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Abstract. Aspect-oriented programming (AOP) controls tangling of
concerns by isolating aspects that cross-cut each other into building
blocks. Component-based programming supports software development
by isolating reusable building blocks that can be assembled and con-
nected in many different ways. We show how these concepts can be in-
tegrated by introducing a new component construct for programming
called aspectual collaborations. We explore how these collaborations can
be deployed, composed, and reused.

Aspectual collaborations allow us to capture, in separately compiled
units, cross-cutting behavior such as intercessionary advice, exception
handling, invariants, and generic behavior. These compiled units can
then be flexibly deployed once or several times into base applications
or composed with other collaborations. The implementation of a weaver
compiler for aspectual collaboration is described.

1 Introduction

Separation of concerns and modularity are at the heart of the programming pro-
cess. Concerns are conceptual units in which one decomposes a given problem.
Modules are software units in which one organizes software. Modular program-
ming is conducted by expressing programming concerns in modular units.

The key insight of Aspect-Oriented Programming (AOP) [23] is that module
boundaries seldom fit along all concern boundaries. The modular breakdown
captures some programming concerns, while other concerns, namely, crosscutting
concerns, are scattered throughout the units of modularity resulting in tangling
of the concerns’ code. (For a survey of AOP techniques see [10].)

In principle, AOP alleviates the problem of scattering and tangling by sep-
arately expressing each crosscutting concern in terms of its own modular struc-
ture, as an external aspectual unit, which can then be re-attached, across mod-
ular boundaries, to the host application. In practice, however, the state of the
art for encapsulating aspectual units leaves much to be desired.

The two leading AOP projects and de facto standards, AspectJ [4] and Hy-
perJ [19], exemplify a tradeoff between flexibility and structure. Following the
tradition of meta-object protocols [24] and open implementations [22], Aspect]J



Weaver AspectJ Aspectual Collaborations HyperJ
Emphasis Programming Components Software engineering
Approach Aspectual Composable Seperational
Aspect Aspect class Collaboration Hyper-slice
Aspect Hook Join point Join graph Hyper-module
Attachment (|Pointcut designator| Graph pattern matching Hyper-module
Structure - + +
Flexibility + + -
Symmetry - + +

Table 1. The aspectual spectrum

offers programming flexibility with minimal structural constraints. AspectJ dis-
criminates between methods, which capture base behavior, and aspectual units,
which affect the base behavior. Aspects can affect the base behavior, however,
methods cannot affect the aspectual unit.

HyperJ, on the other hand, emphasizes structured software engineering, even
at the expense of programming flexibility. HyperJ [38] is rooted in the subject-
oriented programming paradigm [16], which supports the merger and decompo-
sition of separately specified class hierarchies. Unlike AspectJ, HyperJ treats the
base and the aspectual behaviors symmetrically, that is, a hyper-slice can model
both the base and the aspectual unit.

The two approaches seem to suggest an aspectual spectrum for AOP lan-
guages (see Table 1). In this paper, we show that structured units and flexible
attachments are not necessarily mutually exclusive properties. We illustrate con-
cretely an aspectual language, in which the aspectual units are both structured
and flexible. The novelty of the new aspectual language lies in the following
characteristics:

— Well defined aspectual interface. The aspectual units emphasize encapsula-
tion above everything else. As a result, separate compilation of aspectual
units is made possible.

— Collaboration-oriented attachments. Attachments, the equivalent of join points
in AspectJ, are collaboration-oriented. That is, aspectual collaboration (hence-
forth AC), the equivalent of hyper-slices in Hyper/J, are parameterized by
a formal class graph. Collaborations are attached to host programs using
graph pattern matching, which is a generalization of pointcut designators in
AspectJ and hyper-modules in HyperJ.

1.1 Well defined aspectual interface
An aspectual interface specifies the contract enforced between the aspectual unit

and the host program at every attachment. The aspectual interface controls
not only how the host program sees the aspectual unit and how it sees the



host program, but also what behavior is expected and what is provided at each
attachment occurrence.

The interface must balance the need for well-definedness against the need
for flexibility. For example, the trivially complete interface (requiring a copy
of the host application) surely allows rich behavior to be woven in, but severely
restricts where the aspectual unit can be attached. The trivially empty interface,
on the other hand, provides ample opportunities for reuse, but offers no interface
for behavior. The interface must thus be structured enough so that interesting
aspects can be written against it on the aspectual unit side, yet flexible enough
to accommodate a wide variety of host programs on the application side.

An immediate benefit of a well defined aspectual interface is the possibility
to separately compile aspectual units before composing them. The aspectual
interface allows the weaver compiler to analyze aspectual units and the host
program in isolation, and then to derive the meaning of the combined whole
by additionally analyzing how they have been attached together. This baseline
for how much analysis is needed to enable compilation of aspectual interfaces
influences where the balance between flexibility and analysis lands.

The difficulty is to retain some measure of generality in the aspectual behav-
ior. For example, an AC for the standard logging aspect should be applicable to
methods of any signature, while still have an interface specific enough to enable
separate compilation.

1.2 Collaboration-oriented attachments

We take the broad view of considering an aspectual unit to generally be a multi-
party behavior involving several roles. We show that AOP is made easier when
each aspect is programmed against a generic Object-Oriented (O0O) model rather
than against a single method-like or class-like construct. We generalized the
model of join points to include also join graphs. An aspect’s formal class graph
is adapted to an actual class graph, in the form of a concrete data model or other
generic data models. Optionally, traversal-related aspects as well as adapters can
be written using traversal specifications, which makes the aspects and adapters
more reusable. A traversal-related concern is a special kind of collaboration-
oriented concern where the collaboration consists of traversing through a group
of objects and executing code (advice) during the traversal.

1.3 Aspectual Collaborations outlined
An AC has the following ingredients:

— A skeleton collaboration as an intrinsically named graph of participants,
where the nodes are formal classes, and the edges are is-a and has-a re-
lations and functional relations.

