. It lets coordinators synchronize methods that
are defined within aspects; and it allows coordinators and
aspects to co-advise the same method. Although this de-
fault behavior is reasonable, a specific multi-extension com-
position of AspectJ and COOL may require different se-
mantics. In this section we specify such a multi-extension
AOP language named COOLAJ. We implement a weaver for
COOLAJ by customizing the default multi-weaver using the
Config aspect.

7.1 Informal Specification for COOLAJ
The specification for COOLAJ is independent of the AWE-
SOME architecture. It is based only on the syntax and seman-
tics of the AspectJ and COOL languages; not on their imple-
mentation. COOLAJ is specified as a conservative composi-
tion of AspectJ and COOL, i.e., it follows as much as pos-
sible the original semantics of AspectJ and COOL. Specifi-
cally, in COOLAJ an aspect is woven into classes and aspects
according to the weaving semantics of AspectJ. Similarly, a
coordinator is woven into classes according to the weaving
semantics of COOL. The specification for COOLAJ differs
from the default behavior when it comes to dealing with for-
eign advising and co-advising:

7.1.1 Foreign Advising
In COOLAJ, aspects advise executions of coordinators through
field-get and field-set join points that are located within
requires, on_entry, and on_exit expressions; and through
advice-execution join points that represent lock and unlock
computations (i.e., executions of lock_ and unlock_meth-
ods of the COOL coordinator classes).

The foreign advising specification poses several restric-
tions on advising join points within a coordinator:

• In the COOLAJ specification, an access (read or write) to
a condition field can only be advised with before or
after advice. This way aspects cannot override values
of these fields, but are still able to observe their access
patterns. This restriction is important for protecting the
synchronization logic of a coordinator.
• An execution of a lock or an unlock computation is ad-

visable by aspects as an advice-execution join point. How-
ever, aspects are limited to advising these join points with
before and after advice only. This restriction ensures
that the locking and unlocking operations imposed by co-
ordinators are not overridden by aspects, and always ap-
ply in the correct order.

The specification permits coordinators to advise methods
that are declared within aspects in the same way as methods
within classes. The specification restricts coordinators (as-
pects) from advising any synthetic code introduced by the
foreign mechanism, e.g., coordinators do not advise advice
methods in aspect classes, and aspects do not advise getter

527

Listing 9. LogAdviceOnStack

public aspect LogAdviceOnStack {
pointcut scope():
!cflow(within(LogAdviceOnStack));
pointcut tgt(): execution(* Stack.*(..));
before(): scope() &&
cflow(tgt()) && !cflowbelow(tgt()) {
System.out.println(thisJoinPoint);

}
}

methods that are introduced into the coordinated classes by
the COOL mechanism.

7.1.2 Co-advising
The COOLAJ co-advising specification coordinates the col-
laborative application of aspects and coordinators on the
same program method:

• The lock (unlock) advice of COOL is executed before
(after) the before, around, and after advice of As-
pectJ.
• From the perspective of AspectJ aspects, COOL advice

executes in the control flow of the method execution join
point it advises.

Example For illustration, consider the LogAdviceOnStack
aspect (Listing 9). Under the semantics of AspectJ, the as-
pect logs all advice (except for its own) woven at Stack
method-execution shadows. The

cflow(tgt)&&!cflowbelow(tgt())

pointcut selects not only tgt() join points, but also join
points within aspects that advise the tgt() join points. In
particular, LogAdviceOnStack would advise join points
within the Logger aspect (Listing 8), if the two are used to-
gether with the Stack class (Listing 3). If this aspect is run
together with the Stack class (Listing 3) and the Stack co-
ordinator (Listing 4) under the semantics of COOLAJ, then:
(1) it logs executions of the coordinator; and (2) an ex-
ecution of the LogAdviceOnStack advice that prints the
method-execution join point is synchronized by the coordina-
tor (along with the original method body).

7.2 Customization
We realized a multi-weaver for COOLAJ by providing a
Config aspect with three pieces of advice: one implementing
the co-advising rules, and the other two realizing the foreign
advising rules.

