Aspects and Modules Combined

Johan Ovlinger

Karl Lieberherr

David H. Lorenz

College of Computer Science
Northeastern University
Boston, Massachusetts 02115-5000, USA
{johan,lieber,lorenz}@ccs.neu.edu

ABSTRACT

Overly regular module interfaces in object-oriented languages
hamper modularization of complex applications. Aspect-
oriented programming tackles this problem by allowing mod-
ule boundaries to span and partition classes in a flexible
manner. However, not without a cost. In order to achieve
this flexibility, common modularity mechanisms, such as en-
capsulation and external composition, are lost. The ability
to separately compile or reason about a modular unit is also
compromised.

Combining aspects and modules restores these properties
to the aspect-oriented programming language. In restoring
the properties, the programming units—Aspectual Collabo-
ration in our case—become more verbose: Encapsulation re-
quires that all collaborations describe their interface to the
rest of the application; and composition of collaborations
similarly requires that each module’s interface be reconciled
with the other. We give a brief introduction to Aspectual
Collaborations, however, the main part of the paper covers a
comparison study of AspectJ, Hyper/J, and Aspectual Col-
laborations in solving an AOP programming challenge. We
derive the comparative cost of using encapsulation.

1. INTRODUCTION

Separation of concerns and modularity [36] are at the
heart of the programming process [11]. Concerns are con-
ceptual units in which one decomposes a given problem.
Modules are software units in which one organizes software.
Modular programming is conducted by expressing program-
ming concerns in modular units.

The key insight of Aspect-Oriented Programming (AOP) [23]

is that module boundaries seldom fit along all concern bound-
aries. The modular breakdown captures some programming
concerns, while other concerns, namely, cross-cutting con-
cerns, are scattered throughout the units of modularity re-
sulting in tangling of the concerns’ code. (For a survey of
AOP techniques see [13].)

In principle, AOP alleviates the problem of scattering and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specifc
permission and/or a fee.

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

tangling by separately expressing each cross-cutting concern
in terms of its own modular structure, as an external aspec-
tual unit. The aspectual unit can then be re-attached, across
modular boundaries, to the host application. In practice,
however, the two leading AOP projects and de facto stan-
dards, AspectJ [5] and Hyper/J [39], exemplify a tradeoff
between flexibility and structure.

On one hand, following the tradition of meta-object pro-
tocols [24] and open implementations [22], Aspect]J offers
programming flexibility with minimal structural constraints.
Constraints are mostly enforced by good programming prac-
tices rather than language abstractions. AspectJ discrimi-
nates between methods, which capture base behavior, and
aspectual units, which affect the base behavior. Aspects can
affect the base behavior, however, methods cannot affect the
aspectual unit.

Hyper/J, on the other hand, emphasizes structured soft-
ware engineering rather than aspectual features. Rooted in
the subject-oriented programming paradigm [17], Hyper/J
supports merging and decomposition of separately specified
class hierarchies. Unlike AspectJ, Hyper/J treats the base
and the aspectual behaviors symmetrically, that is, a hyper-
slice can model both the base and the aspectual unit.

The two approaches seem to suggest an aspectual spec-
trum for AOP languages. Table 1 shows this spectrum, and
summarizes the conclusion we draw from a comparison of
Aspectual Collaboration [26], Hyper/J and AspectJ in the
latter part of the paper. Justification and discussion of judg-
ments are delayed till after the comparison.

1.1 Objective

The goal of this work is achieving a balance between flex-
ibility and structure in an aspect-oriented programming ap-
proach. By flexibility, we refer to supporting conventional
reuse of concerns, such as inheritance and genericity, in a
wide variety of contexts. Structure refers to static proper-
ties that aid program comprehension, such as encapsulation
and type-safety.

In this paper, we provide a novel means for consolidating
the two currently separate stands of aspect-oriented work.
We show that structured units and flexible attachments are
not necessarily mutually exclusive properties. We illustrate
concretely an aspectual language, namely Aspectual Collab-
orations, in which the aspectual units are both structured
and flexible.

The approach is shown to be more structural than As-
pectJ and have more flexibility than Hyper/J. The paper
focuses on a comparison of Aspectual Collaborations with
AspectJ and Hyper/J, while the prototype implementation

Weaver AspectJ Aspectual Collaborations Hyper/J
Emphasis Programming Components Software engineering
Approach Aspectual Composable Separational
Aspect Aspect class Collaboration Hyper-slice
Aspect Hook Join point Join graph Hyper-module
Attachment Point-cut designator | Graph pattern matching Hyper-module
Structure - + +
Flexibility + + -
Symmetry - + +

Table 1: The aspectual spectrum

is discussed elsewhere [26].

1.2 Motivation

An aspectual interface specifies the contract enforced be-
tween the aspectual unit and the host program at every
attachment. The aspectual interface controls not only how
the host program sees the aspectual unit and how it sees the
host program, but also what behavior is expected and what
is provided at each attachment occurrence.

The interface must balance the need for well-definedness
against the need for flexibility. For example, the trivially
complete interface (requiring a copy of the host application)
surely allows rich behavior to be woven in, but severely re-
stricts where and how the aspectual unit can be attached.
The trivially empty interface, on the other hand, provides
ample opportunities for reuse, but offers no interface for be-
havior. The interface must thus be structured enough so
that interesting aspects can be written against it on the as-
pectual unit side, yet flexible enough to accommodate a wide
variety of host programs on the application side.

An immediate benefit of a well defined aspectual inter-
face is the possibility to separately compile aspectual units
before composing them. The aspectual interface allows the
weaver compiler to analyze aspectual units and the host pro-
gram in isolation, and then to derive the meaning of the
combined whole by additionally analyzing how they have
been attached together. This baseline for how much anal-
ysis is needed to enable compilation of aspectual interfaces
influences where the balance between flexibility and analysis
lands.