— Required and provided interfaces:

o A required interface, which consists of all expected features, declares
holes in the implementation. These need to be provided to complete the
collaboration.



o A provided interface, of exported features, which can be exported indi-
vidually, or in groups (by a participant or a collaboration). The provided
interface allows the behaviors of the AC to be accessed from the outside.

— Aspectual methods, which are able to intercede in invocations of other meth-
ods. These are in general applicable to methods of any signature, but can
be constrained to work only with a more limited set of signatures in order
to gain functionality.

An AC definition has the following syntactic structure:

collaboration name

{ extends collaboration }*

{ participant formal_class }*

{ [ match roles | attach collaboration }*

Outline The outline of the paper is as follows. The next section (Section 2)
presents the idea of AC through simple examples, which illustrates the notion of
required and provide interfaces. In Section 3, attachments and join graphs are
described, delving into details of how state can be shared between deployments
(attachments) of the collaborations, and illustrating how to combine collabo-
rations to form larger units. The topic of aspectual methods is explained in
Section 4. Section 5 describes the implementation of the AC weaver compiler.
Related work is brought in Section 6. Section 7 concludes and describes future
work.

2 Aspectual Collaborations by Example

A simple aspectual collaboration, without the optional extends and match-
attach clauses, looks just like a Java package, substituting collaboration for
package and participant for class. In fact, collaborations are a superset of
packages,! and a package is accepted as a (grounded) collaboration even without
substituting the keywords. Thus, the host package variables (Listing 1.1) is a legal
collaboration.

Unlike a package, however, a collaboration is generally a specification with
“holes”: a participant can reference expected features (attributes and methods)
as if they were defined. In adviceSetGetAttribute (Listing 1.2), the HasAttribute
participant defines a pair of set and get methods for an expected attribute,
which will be provided only later. The double braces around the method bodies
should be read as if they were a single brace. Their sole purpose is to allow our
implementation to avoid parsing full Java. The limited keyword allows for a
“frozen” participant (such as String and int), for which all modifications are
prohibited, to play the role of AttributeType.

Generally, an AC is a formal class graph (a collaboration), which can be
superimposed [20] on another class graph. We refer to the act of superimposing

! The association between collaborations and packages is fundamental to our imple-
mentation: An AC is separately compiled into .class files of a single package.



Listing 1.1. A simple host package

1 package variables;
2 class Vars {

3 String foo;

+« Baz bar;

s }

¢ class Baz {

7 Vars var;

s }

Listing 1.2. Defining generic setters and getters

1 collaboration adviceSetGetAttribute;
» participant HasAttribute {
3 expected AttributeType aName;
« public void set(AttributeType aName) {{ this.aName = aName; }}
s public AttributeType get() {{ return aName; }}
6
}

7 limited participant AttributeType;

as attaching a collaboration to a host collaboration; the host collaboration is
said to have been decorated. Expected features declare holes in the formal class
graph, while all other features are introduced by the attachment; and aspectual
methods (Section 4) can also intercede in the invocation of methods to which
they are attached. Expected and aspectual features offer two alternative ways,
explicit and implicit, respectively, to transfer control and information from one
collaboration to another.

The adviceSetGetAttribute collaboration (Listing 1.2) defines a formal class
graph consisting of two participants, HasAttribute and AttributeType, where the
former is expected to have a (direct) reference to the latter. When superimposed
on an actual class graph, the adviceSetGetAttribute aspectual collaboration will
introduce a setter and a getter for the expected reference. The adviceSetGetFoo
collaboration (Listing 1.3), for example, is created by attaching adviceSetGetAt-
tribute to the contents of the variables package to introduce a setter and getter
for the foo field of Vars.

A collaboration definition incrementally builds an AC by first declaring a
skeleton collaboration (a set of participants) and then attaching additional col-
laborations to that skeleton. The skeleton collaboration’s participants (a formal
class graph) can be directly declared (e.g., HasAttribute and AttributeType in ad-
viceSetGetAttribute) or implicitly acquired from another collaboration using the
extends keyword (e.g., variables in adviceSetGetFoo). Once built, the skeleton
collaboration can be decorated by attaching any number of collaborations to
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Listing 1.3. Defining a foo setter getter

collaboration adviceSetGetFoo;
extends variables;
attach adviceSetGetAttribute {
Vars += HasAttribute {
provide aName with foo;
export set as set_foo;
export get as get_foo;
}
String += AttributeType;

}

it (e.g., adviceSetGetAttribute is superimposed on variables in adviceSetGetFoo).
The final formal class graph is the result of the AC declaration.

The += operators in adviceSetGetFoo (Listing 1.3) emphasize that the at-
tached roles HasAttribute and AttributeType may have a structural and functional
affect on the local participants Vars and String. Vars is decorated with two meth-
ods by the behavior introduced in HasAttribute. In addition to the introduction,
the += operator also redirects all references (if any — there are none in this ex-
ample) from the inserted type, HasAttribute, to the destination type, Vars. String,
on the other hand, cannot be decorated at all, but allowed as a lvalue of +=
thanks to the limited keyword in adviceSetGetAttribute. However, by redirecting
references from AttributeType to String, we achieve type parameterization as a
degenerate case of attachment [1,42].

An AC can be extended and attached to any host collaboration, not just a
(grounded) package. When an AC is extended, the host collaboration can reuse
its formal class graph as if it was defined locally. When an AC is attached to
a host collaboration, the attached formal class graph is mapped against the
host formal class graph. Any expected feature in the attached AC needs to
be either mapped to a concrete feature, or exported for later mapping. For
example, the adviceSetGetTwoAttributes collaboration (Listing 1.4) first extends
adviceSetGetAttribute and then attaches the adviceSetGetAttribute collaboration
to itself, resulting in a collaboration that introduces setters and getters for two
attributes.