7.2.1 Customizing Co-advising
The AspectJ weaver realizes the semantics of the cflow
pointcut designator by introducing special advice at pro-
gram shadows. Specifically, every shadow that matches an

argument pointcut of a cflow pointcut is wrapped with a
CFlowPush advice and a CFlowPop advice. The CFlowPush
advice runs before any other advice at a join point, and
pushes the join point on the AspectJ’s join point stack.
CFlowPop runs after all the other advice and pops the join
point off the stack. These advice thus mark the start and the
end of a join point’s control flow. For example, the point-
cut of the LogAdviceOnStack’s advice causes the AspectJ
weaver to weave the CFlowPush and CFlowPop pieces of
advice at the Stack.push method-execution shadow.

Config implements the co-advising rules of COOLAJ by
advising the Platform.order method. The advice orders
COOL advice to be woven between the CFlowPush and
CFlowPop advice, but around any other AspectJ advice:

Advice[] around(): execution(Advice[] Platform.order(..)) {
Advice[] advs = proceed();
advs = mvAdv(advs, LockAdv.class, CFlowPush.class);
return mvAdv(advs, UnlockAdv.class, CFlowPop.class);

}

private Advice[] mvAdv(Advice[] advs, Class fromAdv,
Class toAdv) {

int fromPos = elTypePos(advs, fromAdv);
if (fromPos < 0) return advs;
int toPos = elTypePos(advs, toAdv);
if (toPos < 0) toPos = advs.length;
if (fromPos < toPos) toPos−−;
return move(advs, fromPos, toPos);
}

where LockAdv and UnlockAdv classes respectively imple-
ment lock and unlock advice of COOL; elTypePos returns
a first position of an object of a given class in the array; and
the move method moves an element of an array from one po-
sition to another. Specifically, move(advs, fromPos, toPos)
moves an element at the position fromPos of the advs
array to the position toPos, and shifts elements between
fromPos (exclusively) and toPos (inclusively) to the left, if
fromPos < toPos, or to the right, if fromPos > toPos. mvAdv
is an auxiliary method that co-orders COOL and AspectJ
advice.

If the multi-extension advice array contains no COOL
advice then Config does not affect it. Otherwise, if the ar-
ray contains the cflow advice then Config orders LockAdv
(UnlockAdv) to be woven immediately before CFlowPush
(CFlowPop), so that at run time the LockAdv (UnlockAdv) ad-
vice runs immediately after (before) the CFlowPush (CFlow-
Pop) advice. If the array contains no cflow advice, then
COOL advice is scheduled to be woven the last, thus domi-
nating the AspectJ advice at run-time.

7.2.2 Normalizing Shadow Types
To allow aspects to advise lock and unlock computations as
advice-executions, Config normalizes lock and unlock shad-
ows of COOL with advice-execution shadows of AspectJ

528

p
l
a
t
f
o
r
m
.
j
a
r

specification
composition

ajm.jar
ajw.jar

Figure 6. An AspectJ weaver

specification
composition

p
l
a
t
f
o
r
m
.
j
a
r

coolm.jar
coolw.jar

Figure 7. A COOL weaver

p
l
a
t
f
o
r
m
.
j
a
r

config.jar

ajm.jarcoolm.jar
awesomew.jar

Figure 8. An AWESOME weaver

by advising calls to the match and order methods of the
AJMechanism aspect:

Advice[] around(Shadow shadow): args(shadow) &&
(call(Advice[] AJMechanism.match(..)) ||
call(Advice[][] AJMechanism.order(..))) {

return proceed(isLockOrUnlock(shadow) ?
maskAsAExec(shadow) : shadow);

}

where isLockOrUnlock tests if shadow is a lock or unlock
shadow, and maskAsAExec masks the COOL shadow as an
advice-execution shadow. As a result, AspectJ advises the lock
and unlock shadows as if they were advice-execution shadows.

7.2.3 Restricting Advisability
Config restricts the advising of join points within COOL co-
ordinators by advising the executions of the AJMechanism-
.match method:

Advice[] around(Shadow shadow): args(shadow) &&
execution(Advice[] AJMechanism.match(..)) {
Advice[] advs = proceed(shadow);
if (isCondFieldAccess(shadow) ||

isLockOrUnlock(shadow))
advs = removeElType(advs, AroundAdvice.class);

return advs;
}

where isCondFieldAccess checks if the shadow represent
access to a condition field of a COOL coordinator, and
removeElType removes all elements of a given type from
the array.