The difficulty is to retain some measure of generality in
the aspectual behavior. For example, an Aspectual Collab-
oration for the standard logging aspect should be applicable
to methods of any signature, yet still have an interface spe-
cific enough to enable separate compilation.

The novelty in Aspectual Collaboration lies in the follow-
ing characteristics:

e [Encapsulation. The aspectual units emphasize encap-
sulation above everything else. At all stages, Aspec-
tual Collaborations are encapsulated behind interfaces.
These interfaces define the requirements an Aspectual
Collaboration makes of contexts where it is to be used,
and what parts of itself it is willing to let external be-
havior see. As a result, separate compilation of as-
pectual units is made possible. The strong encapsula-
tion interface also allows an Aspectual Collaboration
to be separately understood. For example, an Aspec-
tual Collaboration can guarantee that a method never
be advised by not exporting it.

e [External composition. Aspectual Collaborations are
composed with other Aspectual Collaborations exter-
nally. Attachment (as we refer to composition) rec-
onciles all name differences between the constituent
Aspectual Collaborations, along with all imports and
exports, to generate a new Aspectual Collaboration.
Only those parts of the constituent Aspectual Collabo-
rations explicitly exported are visible outside the com-
position. Successful composition guarantees that the
composed Aspectual Collaboration is no less type safe
than the constituents in isolation.

Composition is also how aspectual (cross-cutting) fea-
tures are attached to the join-points they advise, allow-
ing us to apply the same encapsulation and visibility
semantics to aspectual behavior as we do to modular
features. This is a very powerful feature, as it enables
the programmer to reason about an aspectual program
in a compositional manner, easily understanding ex-
actly how the various modules cross cut each other.

e Generic, type-safe advice. A novel API allows com-
pletely type-safe and around methods, while maintain-
ing full generic applicability (can wrap methods of any
signature) and control over the proceed call, and not
requiring any down casts by the programmer. Op-
tionally, user controlled fractions of genericity can be
traded in for more control of the details of an inter-
cepted method call. Our implementation leverages en-
capsulation and Java’s type checks to guarantee that
such generic methods are type safe.

e Small, orthogonal language. We purposefully keep our
core language minimal, for example eschewing “be-
fore” and “after” methods for the more general “around”.
This allows us to keep our implementation—and more
importantly, our semantics—small and easily understood.
This allows the user to predict what is going to hap-
pen when a language feature is used in a non-standard
way, and more importantly to understand why some-
thing failed to work when it goes wrong. We call this
the “wizard” factor.

1.3 Roadmap

Section 2 allows the reader to understand the main idea of
Aspectual Collaborations on a general level though simple
examples. Section 3 introduces a small concrete program-
ming challenge. The programming challenge examples pro-
vide a level comparison benchmark, in that each approach
is then asked to solve the same problem in a reusable style.
Sections 4, 5, and 6 that follow compare solutions using As-
pectual Collaborations, Hyper/J, and AspectJ, respectively.

This serves as a preliminary validation of Aspectual Col-
laborations, showing in Section 7 that they compare favor-
ably with the other two systems in ease of use and expres-
siveness, while providing a higher degree of static safety and
reuse. Related and future works are brought in Section 8.
Section 9 concludes.

2. ASPECTUAL COLLABORATIONS OUT-
LINED

An Aspectual Collaboration has the following ingredients:

e A collaboration is an intrinsically named graph of
participants, where the nodes are formal classes, and
the edges are is-a and has-a relations and functional
relations.

e Each participant has zero or more members. A mem-
ber is a field or a method, obeying the the normal se-
mantics of Java. ! In addition to the member modifiers
offered by Java, participants can have three additional
orthogonal member modifiers:

— expected members are deferred members that
must be provided before the collaboration can be
executed. These differ from abstract members
in that both methods and fields can be expected,
and more importantly that an expected method
does not inhibit class instantiation.

— aspectual methods are able to intercede in in-
vocations of other methods. When an aspectual
method is attached to a host method, any invo-
cation of the host method is intercepted, reified
as a method call object, and passed to the as-
pectual method as an argument. The aspectual
method can then control and modify the details
of the call, until returning control to the original
caller. An aspectual method may or may not be
constrained to work with only a more limited set
of signatures in order to gain functionality.

— exported members are visible outside the collab-
oration. Export modifiers wear off after each col-
laboration composition, so are not specified at the
member definition, but externally to the mem-
ber participant. In other respects, it is a normal
member-specific modifier.

e Required and provided interfaces are derived from the
member declarations on the participants of a collabo-
ration. A member is often in both interfaces.? Each
member implicitly knows which participant it is de-
fined on, so we define the interfaces in terms of mem-
bers.

We use the terms member and field to mean properties and
attributes, respectively.

2The provided interface must include all unprovided ex-
pected members, as otherwise an expected member becomes
unexported and cannot be referenced from outside the col-
laboration, making it impossible to ever provide an imple-
mentation for it. The collaboration is then doomed to never
be executable, so at each composition, an expected method
must be provided or exported.

o B N I

Listing 1: A simple host package

package variables;
class Vars {
String foo;
Baz bar;

class Baz {
Vars var;

}

— The required interface consists of all expected
members. It declares holes in the implementa-
tion which need to be provided to complete the
collaboration.

— The provided interface consists of all exported
members. The provided interface allows the be-
haviors of the Aspectual Collaboration to be ac-
cessed from the outside.

An Aspectual Collaboration definition has the following syn-
tactic structure:

collaboration name

{ extends collaboration }*

{ participant formal_class_def }*

{ [match roles | attach collaboration }*

A simple Aspectual Collaboration, without the optional
extends and match—attach clauses, has the same shape
as a Java package, substituting collaboration for pack-
age and participant for class. In fact, collaborations are
a superset of packages,® and a package is accepted as a
(grounded) collaboration even without substituting the key-
words. Thus, the host package variables (Listing 1) is a legal
collaboration.