3 Join Graphs and Multiple Attachments

The detail of how one attachment of a collaboration is mapped onto another
constitutes a Join Graph (JG). A JG is evaluated in the context of both the
host collaboration and the attached collaboration. The JG is specified at the use
of the collaboration, as opposed to the definition, and only references the col-
laboration’s interface. Much of the reuse of aspectual collaborations stems from
the decoupling of use from implementation, which is made possible by the rich
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Listing 1.4. Attaching a collaboration to itself

collaboration adviceSetGetTwoAttributes;
extends adviceSetGetAttribute {
export AttributeType as AttributeTypeA {
export set as setA;
export get as getA;
}
}

attach adviceSetGetAttribute {
adviceSetGetTwoAttributes.HasAttribute += HasAttribute {
export aName as bName;
export set as setB;
export get as getB;
}

export AttributeType as AttributeTypeB;

}

interface of collaborations. JGs can be written manually, as in adviceSetGetFoo,
or generated with a matching specification template. In this section, we describe
the latter case.

The adviceSetGetFoo collaboration demonstrated attaching adviceSetGetAt-
tribute to introduce a setter and a getter method for the variable foo. It would
be unsatisfactory, however, to have to write such an attachment for each vari-
able for which a setter and a getter is needed. Using adviceSetGet TwoAttributes
instead of adviceSetGetAttribute would cut the effort in half, but won’t solve
the fundamental problem: the repeated attachments would all look very similar,
with the only changes being the type and name of the variable and the class it
is defined on.

To this end, ACs offer matching of template attachments with automatic
generation of bindings for their variables. A matching specification generates
multiple JGs. Listing 1.5 shows a concrete example: the attach clause looks very
similar, but with some identifiers replaced by variable references (within < ...>).
Indeed, for the match

(HasFields — Vars, fieldName — foo, FieldType — String)

the attachment is equivalent to that in Listing 1.2. There are two novelties in
listing 1.5: the matching clause and the parameterization over hostcollab.

3.1 Matching

In order to attach getters and setters for some instance variable in the output
collaboration, the name of the class it is defined in, its type, and name are re-
quired. These data can then be bound to identifiers used in attachment template
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Listing 1.5. Defining all setters and getters

collaboration addAllSettersGetters(hostcollab);
extends hostcollab;
match {
role <HasFields> {
<FieldType> <fieldName>;

} attach adviceSetGetAttribute {
<HasFields> += HasAttribute {
provide aName with <fieldName>;
export set as set_<fieldName>;
export get as get_<fieldName>;

<FieldType> += AttributeType;

}

to generate a legal attachment. We can generate these bindings by interpreting
the match clause as a subgraph of the output collaboration, finding all matches.

The constraints in addAllSettersGetters are straight-forward: they match ev-
ery visible 2 instance variable in every participant of the output collaboration.
The keyword role is used in place of participant to highlight that this is not
a declaration of—but rather a pattern to match against—a participant. Each
match is applied to the attach template to generate a JG for adviceSetGetAt-
tribute, mapping its participants to participants in the output collaboration.

The export-as just renames the new pair of methods: addAllSettersGetters
exports the get and set methods from adviceSetGetAttribute under names that
are influenced by the field name they are matched to. Similarly, the actual field
(defined on whatever HasFieldPart is matched to) is provided to adviceSet-
GetAttribute to allow the code there to access it. adviceSetGetAttribute in the
interface.

The matching clause in Listing 1.5 has nothing but variables, but in gen-
eral, a matching clause will contain hardwired names as well, which significantly
constrain the possible matches. More complicated matches can match every self
variable, every pair of getters and setters (illustrated in Section 4.3), or in general
any constraint expressible by a subgraph.

3.2 Parameterization

The addAllSettersGetters collaboration also illustrates parameterization. It refers
to hostcollab, which is an argument to the collaboration, allowing us to reuse
the collaboration by applying it to any other collaboration. By extending the
argument, addAllSettersGetters defines a generic mixin-like [37] collaboration.

2 In this context visibility is a function of exported rather than public keywords.



Listing 1.6. Attaching all setters and getters

1 collaboration varsgns;
> extends addAllSettersGetters(variables);

To use the generic getter and setter adder, we need to apply it to the collabo-
ration with the variables in need of getters and setters. Listing 1.6 shows varsgns
doing this, by extending the applied addAllSettersGetters. Since addAllSettersGet-
ters extends its argument, we can deduce that varsgns extends variables.

The matching specification in addAllSettersGetters produces the following
matching bindings when applied to variables:

(HasFields — Vars, fieldName — foo, FieldType — String)
(HasFields — Vars, fieldName — bar, FieldType — Baz)
(HasFields — Baz, fieldName > var, FieldType — Vars)

The attachment template is evaluated with each set of the bindings separately,
attaching and exporting in Vars the methods get _bar and set_bar as well as
get_foo and set_foo, and in Baz the methods set_var and get_var.

4 Aspectual Methods, Sharing, and State

4.1 Aspects with state

Listing 1.7 implements a simple collaboration which maintains some state. Two
aspectual methods keep count of how many times inc is called between resets.
We’ll use this collaboration to introduce the concepts of aspectual methods and
sharing of state between attachments of a collaboration. The collaboration has
two commented-out keywords; these are for use in the discussion of sharing, but
can be safely ignored for now.

4.2 Aspectual Methods

The novelty of Listing 1.7 are the aspectual methods reset and inc. Unlike
expected methods and fields which declare explicit holes in the encapsulation
interface of a collaboration—where information and control flow can cross collab-
oration boundaries—aspectual methods are implicit holes. In the terminology
of Filman and Friedman [14], aspectual methods allow the host collaboration
to be oblivious to invocation of such aspectual behavior. We prefer to think of
aspectual methods as intercessionary, as they have the option to intercede in
the invocation of advised methods.
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Listing 1.7. Count each getter between setters.

collaboration counter;
participant Counted {
/*shared=/ /+staticx/ int count;
aspectual RV_1 reset(HM_1 e) {{
count = 0;
return e.invoke();
1}
aspectual RV_2 inc(HM_2 e) {{
count++;
return e.invoke();

H

Aspectual methods are declared with the keyword aspectual, followed by a
method signature with one argument and return value whose types are either
undefined, or participants defined locally to the collaboration. 3

Aspectual methods are used by wrapping them around host methods. Al-
though completely possible, they are never called directly. The attachment spec-
ification around foo do bar sets up aspectual method bar to intercept all in-
vocations of the wrapped — or host — method foo. The API for the objects
representing the wrapped methods (types HM_1 and HM_2 in counter) and re-
turn values (RV_1, RV_2) allows reset and inc to invoke the original method,
and return the result in a type safe manner without knowing any details about
the methods they are wrapping.