8. Evaluation
To evaluate our approach, we integrated our multi-weaver
framework with the ajc AspectJ compiler. The main ajc

class runs the front-end and eventually weaves bytecode
classes by invoking the weavemethod on the org.aspectj-
.weaver.bcel.BcelClassWeaver class. We modified
this method to call instead the Platform.weaveClass

method for weaving. This permitted to “plug” a specific
multi-weaver into ajc by putting a corresponding imple-
mentation of the Platform class on the class path, and
running the AspectJ compiler as usual. We evaluated the
pluggability, correctness, and performance.

8.1 Third-party Composition
First, we evaluated the pluggability feature of AWESOME
by constructing three different weavers from the same
building blocks. The building blocks are jar files contain-
ing compiled aspects and classes. platform.jar is the
stripped down platform containing the Platform class
and the abstract Mechanism aspect. The jars ajm.jar and
coolm.jar contain the concrete independently developed
aspects AJMechanism and COOLMechanism for AspectJ
and COOL, respectively. config.jar contains the Config
aspect for customizing the composition of COOL and As-
pectJ.

We verified that it is possible, using the command line, to
construct weavers for AspectJ, COOL, and COOLAJ from the
four building blocks. We constructed a stand-alone AspectJ
weaver, named ajw, by plugging just the AspectJ mecha-
nism into the platform. The command line is (Figure 6):

ajc -inpath platform.jar;ajm.jar -outjar

ajw.jar

where ajc is the original (non-refactored) version of the As-
pectJ compiler. The inpath option directs ajc to weave
classes within jar files. The outjar option directs the com-
piler to save the woven classes into a separate jar file. To
construct a stand-alone COOL weaver, named coolw, we
plugged only the COOL mechanism (Figure 7):

ajc -inpath platform.jar;coolm.jar -outjar

coolw.jar

and to construct a multi-weaver, named awesomew, that
combines AspectJ and COOL, we ran (Figure 8):

ajc -inpath platform.jar;ajm.jar;coolm.jar;
config.jar -outjar awesomew.jar

To compile and run a multi-extension aspect program,
a file with unwoven bytecode unwoven.jar (an unwoven
program including aspect and base classes) was passed to
the multi-weaver to produce a woven file:

java -cp <weaver>.jar;aspectjtools.jar

org.aspectj.tools.ajc.Main -inpath

unwoven.jar -outjar woven.jar

529

where <weaver> was one of ajw, coolw, or awesomew;
and woven.jar is the woven bytecode program that can be
run on a JVM as a regular Java program.

8.2 Testing
Second, we tested the three weavers to determine with high
confidence that indeed ajw implements the semantics of As-
pectJ; coolw implements the semantics of COOL; and awe-
somew realizes the specification for COOLAJ. We did this by
observing the runtime behavior of test programs; by inspect-
ing their woven bytecode; by analyzing join point traces;
and, when possible, by comparing the results to programs
compiled with ajc or abc [5]. Because the framework is
based on ajc, which is assumed correct, we focused our tests
on a coverage of the newly introduced and refactored behav-
ior.

8.2.1 Testing ajw

The ajw weaver can be evaluated by comparing ajw-woven
to ajc-woven bytecode. In fact, the main difference between
ajw and ajc is in the design and implementation of the
reify process. In the implementation of ajw we disentan-
gled the monolithic reify process of ajc into a common
platform reify method and an AspectJ-specific advice of
the AspectJ mechanism. The other processes were either left
unchanged (e.g., match and order), or undergone a coarse-
grained (and assumed behavior-preserving) transformations
(e.g., mix). Thus, we hypothesize that ajw is a behavior-
preserving refactoring of ajc, if the reify processes of the
two exhibit the same behavior, i.e., given a Java class or an
AspectJ aspect they build identical shadow representations.

To test the reify process and reason about its shadow
representation, we generated an exhaustive join point trace
by weaving together three classes and aspects: Stack.java
(Listing 3); LogAll.aj, and TouchAll.aj. The LogAll aspect
advises with before, around, and after advice all the
join points in the program, except those within the aspect
itself (to prevent an infinite loop),15 and logs the join points
to a file. TouchAll also advises everything but itself,16 but
just “touches” the join points with an empty advice.

The woven bytecode is run by a main program that creates
a Stack object and invokes push and pop in a single thread.
The execution produces an exhaustive trace of the join points
within Stack and within TouchAll. This trace provides a
good insight into behavior of the reify process, because it
covers almost all types of join points and includes join points
within both Java classes and AspectJ aspects.