The extends clause imports another collaboration, re-
exporting all visible members and classes. This is exactly
the equivalent of manually declaring empty participants, at-
taching the extended collaboration to them, and exporting
all visible members, but the operation is common enough
to warrant direct language support. The match clause sup-
ports convenient specification of multiple attachments of col-
laborations (analogous to AspectJ pointcuts), but will not
be used in this paper, as all collaborations will be attached
exactly once.

Unlike a package, however, a collaboration is generally a
specification with “holes”: a participant can reference ex-
pected features (attributes and methods) as if they were de-
fined. In adviceSetGetAttribute (Listing 2), the HasAttribute
participant defines a pair of set and get methods for an
expected attribute, which will be provided only later. The
double braces around the method bodies should be read as
if they were a single brace. Their sole purpose is to allow
our implementation to avoid parsing full Java. The limited
keyword allows for a “frozen” participant (such as String and
int), for which all modifications are prohibited, to play the
role of AttributeType.

Generally, an Aspectual Collaboration is a formal class
graph (a collaboration), which can be superimposed [21] on

3The association between collaborations and packages is
fundamental to our implementation: An Aspectual Collab-
oration is separately compiled into .class files of a single
package.

Listing 2: Defining generic setters and getters

Listing 3: Defining a foo setter getter

collaboration adviceSetGetAttribute;
participant HasAttribute {
expected AttributeType aName;
public void set(AttributeType aName) {{
this.aName = aName; }}
public AttributeType get() {{
return aName; }}

limited participant AttributeType;

another class graph. We refer to the act of superimposing as
attaching a collaboration to a host collaboration; the host
collaboration is said to have been decorated. Expected fea-
tures declare holes in the formal class graph, while all other
features are introduced by the attachment; and aspectual
methods can also intercede in the invocation of methods to
which they are attached. Expected and aspectual features
offer two alternative ways, explicit and implicit, respectively,
to transfer control and information from one collaboration
to another.

The adviceSetGetAttribute collaboration (Listing 2) defines
a formal class graph consisting of two participants, HasAt-
tribute and AttributeType, where the former is expected to
have a (direct) reference to the latter. When superimposed
on an actual class graph, the adviceSetGetAttribute aspec-
tual collaboration will introduce a setter and a getter for
the expected reference. The adviceSetGetFoo collaboration
(Listing 3), for example, is created by attaching adviceSet-
GetAttribute to the contents of the variables package to in-
troduce a setter and getter for the foo field of Vars.*

A collaboration definition incrementally builds an As-
pectual Collaboration by first declaring the skeleton col-
laboration (a set of participants) and then attaching addi-
tional collaborations to that skeleton. The skeleton collab-
oration’s participants (a formal class graph) can be directly
declared (e.g., HasAttribute and AttributeType in adviceSet-
GetAttribute) or implicitly acquired from another collabora-
tion using the extends keyword (e.g., variables in advice-
SetGetFoo). Once built, the skeleton collaboration can be
decorated by attaching any number of collaborations to it
(e.g., adviceSetGetAttribute is superimposed on variables in
adviceSetGetFoo). The final formal class graph is the result
of the Aspectual Collaboration declaration.

The += operators in adviceSetGetFoo (Listing 3) empha-
size that the attached roles HasAttribute and AttributeType
may have a structural and behavioral affect on the local par-
ticipants Vars and String. Vars is decorated with two meth-
ods by the behavior introduced in HasAttribute. In addition
to the introduction, the 4= operator also redirects all ref-
erences (if any—there are none in this example) from the
inserted type, HasAttribute, to the destination type, Vars.
String, on the other hand, cannot be decorated at all, but
allowed as a lvalue of += thanks to the limited keyword
in adviceSetGetAttribute. However, by redirecting references
from AttributeType to String, we achieve type parameteriza-
tion as a degenerate case of attachment [1, 42].

An Aspectual Collaboration can be extended and attached
to any host collaboration, not just a (grounded) package.

4In the cases that there are many fields and only some of
the fields should be provided with getters and setters a more
expressive matching is available.

collaboration adviceSetGetFoo;
extends variables;
attach adviceSetGetAttribute {
Vars += HasAttribute {
provide aName with foo;
export set as set_foo;
export get as get_foo;

String += AttributeType;

Listing 4: Attaching a collaboration to itself

collaboration adviceSetGetTwoAttributes;
extends adviceSetGetAttribute {
export AttributeType as AttributeTypeA {
export set as setA;
export get as getA;

attach adviceSetGetAttribute {
adviceSetGet TwoAttributes.HasAttribute +=
HasAttribute {
export aName as bName;
export set as setB;
export get as getB;

export AttributeType as AttributeTypeB;

}

The construction is associative. When an Aspectual Col-
laboration is extended, the host collaboration can reuse its
formal class graph as if it was defined locally. When an As-
pectual Collaboration is attached to a host collaboration,
the attached formal class graph is mapped against the host
formal class graph. Any expected feature in the attached
Aspectual Collaboration needs to be either mapped to a con-
crete feature, or exported for later mapping. For example,
the adviceSetGetTwoAttributes collaboration (Listing 4) first
extends adviceSetGetAttribute and then attaches the advice-
SetGetAttribute collaboration to itself, resulting in a collabo-
ration that introduces setters and getters for two attributes.

2.1 Aspectual Methods Revisited

As soon as a host method with aspectual advice is in-
voked, the the system takes over, intercepting the method
invocation. The intercepted method invocation is reified as
an object, and passed as the sole argument to the wrap-
ping aspectual method. The aspectual method eventually
returns a reified return-value object, which is unpacked to
reveal the real return value of the intercepted method call.
This real value is then returned to the caller, from which
point the program continues unchanged.