Thunks (closure objects) allow separately compiled code to invoke methods
with full support for arguments and return values. The aspectual method takes
an object representing a thunk of the wrapped method’s invocation as an ar-
gument, and returns an object representing its return value; these objects are
created by code generated by our compiler during the attachment phase (see
Section 5 for details and consequences of this approach).

An intercepted invocation opens up a number of options to an aspectual
method; it can invoke the host method at any time, multiple times or not at
all (returning either a default return value, or perhaps a return value from a
previous invocation). Both method thunks and return value objects are plain
Java objects, and can be stored in data-structures, passed as arguments, or even
persisted to the file system. The aspectual method is able to catch exceptions,
and under pain of loss of general applicability, also inspect and modify arguments
and returned values.

3 The signatures for each aspectual method do not absolutely have to be distinct, but
for the purposes of this paper, we will assume they are — having the same types for
two such methods significantly constrains the legal attachments of the collaboration.

10
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Listing 1.8. Counting all the getters and setters.

collaboration usecounter;
extends varsgns;
match {
role <Part> {
<FType> get_<name>();
void set_<name>(...,.<FType>,...);

} attach counter {
<Part> += Counted {
export count as count_<name>;
around get_<name> do inc;
around set_<name> do reset;

}
}

In this case, counter’s only participant Counted has two aspectual methods,
both referencing the same instance variable count. Both implement before ad-
vice, by doing their intercessionary behavior before invoking the host method
and returning the result.

4.3 A counter example

To illustrate, we present usecounter in Listing 1.8, which extends the collabora-
tion varsgns. Thus, without inspecting the listing, we know usecounter will have
the same structure as varsgns, with two participants, three variables, and a getter
and setter for each variable. The matching clause of usecounter illustrates hard-
wiring constraints and multiple occurrences of a variable. The variable <Part>
will be matched against all participants that have at least one pair of getter and
setter methods, where the getter and setter methods must have similar names
and talk about the same type. The setter method may have multiple arguments,
but the type of the getter method must occur at least once, and the setter
must return void. Each such pair will generate a match, which then becomes an
attachment of the counter collaboration.

As shown, the counter collaboration is attached three times. Three sep-
arate count variables are exported as Vars.count foo, Vars.count bar, and
Baz.count_vars. These are instance variables, so are separate for each instance
of the two classes.

Each time a getter (get_foo, get_bar, get_baz) or setter (set_foo, set_bar,
set_baz) is called, the method call is packaged into a thunk and passed to inc
(for getters) or reset (for setters). The aspectual method then modifies (incre-
menting or setting to zero) the appropriate count variable, and then invokes the
original method, returning whatever that invocation returns. The generated code
unpackages the returned value, and if a getter was called, extracts the contained

11
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Listing 1.9. Matching Doubly linked Participants.

collaboration fancyusecounter;
extends varsgns;
match {
role <Part1> {
<Part2> get_<namel>();
void set_<namel>(...,<Part2>,...);

role <Part2> {
<Partl> get_<name2>();
void set_<name2>(...,<Part1>,...);

} attach counter {
<Part1> += Counted {
export count as count_<namel>;
around get_<namel> do inc;
around set_<namel> do reset;

}
}

result, returning that to the original caller. Thus, the collaboration counts how
many times a getter is called between calls to the corresponding setter.

Looking back at the very first mention of variables, we see that Vars and Baz
have variables that point to each other. As an aside from our exposition, let us
assume that we want to only decorate such pairs of variables with counting, to
further illustrate the expressiveness of the match patterns. Listing 1.9 shows a
match clause that only matches pairs of getters and setters that implement a
doubly linked relationship. * The single attachment is not a typo. We only attach
to one of the two pairs at a time; the other will be dealt with by symmetry of
the match pattern.

4.4 Sharing

The state (the count) local to the counter collaboration is duplicated for each
attachment in usecounter — the collaboration counts calls to get between calls to
set for each object separately. It is natural to ask whether other arrangements
are possible — indeed, one can imagine wanting to share the count between all
attachments to a class or all attachments in one collaboration to any class.
These are all possible by using the shared keyword and its close cousin static
(as commented out in Listing 1.7). The analogy is clear: static shares a member
between all instance of a class, allowing all instances to access it, but hindering

* Somewhat surprisingly, this is also matched by a self-reference. We can introduce
mutual-exclusion constraints on variables to avoid that case.

12



variables set&get set&get counter

s S 1

variables & counter variables set&get counter variables (set&get &
set&get counter)
(variables & variables & variables &
set&get) & set&get & (set&get &
counter counter counter)

Fig. 1. Sequential attachment (left), simultaneous attachment (middle), and composi-
tion then attachment (right) of Collaborations

static members from access per-instance members. Likewise, shared members
are shared between all attachments of a collaboration, but cannot access per-
attachment features.

Were count marked static, then just like a normal variable, it would be
shared between each instance (but it would still be duplicated three times) — the
collaboration would count calls to get between calls to set for any object, but
count the three methods variables’ getters and setters separately.

However, were the count field shared instead, it would be shared among
each attachment of the collaboration, so the collaboration would count calls to
any of the getters for an object, between any of the setters. Each object would
be counted separately; by combining shared and static we can have one count
shared between all objects and all methods.