We executed ajw-woven and ajc-woven bytecode us-
ing the same test program and obtained identical join point
traces. We therefore conclude that, at least on this bench-
mark example, ajw behaves the same as ajc, and is likely to
exhibit an ajc-equivalent behavior in general.

15LogAll advises !cflow(within(LogAll)) join points
16TouchAll advises !cflow(within(TouchAll))

8.2.2 Testing coolw

We tested whether the runtime behavior of coolw-woven
bytecode complies with the dynamic semantics of COOL [27]
(i.e., if multiple threads are properly synchronized on the
woven target methods). We compiled together Stack.java
(Listing 3) and Stack.cool (Listing 4), which employs all fea-
tures of COOL (i.e., selfex, mutex, requires, on_entry,
on_exit, and access to private field of a coordinated
class from a coordinator aspect). As part of our tests we
inspected the StackCoord.java file that was constructed by
the COOL front-end from Stack.cool, and we inspected the
coolw-woven bytecode that was produced by weaving the
StackCoord coordinator class into the Stack Java class.

We ran the woven program and observed its runtime be-
havior. The test program created a Stack instance with a
very small capacity (size of 5), and invoked its methods con-
currently by five reader and five writer threads. A reader
thread attempted to remove 5000 objects from the stack,
while a writer thread attempted to add 5000 objects onto
the stack. The test program completed successfully (i.e., ex-
ecuted all the threads to completion without throwing an ex-
ception), indicating, with a high probability, that the behav-
ior of the woven bytecode is correct. Additional inspection
of traces verified that the stack was properly synchronized.

We tested the front-end translator by comparing the gen-
erated StackCoord.java against the manual translation pre-
sented in Listing 5. StackCoord is said to pass the test, if we
can conclude that its lock_ and unlock_ methods encode
the same behavior as the corresponding lock_ and unlock_
methods in Listing 5. We tested coolw by comparing the
bytecode of the woven Stack class against the the manually-
woven class presented in Listing 6.

All three tests succeeded. Our COOL implementation ex-
hibited the correct dynamic and compilation semantics on
the input program that comprised Stack.java and Stack.cool.
We consider the input program to be a representative COOL
application since it uses all the features in COOL. We thus
conclude with a high degree of confidence that our COOL
implementation would generally weave COOL programs
correctly.

8.2.3 Testing awesomew

We hypothesize that awesomew implements correctly the
semantics of COOLAJ. To test this hypothesis we verified
that:

1. Given a program with only aspects and classes as input,
awesomew weaves the program according to the seman-
tics of AspectJ;

2. Given a program with only coordinators and classes as
input, awesomew weaves the program according to the
semantics of COOL;

3. Given a program with coordinators, aspects and classes
as input, awesomew weaves the coordinators into their

530

matching classes according to the semantics of COOL;
weaves the aspects into classes and other aspects accord-
ing to the semantics of AspectJ; weaves aspects into coor-
dinators according to the foreign advising specification;
and coordinates the weaving of multi-extension advice
according to the co-advising specifications of COOLAJ.17

The first two cases were validated using the same testing
strategy as for ajw and coolw and by comparing the out-
put of awesomew to that of ajw and coolw. The details are
omitted. To validate the foreign advising and co-advising be-
havior in the third case, we compiled Stack.java, Stack.cool,
LogAll.aj, and TouchAll.aj, and we tested the woven bytecode.

We verified the weaving of aspects into coordinators by
inspecting the join point trace within the control flow of the
StackCoord class. awesomew correctly weaves aspects into
coordinators, if the trace complies with the COOLAJ for-
eign advising specification, (which defines the shadow repre-
sentation of COOL coordinators; the normalization between
COOL and AspectJ shadow types; and mapping between As-
pectJ advice types and coordinator-located shadows). In par-
ticular, we verified that the trace contains only expected join
points, that it reflects executions of lock_ and unlock_

methods as advice-execution join points, and that around ad-
vice of TouchAll and LogAll are properly filtered (e.g.,
not applied at advice-execution join points).