The system generates two participants from the signature
of an aspectual method: these are the classes that rep-
resent reified method calls (from the type of the aspectual
method argument) and return-values (from the return type
of the aspectual method). The participant’s default API
consists of one expected method, on the method-call class:
expected RetVal invoke (), where RetVal is assumed to be
the return-value class. The generated participants are com-
pletely opaque appart from the invoke method, allowing
them to be used to represent method calls of any signature,

Item
- ontents
tname: String .0
+check () : boolean
Simple Container
+weight: int +capacity: int
+check () : boolean
+addItem(Item) : void

Figure 1: A UML representation of base.

and return values of any type (including raised exceptions
or void methods).

To use an aspectual method, it is attached to a host
method, allowing it to advise invocations of the host method.
Only at the attachment of an aspectual method do we know
the signature of the wrapped method, so at that point,
attachment-specific implementations of the opaque partici-
pants are generated, allowing the attached aspectual method
to access the reified method via the opaque interface.

Optionally, the aspectual method can request that the
opaque interface be lowered, by constraining the types of
(some) arguments or return value. This significantly reduces
the genericity of the aspectual method, as it is now restricted
to only advise methods which fit the constraints. However,
the tradeoff allows the programmer to access method argu-
ments and results, for example re-invoking an idempotent
method if it fails on a time-out error, or verifying invariants
on methods and return values.

3. CHALLENGE PROBLEM

In order to evaluate the Aspectual Collaboration approach
in a more realistic programming example, we implement
identical behavior in Aspectual Collaborations, Hyper/J,
and AspectJ, and compare the code.

The example is a typical exercise in recursive program-
ming with the composite pattern [16]. A container (compos-
ite) may contain items (leaves) or other containers (compo-
nents). Each container has a maximum capacity, and the
task is to verify that no container is over its capacity limit.

The core of the application is written in pure Java, and
is common for the three languages. Listings 5 and 6 show
the complete code for the base implementation , while a
graphical illustration is in Fig 1. When compiled with javac
and run, it prints out a complaint that container c2 is over
its weight limit, and adding one banana overloads container
cl as well.

To detect the capacity violation, base uses straight for-
ward recursion over the containment graph. The common
superclass Item declares an abstract method check which is
implemented in the concrete subclasses Simple and Container
to both check the capacity (print out a complaint if above
capacity) and also return the total weight of the container
and its contained Items. The concrete subclasses differ in
that Container has a — possibly empty — vector of contained
Iltems and a maximum capacity, while Simple has a weight
but cannot contain any other ltems.

Listing 5: Base program, part 1

package base;
import java.util .x;
abstract class Item {
String name;
public abstract int check();

class Container extends Item {

Vector contents;

int capacity;

public static Container make(String n,int c¢) {
Container res = new Container();
res.name = n;
res .capacity=c;
res.contents = new Vector();
return res;

public void addItem(Item i) {
contents.add(i);

public int check() {
Iterator it=contents.iterator ();
int total = 0;
while(it.hasNext()) {
Item child = (Item)it.next();
total +=child.check();
}
System.out.println(” Container.” 4+ name +
7 _weighs.” +total);
if (total >capacity){
System.out.println(” Container.” + name +
7 _overloaded”);

return total;

}
}

3.1 Benchmark: A Caching Aspect

The task we set ourselves is implementing a caching as-
pect for the containers. Inspection of the methods check
and addItem suggests that adding an ltem to a Container
doesn’t invalidate any of the container’s contents (subcon-
tainers), but may indirectly invalidate the container and the
containers containing the modified one (parent containers).
Thus, our programming challenge is to:

1. Add a backlink from an Iltem to its parent Container.
That is, make the contents association bi-directional.

2. Every time an item is added to a container, make sure
the invariant of each Target pointing to the Source that
contains it is maintained ®.

3. Intercept calls to check, returning a cached value if
one exists, else invoking and caching the result.

4. Every time an item is added to the container, invali-
date the cache of the container and all parent contain-
ers.

We wish to determine how difficult these tasks are to solve
using a reusable style of Aspect-Oriented Programming.

SFor clarity, we ignore the possibility of a Target being in
several Source containers.

Listing 6: Base program, part 2

Listing 7: Cache a method.

package base;
import java.util.x;
class Simple extends Item {
int weight;
public static Simple make(String n,int w) {
Simple res = new Simple();
res.name = n;
res.weight = w;
return res;

}
public int check() {
System.out.println(
”Simple_object.” +name+
? _weighs.” +weight);
return weight;

}

public class Main {

static public void main(String[] argv) {
Container c1= Container.make(” Container.1” 4);
Container ¢c2= Container.make(” Container.2”,1);
Container c3= Container.make(” Container.3”,1);
Simple apple= Simple.make(”apple”,1);
Simple pencil= Simple.make(” pencil”,1);
Simple orange= Simple.make(”orange”,1);
Simple kiwi= Simple.make(”kiwi”,1);
Simple banana= Simple.make(”banana”,1);

c3.addItem (kiwi); // c3 weighs 1
c2.addItem(c3); // c2 weighs 1
c2.addItem(apple); // c2 weighs 2 overload!
cl.addItem(orange); // c1 weighs 1
cl.addItem(pencil); // c1 weighs 2
cl.addItem(c2); // c1 weighs 4
cl.check (); // cl is ok
c2.addItem(banana); // this overflows c1
cl.check (); // so check will complain

4. ASPECTUAL COLLABORATIONS SOLU-

TION

The Aspectual Collaboration solution consists of two generic

and reusable collaborations (Listings 7 and 8), one glue col-
laboration (Listing 9) which adapts one interface to the
other, and finally an attachment of all three to the exist-
ing (and unmodified) base behavior (Listing 10). A glue
collaboration maximizes the reusability of our solution by
collecting the all context-specific code into one collabora-
tion that does encode assumptions about the base package
and the two other collaborations, allowing the two “main”
collaborations (caching and backlink)to remain natural and
highly reusable.