4.5 Sharing vs. Composition

We cannot really call what usecounter (Listing 1.8) does composition; it builds a
collaboration with counted getters and setters by first adding getters and setters
to a host with variables, and then adding counters to that. Predictably; we would
like to do it the other way around (See Fig 1). In addition to the presentation
so far (the left side of the figure), we can also invert the order and first compose
counting and getters and setters into one collaboration before adding that to the
variables (right side of figure), or just add counting and getters and setters at
once (middle).

Listing 1.10 shows the composition of getters and setters (from Listing 1.2)
and counters — we assume the counter from Listing 1.7 with the shared keyword
in the program text (not commented out). The resulting countedGetSet collabo-
ration adds counted getters and setters to any variable; the twist being that we
want the counter instance variable to be shared between all attachments of the
collaboration. A general issue when mixing sharing and composition is how to

13



Listing 1.10. Counting all the getters and setters.

1 collaboration countedGetSet;
2 extends adviceSetGetAttribute;
s attach reshared counter {

+« HasAttribute += Counted {

5 export count;

6 around get do ingc;
7 around set do reset;
s}

o }

deal with shared features; at some point we will no longer wish to share a shared
feature.

Take as an example our counting collaboration; countedGetSet attaches it
once to the getters and setters 5. The attached count variable is shared between
that one attachment (somewhat trivial sharing).

The question is now whether count will be shared when we attach counted-
GetSet several (three) times to variables to create sharedvarsgns. ® We can take
the argument a step further: if we attach sharedvarsgns to another collaboration
several times, will count still be shared globally, or will the getters and setters
of each attachment have a separate one?

We cannot add sharing information to features of a collaboration from the
outside, as shared features (like static features) cannot refer to non-shared (non-
static) features, and we only know what refers to what at compile time. However,
we can add sharing to a whole collaboration, or annotate features as shared at
the source level, and once annotated, selectively decide when to remove sharing.

A collaboration’s sharing annotation doesn’t survive a composition, unless
kept alive with the reshared keyword in the attachment. This is exactly what
countedGetSet does; it attaches counter as reshared, so the count variable will
be shared between all attachments of countedGetSet to a collaboration.

5 Implementation

The prototype compiler for aspectual collaborations follows a fundamental de-
sign: collaborations are compiled separately, and composed at the object-code
level. The compiler works at the Java byte code level, which turns out to be
very convenient since it provides a fully disambiguated version of the collabora-
tion. The format of Java .class files lends itself to easy renaming of members,
re-targeting references to point to other members, and moving call graphs from

5 We know trivially that counter is attached exactly once, because countedGetSet has
an attach without a matching clause.

5 To conserve space, we elide showing that composition, as it is identical to Listing 1.5,
apart from replacing adviceSetGetAttribute with countedGetSet.

14
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Fig. 2. A data flow over-view of the compiler for Aspectual Collaboration.

one group of classes to another. Figure 2 is a data-flow road-map of how collab-
orations are compiled to executable programs.

5.1 Compiling collaborations

W.l.o.g., collaborations are assumed to be of a simplified form (without extend
and match). Depending on the form of the collaboration, the participants or
attachments may already be simplified. Otherwise, all collaborations are first
simplified to a set of participants and a sequence of attachments as follows. The
extends clause is inlined by cloning the extended collaboration. This is easily
achieved by creating empty participants in the same shape as the extended col-
laboration and attaching it to the newly created participants, exporting every
feature. The simplification of the matches to a sequence of attachments is de-
layed until after the participants have been compiled, to allow matching against
bytecodes, which is much more convenient.

For simplified collaborations, participants are compiled by transliterating
them to Java and compiling with an off-the-shelf Java compiler. The translitera-
tion replaces collaboration with package, participant with class, comments
out all additional keywords we have introduced (such as sharing, aspectual,
expected), and creating stub bodies for expected methods. After compilation,
the .class files are annotated with the keywords, so as to ensure that features
are treated correctly in subsequent stages. The JVM definition [27] ensures that

15



the annotated bytecodes can still be used on all JVMs (a JVM must ignore all
annotations it doesn’t understand.) Collaborations can then be unit-tested be-
fore composing them by generating stub code for testing. Thus, we leverage the
fact that all collaborations are legal packages.

Once the participants have been compiled to . class files, the matching speci-
fications (if any) are matched against the compiled classes to generate a sequence
of matched name bindings. The attachment template for the matching specifi-
cation is applied to these name bindings, generating a sequence of complete
attachments (Join Graph (JG)s). An error is reported if any of the generated
attachments is not complete.

5.2 Attachments

The brunt of the implementation effort is the attachment of collaborations ac-
cording to the complete attachment specifications. An attachment is processed
in two stages: first all the participants of the attached collaboration are inserted
into the output collaboration, and then each now-decorated output participant is
linked according to the attachment specifications. The stages are delineated; the
insertion only worries about inter-participant references, while linking is purely
intra-participant.

5.3 Insertion

An attached collaboration is physically inserted into the participants of the out-
put collaboration. The += operators in the attachment specifications specify
which participant plays which role, which are interpreted as inserting from the
right hand side into the left.

This insertion is achieved by copying the bytecodes from the attached par-
ticipant into the output participant, under a renaming map. The renaming map
consistently renames participant and feature references, so that all features are
renamed to unique names, and all participant references that used to reference
the attached participants now reference the corresponding output participant.

The name map is what allows limited participants to be mapped to non-
collaboration types. Limited participants are guaranteed not to need insertion
of any bytecodes, so the name-map from the limited participant to whichever
participant or class (or even primitive type) that is playing that role suffices
to redirect all references from the limited participant to the new type. This
incidentally is precisely how one suggestion of parameterized Java [3] works.