We also tested the ordering of multi-extension advice
on a program that contains Stack.java, Stack.cool, LogAd-
viceOnStack.aj (Listing 9), and TouchAll.aj. The execu-
tion trace of a Stack method reflected that: (1) execu-
tion of StackCoord is advised by LogAdviceOnStack;
and (2) the first and the last advice-execution join points
around a Stack method execution join point that are not in
the control flow of LogAdviceOnStack are executions of
StackCoord, lock_ and unlock_ methods, respectively.
The first result shows that StackCoord advice executes in
the control flow of the join point it advises. The second re-
sult shows that StackCoord advice takes precedence over
AspectJ advice at the same join point.

awesomew passed all these tests. We verified that awe-
somewweaved our input programs according to the COOLAJ
semantics. The input programs provide a good coverage of
the COOLAJ specification. Therefore, we conclude with high
confidence that awesomew performs a correct weaving of
COOLAJ programs.

8.3 Performance
Finally, we evaluated the runtime performance of the byte-
code produced by the framework weavers. This is intended
to verify that the quality of woven bytecode is unaffected by
the improved design of the weaver. Specifically, we validated
the following hypotheses:

17 Coordinators never weave other coordinators.

������������
������������

������������
������������

	�	�	�	
�
�

���
���
���

���
���
���

�

�

�

���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

coolx

ajw
coolw

ajcoolx

ajc

awesomew

0

10

20

30

40

50

stack+logstack+coord

fo
r1

0,
00

0
pu

sh
an

d
po

p
op

er
at

io
ns

A
ve

ra
ge

ru
nt

im
e

in
m

ill
is

ec
on

ds

stack+coord+log

Figure 9. AWESOME performance

1. The runtime performance of ajw-woven bytecode is the
same as ajc-woven;

2. The runtime performance of coolw-woven bytecode is
the same as coolx-woven;

3. The runtime performance of awesomew-woven bytecode
is the same as:

(a) ajc-woven, for AspectJ programs;

(b) coolx-woven, for source COOL programs;

(c) ajcoolx-woven, for COOLAJ programs.

where coolx and ajcoolx are weaving algorithms for
COOL and COOLAJ that are applied manually.

We ran a multi-threading COOL program that creates
a Stack object and invokes its methods using ten writer-
reader threads. A writer-reader thread performs 5000 pairs of
push-pop operations. The test program reported the average
running time of a thread (in milliseconds) over series of
10 runs. We also ran a single-threaded AspectJ program
that created a Stack object, and invoked its push and pop

methods 5000 times each. We measured the average running
time of executing the operations over a series of 10 runs.

Figure 9 summarizes the measured execution times. Pro-
grams compiled with ajw and coolw are as efficient as
those compiled with ajc and coolx. Programs compiled
with awesomew are within 4% efficiency compared to (op-
timal) code woven mechanically using the ajcoolx algo-
rithm and ajc as a back-end compiler. This indicates that the
framework design overhead on the performance of the wo-
ven bytecode is negligible, i.e., there is almost no overhead
to supporting the plugin architecture.

9. Related Work
The vision of domain specific aspect-oriented extensions
dates back to early days of AOP (e.g., [8, 9]), but very few of
the related works deal with making such extensions available
concurrently. Those that do, leave much to be desired in
terms of composability, customizability, and efficiency.

531

Reflex [37] and XAspects [36] do not support the level
of composability or customizability that is necessary for re-
solving foreign advising. These frameworks implement the
composition by translating source aspects in foreign exten-
sions to aspects in a common target language. The transla-
tion introduces and exposes in the target aspects synthetic
join points that do not exist in the source. However, in Re-
flex and in XAspects, foreign aspects cannot distinguish the
synthetic from the genuine join points. Moreover, Reflex and
XAspects provide no mechanism (or composition rules) for
customizing the foreign advising behavior, thus preventing
the integrator from being able to correct the faulty resolu-
tion of this feature interaction. As a result, aspect programs
compiled in Reflex- and XAspects-based multi-extension
weavers may exhibit incorrect behavior [22, 24].

In contrast, AWESOME provides automatically a default
reasonable resolution of foreign advising, thus significantly
simplifying the problem of resolving the interactions. The
integrator may fine-tune the default behavior, but does not
necessarily need to.

In Reflex there is ample support for configuring co-
advising at the aspect level. A programmer can resolve inter-
actions between aspects in a specific aspect program. AWE-
SOME, on the other hand, supports customizability at the
language level. A language designer can resolve the interac-
tions between aspect extensions, thus affecting the behavior
of all multi-extension programs. Extending AWESOME with
aspect-level support for fine-tuning co-advising is a topic for
future work.