Since the AspectJ and Hyper/J solutions are similar, this
section also functions as the main discussion of the func-
tioning of the concerns. The other languages’ sections will
mainly discuss differences between the implementations.

4.1 Caching

Caching a method is implemented by caching in List-
ing 7. The collaboration has one participant with two as-
pectual methods: cachedmeth, to be wrapped around the
method to be cached, and invalidate, to wrap the meth-
ods which invalidate the cache. The collaboration also has

1
2
3

collab caching;
import java.util .x;
participant C {
ChdRetVal cachedValue;
void clearCache() {{
System.err. println (” clear _cache”);
cachedValue = null;
1
expected Vector alllnvalidated();
aspectual RV invalidate(EM e) {{
RV retval = e.invoke ();
Iterator inv =alllnvalidated (). iterator ();
while (inv.hasNext())
{ ((O)inv.next()).clearCache(); }

return retval;

1}
aspectual ChdRetVal cachedmeth(ChdMth e) {{
if (cachedValue==null)
{ cachedValue = e.invoke(); }
else
{ System.err. println (" using_cached._value”); }
return cachedValue;

1

one expected method allInvalidated, the implementation
of which should return a vector of the objects to be inval-
idated. From a caching perspective, the design is straight
forward.

To use the collaboration, it will be attached to a host col-
laboration, with a method to be cached and an invalidating
method advised by these aspectual methods, and the some
implementation of our expected method.

When the wrapped cached method is invoked, the caching
collaboration takes over, reifiying the method call as a ChdMth
object®, and passing that to cachedmeth to implement caching
logic (line 7.17). The caching logic first checks whether we
need to invoke the cached method, by comparing the value
in instance variable cachedValue against null (line 7.18).
If we need to, we proceed to invoke the reified method
call (line 7.19), storing its reified result in the instance vari-
able cachedValue. Otherwise, we print a self congratulatory
message (line 7.21). Finally, we return the reified result.

The invalidate method is invoked by the collaboration
with the intercepted invalidating method call reified as a
EM object . The method immediately (line 7.11) invokes the
wrapped method, so invalidate implements “after” advice.
We then (line 7.13) iterate over all the objects to be inval-
idated (calculated by whatever implementation of the ex-
pected method was provided (line 7.12)), calling clearCache
on each one (line 7.14). Finally, invalidate returns the rei-
fied return value from the wrapped method.

The clearCache method just sets the cachedValue vari-
able to null (line 7.7). This is an unambiguous representa-
tion of a clear cache (as opposed to a cache containing the
value null), as reified method calls returning void or null
will always return a reified result object of type ChdRetVal:

SWe remind the reader that the participants referenced in
the signature of an aspectual method (ChdRetVal and Chd-
Meth in the case of cachedmeth) are automatically generated
if not [partially] specified by the programmer. In the next
collaboration (backlink), we see why we sometimes want to
partially specify some participants.

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Listing 8: Add and maintain backlinks.

collab backlink;
import java.util .x;
participant Source {
expected Vector targets;
aspectual RV modifyTargets(ModifyM e) {{
int sizebefore = targets. size ();
RV rv = e.invoke();
int sizeafter = targets. size ();
Target targ = e.t;
if (sizebefore <sizeafter)
{ targ.back = this; }
else
{ targ.back = null; }
return rv;
1
}

participant Target {

Source back;

Source getSource() {{ return back; }}
}
participant ModifyM {

expected Target t;

reified method calls are guaranteed to always return a reified
return value, regardless of whether they return normally or
throw an exception.

Notice how the reification API, which encapsulates the
details of the wrapped method and intercepted calls to it,
allows us to write a caching collaboration which is complete
oblivious to the signature of the cached method or its in-
validator. Additionally, this illustrates a scenario in which
the aspectual method chooses not to invoke the wrapped
method, instead returning the result from a previous invo-
cation. Both of these are made possible by our reification
of the connection between concerns into the domain of the
language.”

Peeking ahead, we surmise that caching participant C will
likely be mapped to Container, with cachedmeth advising
check and invalidate advising addItem. However, we have
not dealt with how allInvalidated will be implemented.

The collaboration assumes that there is exactly one method
that invalidates the cache, and that the method is on the
same object as the one cached. The restriction can be alle-
viated both by programming patterns and language features
not introduced in this paper. However, this would have com-
plicated an already large example.

4.2 Backlinks

The second “main” collaboration is backlink, (Listing 8),
and corresponds to the programming task of adding and
maintaining a backlink from an item to its parent container.
It is expressed as three participants. The Source participant
expects to be provided with a variable holding a vector of
Target objects, and to intercept method calls to a method
that modifies that vector.

When a modifying method call is intercepted, modifyTargets

(line 8.5 in Listing 8) takes over, with the intercepted method-

"It would of course be trivial to provide syntax for the com-
mon cases of before and after methods that don’t wish to
control or inspect the reified method, but would add yet an-
other feature to present, without adding to the power of the
language.

call reified as a ModifyM object and passed to the method as
the only argument e. The first thing modifyTargets does
(line 8.6) is to capture the size of the targets vector, before
invoking — and capturing the return value of — the wrapped
method (line 8.7). modifyTargets requires access to the
arguments of the intercepted method call (presumably the
element added or removed), and we achieve this by adding
an expected variable t to the ModifyM participant® (line
8.22), thereby constraining modifyTargets to be able to
wrap only methods taking [at least] an argument of type
Target. We can use the expected field (e.t) to access (both
to read and modify) that argument (line 8.9). Depending
on whether the vector grew or shrank (line 8.10), we either
set the backpointer to this (line 8.11) or to null (line 8.13),
maintaining the declared invariant.