Fields and Methods are alpha converted to unique (and unpronounceable)
names in order to implement the default action of not exporting attached features
and to avoid name clashes with existing features in the output participant. Since
we assume that collaborations are closed, we can find all references to a renamed
feature and modify those to use the new name. The alpha conversion doesn’t
affect inter- or intra-participant reference graphs
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Some care needs to be taken to not break inheritance and overriding of
methods. An overriding method needs to be renamed exactly like the overrid-
den method, in order to work with Java’s late method dispatch mechanism. ”
This unfortunately implies that if we override a method inherited from a non-
collaboration superclass (for example, toString from Object) in both the out-
put participant and the attached participant, we are guaranteed to get a name
clash. Such cases must be dealt with by the user, as it is seems unlikely that any
default heuristic will do the right thing in most cases. Similarly, the instance
initialization method <init> must have that name if it is to be invoked by the
bytecode generated to instantiate a new object. However, the predictability of
initialization makes it possible for us to provide sane default behavior for these
cases.

5.4 Linking

Once the bytecodes have been inserted into the output collaboration, we need
to link up the code from two collaborations, if we wish to ever have control or
information flow between them.

Ezport. The simplest form of linking (and typically performed last, due to in-
teractions with provides) is to export a feature. Even non-hidden features can
be exported—in both cases, an export is equivalent to renaming the feature and
all references to it.

A small complication is that a feature can only be exported once. This is due
to the intrinsic naming of features: since there is only one feature, it can have only
one name. With methods, we could work around this by generating forwarding
methods, but this approach would not work with fields; thus for regularity, we
limit features to being exported at most once per collaboration.

Provide. When we have an expected feature in the same participant as another
feature with ezactly the same signature, we can provide the latter to the former.
Providing is implemented as half of an export—all references to the expected
feature are redirected to the provided one, but the expected feature is not re-
named, but rather removed. Thus the expected and provided feature are now
just one—the provided.

The interaction alluded to in exports is that once provided, any export of
the expected feature actually exports the provided feature. This may lead to
unexpected errors if we also try to export the provided feature — since the two
are now just one feature, it can be exported at most once. However, this caveat
seems preferable to the alternative of forbidding the export of provided expected
features.

Note that the expected and provided features do not need to come from
different collaborations—in fact, the only requirement is that they are in the

7 However, there is no restriction that overloaded methods need to be renamed iden-
tically, as overloading is decided statically at compile time.
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same output participant and have the same signature. Expected methods can
be used to decouple interface and implementation even within a collaboration.
Similar arguments apply to aspectual methods.

Around. The most involved linking operation is the wrapping of aspectual meth-
ods around host methods. When a host method is wrapped with an aspectual
method, we need to proceed in a number of steps:

1. The original host method is renamed to a unique name.

2. depending on the signature of the host method, we generate a HostMethod
class to make closures of calls to that method (to hold receiver and argu-
ments), and a ReturnValue class to capture the result (a returned value or
exception). The HostMethod class has an invoke method that calls the re-
named original host method, creating a ReturnValue object from its return
value. The names of the generated classes come from the signature of the
aspectual method.

3. A new host method is generated to create a HostMethod object with the
arguments (if any) to the method, and invoke the aspectual method with
this object as an argument. The returned object is necessarily a ReturnValue
(as per the signature of the aspectual method) which is unpacked to reveal
the wrapped return value, which is returned to the caller of the wrapped
method.

The actual implementation uses a template collaboration for the generated
code, which is recursively processed by the compiler and inserted and linked into
the participants using provide statements.

There is some subtlety involved in aspectual methods; while the names Host-
Method and ReturnValue are influenced by the signature of the aspectual method,
it is unsafe to have them be those of the original signature—more to the point,
they cannot be the same for each attachment. This is obvious after a moment’s
thought: if we wrap the same aspectual method around two host methods of
differing types, we now have two pairs of generated classes with the same name.

It is tempting to keep the signature of the aspectual method the same, and
use the declared HostMethod and ReturnValue as common super-types of all
attachment generated classes. The returned ReturnValue in step 3 would now
have to be downcast to the proper subclass to extract the returned value, but
this would seem to work as the HostMethod we instantiate in the same step
only returns the expected ReturnValue. Unfortunately, this too is unsafe: since
HostMethod and ReturnValue are first class objects, there is nothing to guarantee
that the aspectual method plays nice and returns the ReturnValue that came
from the thunk it was passed. It could just as well return one from a different
attachment—containing a different type result—that it got via a shared global
variable. This would result in the downcast of step 3 step failing.

In effect, the HostMethod and ReturnValue are ezistential types; they are
different for each occurrence. We implement this by recognizing aspectual meth-
ods in the insertion stage and mapping the signature types differently for each
attachment.
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6 Related work

Adaptive PlugésPlay (AP&P) components [32] and the follow-on report [25] are
the immediate precursors to aspectual collaborations. AP&P components are
rooted in Holland’s executable contracts [18] and in Rondo [31]. This work builds
on [25], but with significant modifications from experience with implementation,
and with a highly modified attachment / matching model. The capability to
have refinement, not only between collaborations but also between adapters, is
also new. However, we retain the goals and direction of AP&P components. In
naming our modules “aspectual collaborations” and not just collaborations [5],
we want to improve the distinction between collaborations that only offer new
functions and collaborations that can also affect other collaborations in a cross-
cutting way.

Mezini and Herrmann [17] discuss a software engineering environment ca-
pable of combining dynamic plugability, separate compilation, and aspectual
attachment. It is unclear how their PIROL system deals with type safety.

AspectJ from Xerox PARC [40] is also an immediate precursor of aspec-
tual collaborations and has significantly benefited this paper. In her thesis [28]
supported by Gregor Kiczales’ team at Xerox PARC, Crista Lopes first imple-
mented the synchronization aspect COOL [30] and then the data transfer aspect
RIDL [29]. It was clear that both aspect implementations had something in
common that needed to be factored out. AspectJ grew out of this attempt, as a
[successful] attempt to add general aspects as an integrated language feature to
Java. As a consequence of their tight integration with the host program, AspectJ
aspects are not as reusable as they could be. By following a modular approach,
we hope to make aspectual collaborations easier to understand, reuse and modify
than Aspectd aspects.