Pluggable AOP [22] is a third-party composition frame-
work that supports the composition of dynamic aspect mech-
anisms into an AOP interpreter. In Pluggable AOP, an aspect
mechanism is a transformer of an AOP interpreter. Among
the related frameworks, only Pluggable AOP addresses for-
eign advising by treating a foreign aspect mechanism as an
open module [1] that can determine which join points within
its aspects are advisable and which are hidden. However,
there is no control in Pluggable AOP over how these join
points are advised. Pluggable AOP is also restricted in its
co-advising customizability. It allows the integrator to cus-
tomize the co-advising behavior only indirectly by ordering
the aspect mechanisms. Moreover, Pluggable AOP is not de-
signed for efficiency. It is impractical for use in industrial
settings.

In comparison, AWESOME supports flexible language-
level customizability of both the co-advising and the foreign
advising interactions; and employs an efficient compile-time
weaving scheme.

AWESOME was demonstrated to successfully compose
real-world extensions. Pluggable AOP, in contrast, uses
“toy” languages as a proof of the concept. To the best of
our knowledge, Reflex has not been shown to work with
AspectJ. We only found a plugin that implements a limited
subset of AspectJ. The plugin, however, does not advise As-

pectJ aspects correctly, emphasizing the general limitation
of the Reflex framework to support foreign advising [24].

The composition of COOL [27] and AspectJ [20] presents
an interesting case study with a representative complexity.
The two are sufficiently different, thus demanding interest-
ing design decisions to make them work together. Similar to
AWESOME, XAspects too explored a composition of COOL
and AspectJ. However, the XAspects weaver exhibits incor-
rect weaving behavior that may result in deadlock [22].

AWESOME is not limited to COOL and AspectJ. It can
be generally applied to combine any reactive aspect mecha-
nisms. To the best of our knowledge, all existing join point
and advice aspect extensions fall into this category. Other
more disparate aspect-oriented extensions are either non-
reactive aspect mechanisms, which are not composable, e.g.,
Hyper/J [34, 38], or they are not “oblivious” [7, 13, 14] and
can be composed trivially, e.g., Demeter [25, 26]. Aspect-
oriented features other than advising, such as introductions,
are easier to compose because it is easier to detect and re-
solve conflicts [16].

The problem of feature interactions in a multi-extension
composition does not rise in the context of a single-extension
AOP language. Therefore, related works on single-extension
weavers [3, 5, 19, 29, 30, 39, 42] do not address or solve this
problem.

10. Conclusion
This work studies the composition implementation problem
in constructing multi-extension weavers. We present a prac-
tical third-party composition framework, named AWESOME,
for composing multiple aspect extensions. The AWESOME
framework was built systematically. It implements a speci-
fied set of composition requirements. It provides a default
resolution of feature interactions in the composition. It also
provides means for customizing the default resolution to
comply with a given composition specification. AWESOME
was tested and evaluated on real-world aspect languages.
The runtime performance of compiled aspect programs is
practically unaffected by the extensible design of the frame-
work, making AWESOME also useful in practice.

AWESOME is unique in its approach to composing aspect
extensions by assembling an aspect compiler. In AWESOME,
an aspect mechanism is a plugin to the compile-time aspect
weaver. The AWESOME framework simplifies the creation
of new extensions, because writing a plugin is much simpler
than writing a complete compiler. In order to evaluate our
approach, we refactored the AspectJ ajc compiler and used
it as a basis for our multi-weaver platform. But the refactor-
ing of open source compilers is not a part of the integration
methodology.

The ajw, coolw, and awesomew weavers themselves are
also a modest contribution of this work. These AspectJ,
COOL, and COOLAJ compilers do not just have a cool de-
sign, but also awesome performance.

532

References
[1] J. Aldrich. Open modules: Modular reasoning about

advice. In Proceedings of the 19th European Conference
on Object-Oriented Programming (ECOOP’05), number
3586 in Lecture Notes in Computer Science, pages 144–168,
Glasgow, UK, July 25-29 2005. Springer Verlag.

[2] Proceedings of the 3rd International Conference on Aspect-
Oriented Software Development (AOSD’04), Mancaster, UK,
Mar. 17-21 2004. ACM Press.