Let us briefly peek ahead as to how this collaboration will
be related to the host collaboration, base. The result of the
aspectual behavior is to maintain an invariant that Target
objects know which Source object points to them. What
we want to achieve is to have Items know in which Container
they are stored. Thus Source will need to be mapped to
Container (from Listing 5), and Target to ltem. The method
modifyTargets will likely be wrapped around addItem, and
we can guess that the variable contents will be provided to
targets. °

4.3 Adapter

Since base.Container contains both the method we wish
to cache (check) and the method to invalidate the cache
(addItem), we have already deduced that we are going to
need to attach caching.C to base.Container. At this point we
would start to write such an attachment specification, but
we notice that we don’t have a suitable implementation for
the cache’s allInvalidated method: a method that returns
all parent containers of this. We do have a method that re-
turns the immediate parent container: backlink’s getSource.
Thus we have the programming task for the adapt collabo-
ration: create a method that returns the transitive closure
of getSource.

The behavior of adapt in Listing 9 is straight forward:
allContainers merely calculates the transitive closure of
getContainer. This collaboration is written in a slightly
different style than the others, in that it is written with
intent to be used once, in one known context. Hence, we
make it as easy as possible to attach, exactly mimicking the
inheritance structure of the intended use, and even using the
same participant names.'?

4.4 Attachment

In order give our base access to the caching behavior, we
need to attach the collaborations above to the base collab-

8The participant ModifyM is only partially specified: the
system will recognize it as representing a reified method call
(by its position in the signature of an aspectual method)
and add all the members that would normally be generated
for such a participant.

9Notice that the host classes are related by inheritance,
while the collaboration classes are not. This will not pose
a problem for attaching backlink to base, but will influence
the requirements for the adapt collaboration.

10The correspondence in names is for clarity only. All attach-
ment is explicit, and no the behavior is exactly the same as
had we chosen more arbitrary names. It also lets us exercise
class disambiguation in the attachment.

1
2
3
4

5
6
7
8
9

© W N o O A W N e

I S R
A W N = O

Listing 9: Generating a transitive closure.

collab adapt;
import java.util. Vector;
participant Item {
expected Container getContainer();

participant Container extends Item {
Vector allContainers () {{
Vector v = new Vector();
Container ¢ = this;
while (¢ != null) {
v.add(c);
¢ = c.getContainer();
I}'eturn v;
3
}

Listing 10: Attaching our collaborations.

collab cachedbase;
extends base;
attach backlink, caching, adapt {
Item += Target, adapt.Item {
provide getContainer with getSource;

Container += Source, C, adapt.Container {
provide alllnvalidated with allContainers;
provide targets with contents;
around void addItem(..,Item t,..) do modifyTargets;
around addItem do invalidate;
around check do cachedmeth;

—

oration. Listing 10 illustrates this, generating a new collab-
oration with the name cachedbase. ' The attachment sets
up pointwise mappings between the participants of the con-
stituent collaborations (caching, backlink, and adapt), and
the output participants imported from base (Item, Simple,
Container, and Main). Notice that we only mention the par-
ticipants we are interested in, as the semantics of extends
has implicitly exported all of base. If we desired to, we could
additionally hide some of those participants and members at
this point. Likewise, the member mappings we have alluded
to in the peek-ahead paragraphs are set up; for example,
expected field targets is provided with field contents.

The attachment processes each participant separately: To
create the output participant cachedbase.ltem, we start with
base.ltem (implicit from extends line 10.2), and insert the
constituent participants backlink. Target and adapt.ltem (line
10.4) into it. We don’t need to fully qualify Target, as it is
the only such participant in the the output or constituent
collaborations, but there are two Item participants (from
adapt and cachedbase), so we must disambiguate. Once
created, the output participant ltem’s members are linked,
providing the expected method getContainer with the im-
plemented getSource. Again, since these member names
are unambiguous, we don’t need to specify from which con-
stituent participant each came.

Container is similar, but there are pertinent observations

11 As all required interfaces have been fulfilled, this collabo-
ration is simultaneously a normal Java package.

concerning attachment of aspectual methods. We set up
cachedmeth to intercept the invocation of check (line 10.12),
at which behavior proceeds as explained for caching. Simi-
larly for addItem.

It is not obvious which wrapper of addItem (line 10.10 or
line 10.11) is executed first. One answer is that it should
not matter, as each collaboration should be somewhat se-
mantically complete, and two collaborations whose imple-
mentations are so intertwined so to make a difference which
is invoked first should really be composed to one more cohe-
sive collaboration rather than added separately. A slightly
more satisfying answer is that invalidate will be invoked
first, as around wrappers are processed in program order,
and each processing stage builds on the previous method im-
plementation. One can view the method and wrappers like
a Matrioshka doll, where each doll has control over whether
the dolls inside itself are executed. The original addItem is
the innermost doll, which is reached last — if at all. The out-
ermost doll represents invalidate, which has control over
the invocation of modifyTargets.

Lastly, the correspondence of the argument name Item t
in the partially specified signature of addItem (line 10.10 in
10) to the expected variable in backlink.ModifyM (in Listing
8) is important. This specifies that the first argument of
type ltem in method addItem is to be exposed to the backlink
aspect, as the expected field t.

5. HYPER/J SOLUTION

Hyper/J is designed for capturing and manipulating slices
of concerns. HyperSlices are extracted from compiled appli-
cations, and composed into running applications. The Hy-
per/J solution for our scenario is structurally very similar to
that of Aspectual Collaborations, but we will find that small
differences in semantics give the result a distinctly different
flavor. An interesting property of Hyper/J is that all exam-
ples are pure Java, with all concern related information in
the HyperModule file. This both hampers and helps read-
ability. Each concern becomes very easy to understand, but
we must look elsewhere to understand even the rudiments
of how the concerns [can] fit together.