Multi-dimensional Separation of Concerns and the Hyper/J work [39] gen-
eralizes the ideas behind Subject-Oriented Programming [16,33] by moving to
finer grained units of combination. A Hyperslice is a named set of methods and
fields in a set of classes. The slice can be added to new classes in a very similar
way to collaborations. Similarly to our reuse of a Java compiler for type checking,
we could likely have reused Hyper/J for weaving together our collaborations. We
chose not to as our needs are very simple, and it seemed an equal amount of
work to write our own class munger as to interface with Hyper/J.

Clarke and Walker [7] introduce the concept of composition patterns that is
very similar to our aspectual collaborations. However, composition patterns are
intended to be used at the design level to model aspects using an extension of
UML while our work concentrates on the programming language level. It is also
unclear how composition patterns capture multiple attachments. [6] compares
how well Hyper/J and Aspect/J can capture composition patterns.

Tarr and Ossher also discuss the need for sharing annotations in [34], which
this paper addresses.

Context classes [36] by Seiter et al. have a similar purpose as aspectual col-
laborations. A method invocation can be modified by a context class by adding
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code before and after nodes and edges. However, the notions of adapters and a
participant graph are absent.

The Catalysis method [9] has a strong emphasis on modeling collaborations.
There are both commonalities and differences between Catalysis collaborations
and our collaborations. In both works, collaborations are handled in a similar
way. While Catalysis uses a common model of attributes we use a participant
graph. One key distinguishing feature is that our collaborations have built-in
support to express aspectual decompositions while Catalysis collaborations don’t
explicitly have this feature.

In the mizin-layers approach [37], collaborations are implemented as mixins
(outer mixins) that encapsulate other mixins (inner mixins). An outer mixin is
called a mizin layer. The super-parameter is specified at the level of a mixin-layer
(collaboration). By explicitly representing collaborations as mixin layers and by
defining the super-parameter at the level of collaborations, Smaragdakis and
Batory provide a good technique to programming with behavioral collaborations
involving several classes.

Feature models are used in [8] to capture the reusability and configurability
aspect of software. Feature models help to separate components and the config-
uration knowledge for those components. In general, a feature is implemented
by a combination of components and aspects. Our work on adapters for as-
pectual collaborations helps to better express configuration of the aspects and
components.

An early paper on binary component adaptation, a technique used in this
paper, is [21].

The ABB Aspect architecture [2] is a commercial system that uses AC with
only one participant. This shows that even with this significant restriction you
can build useful industrial control systems.

Erik Ernst has addressed issues of collaborations that are relevant to our
work but which we have not yet integrated. The notion of family polymorphism
[12] is useful for AC and as the example in [13] demonstrates, the programming
language gbeta can simulate basic AC. However, gbeta does not directly support
(yet) composite aspectual collaborations.

7 Conclusion

An AOP problem addressed by several authors, (e.g., [11]) is that aspects may
be tightly integrated into other code, and therefore it is difficult to tease out
and reuse them. The reason why aspects are tightly integrated with other code
is the lack of an interface between the aspectual unit and the rest of the system.
In this paper, we address this problem. We show that writing aspects against
formal participant graphs, and attaching them to other participant graphs, helps
to make the aspects more abstract and reusable.

The paper presents aspectual collaborations, a new module with support
for aspectual behavior and separate compilation. An AC comprises aspectual
behavior (expressed as Java code with holes) written over a formal class graph;
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a way of specifying how such a formal class graph is to be attached to a host
class graph; and a matching mechanism for generating such attachments.

We show how the decomposition allows us to implement separate compilation
of aspectual and additive behavior; allows composition and parameterization of
collaborations; and allows transparently interface with existing Java programs.
We describe our prototype implementation of a weaver compiler for aspectual
collaborations in Java.

7.1 Future implementation issues

There are several subtle implementation issues that need to be dealt with in
future work. We mention the three main ones:

Parameterization. Separately compiling collaborations is desirable. However,
parameterized collaborations leaves vital information undeclared until applica-
tion time. The chains of application can be made arbitrarily long, which makes
parameterized collaborations difficult to compile. Currently, the system is able
to compile all participants directly defined in a parameterized collaboration, but
not any attachments or extending other collaborations.

Matching. Somewhat counter-intuitively, adding variables to a matching specifi-
cation will often increase the number of attachments generated. This is because
all distinct matches must be generated, so a specification with fewer variables
will have fewer possible distinct matches. Of course, adding constraints without
variables to the matching specification will tend to limit the number of matches,
as per intuition.

Sharing. The actual implementation of sharing falls slightly behind the design
presented. Rather than shared features being shared between all attachments of
a collaboration, the system shares them between all attachments with the same
participant bindings but possibly different feature bindings. This is a last-minute
concession to type safety that was only discovered in the course of implementing
the compiler. We have a workaround that reorganizes shared state to a sepa-
rate class, but it is still unsatisfactory from both an elegance and completeness
standpoint.

7.2 Other future work

In addition to those implementation issues, the following are natural extensions
to this work:

Adaptive Matching. The matching language incorporates experience gained in
adaptive programming [26], supporting matching constraints that restrict roles
by reachability over an adaptive path. Our hope is that adaptive matching spec-
ifications will allow us to talk about object relationships rather than class rela-
tionships. ACs are compile-time entities, providing support for multi-class collab-
orations. However, at run-time collaborations are typically multi-object entities.
Adaptive matching specifications can potentially provide support for managing
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the objects that form the collaboration by generating code to collect objects
according to the adaptive matching specification. However, these details are still
germinating, and not stable enough for airing in public.

Contract Checking. Design by contact is a well-known approach to design-
ing object-oriented programs. Recently, contract checking at run-time has been
reevaluated [15] and we plan to apply this improved contract checking to aspec-
tual collaborations.

Object Graph Constraints. A key concept of collaborations is that each has its
own class-graph, which are fused when one is attached to another. The behav-
ior of a class-graph will in general instantiate classes of that class graph and
store the objects in variables — in effect, each collaboration will build its own
object-graph. In addition to building and object graph, the collaboration also
makes assumptions about it — these assumptions are encoded in the code of the
collaboration, and take the form of invariants over the object-graph.