[3] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An
overview of CaesarJ. In Rashid and Aksit [35], pages 135–
173.

[4] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
J. Lhoták, O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam,
and J. Tibble. abc: an extensible AspectJ compiler. In
Proceedings of the 4th International Conference on Aspect-
Oriented Software Development (AOSD’05), pages 87–98,
Chicago, Illinois, USA, Mar. 14-18 2005. ACM Press.

[5] P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins,
J. Lhoták, O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam,
and J. Tibble. abc: an extensible AspectJ compiler. In Rashid
and Aksit [35], pages 293–334.

[6] J. Bonér. What are the key issues for commercial AOP use:
how does AspectWerkz address them? In AOSD’04 [2],
pages 5–6.

[7] C. Clifton and G. T. Leavens. Obliviousness, modular reason-
ing, and the behavioral subtyping analogy. In Proceedings of
the AOSD’03 Workshop on Software-engineering Properties
of Languages for Aspect Technologies (SPLAT’03), Boston,
Massachusetts, Mar. 18 2003. AOSD’03, ACM Press.

[8] K. De Volder, J. Brichau, K. Mens, and T. D’Hondt. Logic
meta-programming, a framework for domain-specific aspect
programming languages. Unpublished, 2001.

[9] M. D’Hondt and T. D’Hondt. Is domain knowledge an as-
pect? In Proceedings of the ECOOP’99 International Work-
shop on Aspect-Oriented Programming, Lisbon, Portugal,
June 1999.

[10] Proceedings of the 17th European Conference on Object-
Oriented Programming (ECOOP’03), number 2743 in
Lecture Notes in Computer Science, Darmstadt, Germany,
July 21-25 2003. Springer Verlag.

[11] Proceedings of the AOSD’05 Workshop on Foundations of
Aspect-Oriented Languages (FAOL’05), Chicago, IL, USA,
Mar. 14 2005. ACM Press.

[12] R. E. Filman, T. Elrad, S. Clarke, and M. Akşit, editors.
Aspect-Oriented Software Development. Addison-Wesley,
Boston, 2005.

[13] R. E. Filman and D. P. Friedman. Aspect-oriented pro-
gramming is quantification and obliviousness. In P. Tarr,
L. Bergmans, M. Griss, and H. Ossher, editors, Proceedings
of the OOPSLA 2000 Workshop on Advanced Separation of
Concerns. Department of Computer Science, University of
Twente, The Netherlands, 2000.

[14] R. E. Filman and D. P. Friedman. Aspect-oriented program-
ming is quantification and obliviousness. In Filman et al.
[12], pages 21–35.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Professional Computing. Addison-Wesley, 1995.

[16] W. Havinga, I. Nagy, L. Bergmans, and M. Akşit. Detecting
and resolving ambiguities caused by inter-dependent intro-
ductions. In Proceedings of the 5th International Conference
on Aspect-Oriented Software Development (AOSD’06), pages
214–225, Bonn, Germany, Mar. 20-24 2006. ACM Press.

[17] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In
AOSD’04 [2], pages 26–35.

[18] Proceedings of the 21st International Conference on Software
Engineering (ICSE’99), Los Angeles, California, May 1999.
IEEE Computer Society.

[19] R. Jagadeesan, A. Jeffrey, and J. Riely. An untyped calculus
for aspect oriented programs. In ECOOP’03 [10], pages
54–73.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In Proceed-
ings of the 15th European Conference on Object-Oriented
Programming (ECOOP’01), number 2072 in Lecture Notes
in Computer Science, pages 327–353, Budapest, Hungary,
June 18-22 2001. Springer Verlag.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming.
In Proceedings of the 11th European Conference on Object-
Oriented Programming (ECOOP’97), number 1241 in Lec-
ture Notes in Computer Science, pages 220–242, Jyväskylä,
Finland, June 9-13 1997. Springer Verlag.

[22] S. Kojarski and D. H. Lorenz. Pluggable AOP: Designing as-
pect mechanisms for third-party composition. In Proceedings
of the 20th Annual Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA’05),
pages 247–263, San Diego, CA, USA, Oct. 16–20 2005.
ACM Press.

[23] S. Kojarski and D. H. Lorenz. Modeling aspect mechanisms:
A top-down approach. In Proceedings of the 28th Interna-
tional Conference on Software Engineering (ICSE’06), pages
212–221, Shanghai, China, May 20-28 2006. ACM Press.