5.1 Caching

Caching relies on “around” advice, which Hyper/J does
not have, so we must simulate this behavior.

There are two ways to achieve the required “around” be-
havior in Hyper/J: splitting the “around” into “before” and
“after” advice, or manually mapping the advised method
into the HyperSlice, so that it can be invoked explicitly.

Manual mapping gives the concern much more flexibility
as to how to affect the wrapped method, but hampers reuse
by requiring us to know the exact signature of the wrapped
method. Caching (Listing 11) differs markedly from the
Aspectual Collaboration version, as it illustrates manually
mapping the intercepted method call into the concern.

Hyper/J is able to provide access to the result of method
invocation without needing to capture the bracketed method
explicitly, but as we additionally need to be able to control
whether the bracketed method is invoked at all, we must
make it explicit in the concern. This in turn implies that
we must hard-wire the exact signature of the method we are
caching. Peeking ahead, we intend that the original check
method on base.Container be hidden somehow and composed
with oldcachedmeth (line 11.16), and newcachedmeth (line

1
2
3
4

© ®w N o

Listing 11: Cache a method.

Listing 12: Add and maintain backlinks.

package caching;
import java.util .x;
abstract class C {
boolean cacheValid = false;
boolean cachedValue;
abstract Vector alllnvalidated ();
void clearCache() {
System.err. println (” clear _cache”);
cacheValid = false;

}
void invalidate () {
Iterator inv =alllnvalidated (). iterator ();
while (inv.hasNext())
{ ((C)inv.next()).clearCache(); }

abstract boolean oldcachedmeth();
boolean newcachedmeth() {
if (!cacheValid) {
cachedValue = oldcachedmeth();
cacheValid = true;

else { System.err. println (" using_cached_value”); }
return cachedValue;

}

11.17) to become the one visible as check. This allows the
caching behavior to invoke the original behavior (line 11.19)
when necessary. Setting this up is possible, but somewhat
fiddly, and requires features that are not available in the
current release of Hyper/J. However, the developers have
kindly furnished us with a pre-release version that is able to
perform this mapping.

Notable also is that we have chosen to use the abstract to
indicate that the allInvalidated method (line 11.6) is re-
quired. Unlike fields, where comments are the only option,
methods can be annotated as required either by declaring
them abstract, or else implemented to throw the Hyper/J-
specific UnimplementedError exception. This sentinel ex-
ception is recognized by the composition system to indicate
a deferred method, and thus the stub method body is omit-
ted when two methods are composed. The benefit of using
the sentinel approach is that the class remains instantiat-
able, while the abstract method approach has the benefit
that it is statically obvious that some method in the class
is deferred. The latter approach suffers from the additional
drawback of forcing each subclass of the abstract class to be
abstract as well, even if they have no abstract methods, as
they inherit the deferred method, which they cannot over-
ride, as that would hide the behavior the deferred member
is supposed to receive through composition.

5.2 Backlinks

Listing 12 shows the Hyper/J implementation of the back-
link concern. The most striking difference from the Aspec-
tual Collaboration version is that modifyTargets is here
split into two methods. We simulate “around” advice by
splitting it into “before” and “after” advice to a method.
Splitting allows the concern to remain oblivious to the sig-
nature of the wrapped method, but is only applicable when
the inner method is to be called exactly once, the result is
not handled, and we are certain that the splitting is thread-
safe (more on this in the next paragraph).

1
2
3
4

5
6
7
8
9

package backlink;
import java.util .x;
class Source {
Vector targets;
int sizebefore ;
void modifyTargetsBefore() {
sizebefore = targets. size ();

// deferred

}
void modifyTargetsAfter(Object[] margs) {
Target targ = (Target) margs[0];
int sizeafter = targets. size ();
if (sizebefore <sizeafter)
{ targ.back = this; }
else
{ targ.back = null; }

class Target {
Source back;
Source getSource() { return back; }

The before method modifyTargetsBefore just stores (line
12.7) the size of the vector in an instance variable, so that
it is available in modifyTargetsAfter method. This adds a
small but non-zero risk of race-conditions in multi-threaded
code, as a second thread could overwrite this variable before
modifyTargetsAfter has read it (on line 12.12). The most
straight-forward way to protect against this would be to use
the current thread object as a key into a hashtable where
per-thread instance variables are stored. Additionally, we
ought to protect against recursive invocation by keeping a
stack of instance variables.

The signature of the method advised by this simulated
“around” is constrained in solution as well, but in this case
it is constrained by a cast in the after method body (line
12.10), trading off static safety against some runtime flex-
ibility. We open ourselves up to a runtime error by not
checking the cast first, but as this is a simple example and
we know how this code is going to be composed, we feel this
is excused.

Unfortunately, we are reduced to comments to indicate
that targets is not implemented in this concern, as the
techniques Hyper/J uses to identify deferred members work
only for methods.

Peeking ahead, we foresee that two methods modifyTargetsBefore

and modifyTargetsAfter being composed as before and
after brackets to addItem. The margs argument (line 12.9)
will be constructed by the HyperModule to pass in the ar-
guments from the bracketed method.

5.3 Adapter

As in the Aspectual Collaboration solution, there is a mis-
match between the interfaces of the backlink and caching
packages. Listing 13 illustrates how these can be resolved in
exactly the same manner as for Aspectual Collaborations.
Notice however, that the deferred method getContainer is
implemented to throw UnimplementedError (line 13.6) rather
than being abstract. Had it been abstract, then class ltem
would also have been abstract (line 13.4), which in turn
would have forced Container (line 13.9) to be abstract as
well.

Listing 13: Adapting the Concerns.