Examples of invariants are that a non-zero value for one variable indicates
that another is ready to be read, or that two variables of the same type in
fact alias the same object. The key insight here is that the fused collaborations
must make compatible assumptions about their object-graphs, as in addition to
sharing a fused class-graph after attachment, they will at runtime also share an
object-graph.

It would be helpful to capture these constraints in the interface of the col-
laboration, so as to be able to catch such attachment errors at compile-time.
This can be seen as a special case of contract checking, where perhaps machine
analysis can help derive the object-graph (run-time) constraints to be checked
at compile-time.

Static Analysis and Error Handling. To a large extent, our implementation is
designed to leverage the Java type system to provide safety checks — indeed all
attachment specification errors will be caught by the JVM before the program
is run. However, we would like to be able to catch errors earlier, and to provide
the user with more meaningful errors than null pointers and method-not-found.

To this end, we currently verify that participant mappings are consistent
with the class-graphs of each collaboration, and that a provided feature matches
the signature of the expected feature. However, this only catches errors at at-
tachment time. Long chains of parameterization and collaboration application
can delay attachment until long after the compilation of the collaboration where
the error will occur.

Since the errors will still be caught at compile-time, catching them as early
as possible is an important element of the usability of the compiler for large
projects.
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A Definitions

We will be using relations to describe graphs and graph matchings that produce
join graphs. 8

If A and B are sets, a relation from A to B is a subset R of Ax B.If a,b € R,
we will write R(a,b), a Rb , and (a,b) € R interchangeably. A relation from A
to A is often called a relation on A.

We denote composition of relations by concatenation, e.g., x (RS) z iff there
exists a y such that z Ry and y S z. We also write z Ry S z. R* denotes the
reflexive transitive closure of R.

We often think of directed graphs as relations (and vice versa), so we write
C(e1,¢2) or ¢1 C ¢ when there is an edge from ¢; to ¢; in C. We take as given
the definition of a path in a directed graph.

Definition 1. A class graph consists of a set C' (of “classes”), a set E (of field
names), for each e € E a relation (also named e) on classes (“has part named
e”), and a reflexive, transitive relation < on classes (“is a subclass of ). We
write C(c1,c¢2) iff there exists e € E such that e(c1, ¢2).

We use C to denote the entire class graph (C, E, <). We write > for the
inverse of <.

An object graph is a model of the objects, represented in the heap or else-
where, and their references to each other:

Definition 2. If C is a class graph, then an object graph of C consists of:

1. a set O (of “objects”),
2. a map class: O — C, and
3. for each e € E, a relation (also denoted e) on O

such that if e(o1,02), then
class(o1) (< e >) class(02)

We say that o is of type ¢ when class(o) < c.
& This material is adapted from [41].
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As we did for class graphs, we use O to denote the entire object graph whose
set of objects is O.

All parts are optional (allowing for null values) or multi-valued (for a given
object 01, there may be many objects o2 such that e(o1,02)). The latter case
allows us to handle collections: if class ¢; contains a field e that is a collection
of objects of type cs, we may represent this as e(cy,cs) and use multi-valued
edges in the object graph, rather than introduce the notion of collections into
our model.

In order to define graph cut designators, we use strategy graphs. Several
variations of this concept are useful for defining graph patterns. For example,
we can put additional constraints on a relation between two states that requires
that in the class graph the corresponding path consists of at most one part-of
edge.

Definition 3. A strategy graph is given by a set of states @), a relation S on
states, a map class : Q — C, a set QI C Q of initial states, and a set QF C Q
of final states. We denote such a strategy graph by S.

Definition 4. A path p = (01,...,0n) in O is an S-path iff there is a subse-
quence 0j,,...,05, of p and a path (¢1,...,9x) in S such that for each i, o,
has type class(q;), jk = N, and gk € QF'. As before, we say that an S-path is
minimal iff it has no initial segment that is also an S-path.

Paths in object graphs and class graphs are connected as follows. We start
with a fixed class graph C.

Lemma 1. There exists an object graph O of C' and objects o1, 02 such that
O(o1,02) iff class(o1) < C > class(02).

Proof. See [41].

Lemma 2. There exists an object graph O of C' and objects o1, 0o such that
0*(01,02) iff class(o1) (< C >)* class(o2) .

Proof. See [41].

Lemma 3. Let ¢1 and co be classes. Then there exists an object graph O of C
and objects 01, 0o such that class(o1) < ¢1 and class(o2) < ca and O*(01,02) iff
c1 > class(o1) (< C >)* class(0z) < co.

Proof. Immediate.

B Graphcut designators
We are interested in expressing that all object graphs that contain certain pat-

terns have certain behaviors. We formulate the patterns in terms of the class
graph of the objects.
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A graphcut designator GCD = (S, Var) for a class graph C is a tuple where
S is a strategy graph. The nodes of S are mapped to classes of C' and the edges
specify paths between those classes. Var is a set of variables that assume values
of nodes and edge labels in C.

Although the strategy graphs used here are identical to the strategy graphs
used in Adaptive Programming, their purpose is different. Here they are not
used to define a traversal of objects but to find all occurrences of class graphs
(in some bigger class graph) that match the strategy. Each such occurrence is
called a join graph. The join graph must satisfy the path constraints expressed in
the strategy graph. For each such occurrence, the variables in Var are assigned.

As a simple example, consider the match specification introduced earlier:

match {
role <HasFields> {
<FieldType> <fieldName>;
}
}

It describes a strategy graph with two states HasFields and FieldType and
a transition between those two states that requires one part-of edge called field-
Name in the class graph. Var consists of HasFields, FieldType and fieldName.

In future work we will investigate how the various constraints we want to
express on strategy graph transitions influence the complexity of matching al-
gorithms.

Strategy graphs are introduced in [26] together with an efficient implemen-
tation. A simplified form was already in [35].
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