[24] S. Kojarski and D. H. Lorenz. Identifying feature interactions
in aspect-oriented frameworks. In Proceedings of the
29th International Conference on Software Engineering
(ICSE’07), Minneapolis, MN, May 20-26 2007. IEEE
Computer Society.

[25] K. Lieberherr and D. H. Lorenz. Coupling Aspect-Oriented
and Adaptive Programming. In Filman et al. [12], pages
145–164.

[26] K. J. Lieberherr. Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns. PWS-Kent
Publishing, 1996.

[27] C. V. Lopes. D: A Language Framework for Distributed
Programming. PhD thesis, Northeastern University, 1997.

533

[28] D. H. Lorenz and S. Kojarski. Understanding aspect inter-
actions, co-advising and foreign advising. In Proceedings of
ECOOP’07 Second International Workshop on Aspects, De-
pendencies and Interactions, pages 23–28, Berlin, Germany,
July 30 2007.

[29] H. Masuhara and G. Kiczales. Modeling crosscutting in
aspect-oriented mechanisms. In ECOOP’03 [10], pages 2–
28.

[30] H. Masuhara, G. Kiczales, and C. Dutchyn. Compilation
semantics of aspect-oriented programs. In FAOL’05 [11],
pages 17–26.

[31] H. Masuhara, G. Kiczales, and C. Dutchyn. A compilation
and optimization model for aspect-oriented programs. In
Compiler Construction, number 2622 in Lecture Notes in
Computer Science, pages 46–60, 2003.

[32] G. C. Murphy, R. J. Walker, and E. L. A. Baniassad. Evalu-
ating emerging software development technologies: Lessons
learned from assessing aspect-oriented programming. IEEE
Transactions on Software Engineering, 25(4):438–455, 1999.

[33] G. C. Murphy, R. J. Walker, E. L. A. Baniassad, M. P.
Robillard, A. Lai, and M. A. Kersten. Does aspect-oriented
programming work? Commun. ACM, 44(10):75–77, Oct.
2001.

[34] H. Ossher and P. Tarr. Hyper/J: multi-dimensional separation
of concerns for Java. In Proceedings of the 22nd International
Conference on Software Engineering (ICSE’00), pages 734–
737, Limerick, Ireland, June 2000. ICSE’00, IEEE Computer
Society.

[35] A. Rashid and M. Aksit, editors. Transactions on Aspect-
Oriented Software Development I, number 3880 in Lecture
Notes in Computer Science. Springer Verlag, 2006.

[36] M. Shonle, K. Lieberherr, and A. Shah. XAspects: An exten-
sible system for domain specific aspect languages. In Com-
panion to the 18th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages
28–37, Anaheim, California, 2003. ACM Press.

[37] É. Tanter and J. Noyé. A versatile kernel for multi-language
AOP. In Proceedings of the 4th International Conference
on Generative Programming and Component Engineering
(GPCE’05), number 3676 in Lecture Notes in Computer
Science, pages 173–188, Tallin, Estonia, Sept. 29-Oct. 1
2005. Springer Verlag.

[38] P. L. Tarr, H. L. Ossher, W. H. Harrison, and S. M. Sutton,
Jr. N degrees of separation: Multi-dimentional separation of
concerns. In ICSE’99 [18], pages 107–119.

[39] D. Walker, S. Zdancewic, and J. Ligatti. A theory of aspects.
In Proceedings of the 7th ACM SIGPLAN International
Conference on Functional Programming, pages 127–139,
Uppsala, Sweden, Aug. 2003. ACM Press.

[40] R. J. Walker, E. L. A. Baniassad, and G. Murphy. Assessing
aspect-oriented programming and design. In S. Demeyer and
J. Bosch, editors, Object-Oriented Technology, ECOOP’98
Workshop Reader, number 1543 in Lecture Notes in Com-
puter Science, pages 433–434, Brussels, Belgium, July 1998.
Proceedings of the ECOOP’98 Workshops, Demos, and
Posters, Springer Verlag.

[41] R. J. Walker, E. L. A. Baniassad, and G. C. Murphy. An initial
assessment of aspect-oriented programming. In ICSE’99
[18], pages 120–130.

[42] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. ACM Trans. Prog. Lang. Syst., 26(5):890—
910, Sept. 2004.

534