Listing 14: Attach the slices.

package adapt;
import com.ibm.hyperj.UnimplementedError;
import java.util. Vector;
class Item {
Container getContainer() {
throw new UnimplementedError();

class Container extends Item {
Vector allContainers () {
Vector v = new Vector();
Container ¢ = this;
while (c != null) {
v.add(c);
¢ = c.getContainer();

return v;

}
}

5.4 HyperSlice composition

Listing 14 shows the Hyper/J specification for identifying
and composing the HyperSlices we presented above. The
specification consists of three parts that optionally can go
into separate files. The hyperspace specification (lines
14.2-10) identifies which classes are participating the the
composition. These classes are partitioned into hyperslices
by the concerns specification (lines 14.11-18). Finally, the
hypermodule (lines 14.19-45) chooses which of these hy-
perslices to compose, and how their contents relate.

The relationships clause has indentation for easier read-
ing, but is actually a sequence of flat declarations. The
mergeByName declaration is used mainly at the class
level in this example, automatically composing the similarly

named classes (for example adapt.Container and base.Container).

The result of the composition of hyperslices is the union
of all their classes, minus the classes that have been com-
posed, either through explicit annotations or implicit by-
name merging. The situation at the level of class members
is analogous.

There are two side effects of the way Hyper/J composes
modules. Most importantly, it implies that hypermodules
lack encapsulation, as there is no way to avoid exporting
every member and class in a slice. It is possible to rename
members and classes, and implement a naming convention to
indicate which module contents should not be accessed from
the outside world. However, this does not stop accidental
name matches from invoking the mergeByName rule, with
unintended effects.

Secondly, lack of encapsulation makes it difficult to predict
the interface of a hypermodule without running the Hyper/J
tool. A HyperSlice can be defined as a slice of a composed
hypermodule, which in turn could be composed from slices,
creating an import chain of arbitrarily length. The lack
of encapsulation means that we must start at the sources
and mentally propagate through the whole chain to build
up the final interface, rather than having it declared as part
of the hypermodule. The two effects also interact, in that
adding a method to a module early in the chain can lead
to a spurious match later on, with unintended effects. The
situation is similar to that of accidental inheritance [31] or
accidental method capture [32].

1

© W N ok W N

40

—hyperspace
hyperspace H
composable class backlink.Source;
composable class backlink.Target;
composable class caching.C;
composable class adapt.Item;
composable class adapt.Container;
composable class base.ltem;
composable class base.Container;
composable class base.Simple;
—concerns
class backlink.Source:
class backlink. Target:
class caching.C:
class adapt.ltem:
class adapt.Container:
class base.ltem:
class base.Container:
—hypermodules
hypermodule CachedComputation
hyperslices: Feature.Base, Feature.Cache,
Feature.Adapt, Feature.Back;
relationships:
mergeByName;
compose class Feature.Back.Target
with additionally class CachedComputation.Item;
equate operation Feature.Adapt.getContainer,
Feature.Back.getSource;
compose class Feature.Back.Source, Feature.Cache.C

Feature.Back
Feature.Back
Feature.Cache
Feature.Adapt
Feature.Adapt
Feature.Base
Feature.Base

with additionally class CachedComputation.Container;

equate operation Feature.Cache.alllnvalidated,
Feature. Adapt.allContainers;
equate variable Feature.Base.Container.contents,
Feature.Back.Source.targets;

forward operation CachedComputation.Container.check

to operation Feature.Cache.newcachedmeth;

equate operation Feature.Cache.oldcachedmeth
to operation Feature.Base.check;

bracket ”Feature.Base.Container”.” addItem”
before Feature.Back.Source.modifyTargetsBefore()
after Feature.Back.Source.modifyTargetsAfter

($ArgumentArray)
bracket ”Feature.Base.Container”.” addItem”
after Feature.Cache.C.invalidate()
end hypermodule;

6. ASPECTJ SOLUTION

Clarke and Walker’s [10] translation of composition pat-
terns to Aspectd is applicable to Aspectual Collaborations.
We follow their transformation in spirit, if not to the letter,
generating a surprisingly idiomatic AspectJ program. In our
translation, we have try retain the focus on the reusability
inherited from the original Aspectual Collaboration version
to keep the comparison between apples and apples.

6.1 Caching Aspect

Listing 15 shows the AspectJ implementation of Caching.
It is similar in behavior to Aspectual Collaborations’ solu-
tion, so we only cover the language specific details.

We delay discussion of the use of interfaces to model par-
ticipants until the Back aspect, as the discussion is more
concrete in that context.

The cachedmeth around advice illustrates the unconven-
tional genericity mechanism of AspectJ’s around advice [4].
The return type Object (line 15.12) indicates in AspectJ’s
semantics that this method can advise methods of any sig-

Listing 15: The Caching aspect.

abstract aspect Caching {
interface C {
java. util . Vector alllnvalidated ();

g)bject C.cachedValue;

void C.clearCache() {
System.err. println (” clear _cache”);
cachedValue = null;

abstract pointcut cachedmeth(C t);
abstract pointcut invalidate(C t);
Object around(C t): cachedmeth(t) {
if (t.cacheValue==null) {
t.cachedValue = proceed(t);
} else { System.err.println (” using._cached_value”); }
return t.cachedValue;

}
before(C t):invalidate(t) {
java. util . Iterator it = t. alllnvalidated (). iterator ();
while (it.hasNext())
((C)it.next ()). clearCache();

Listing 16: The Back aspect.

import java.util.x;
abstract aspect Back {
interface Source { Vector getTargets(); }
interface Target { }
abstract pointcut modifyTargets(Source s, Target t);
void around(Source s, Target t): modifyTargets(s,t) {
Vector targets = s.getTargets ();
int sizebefore = targets. size ();
proceed(s,t);
int sizeafter = targets. size ();
if (sizebefore <sizeafter) t.back =s;
else t.back = null;

}

Source Target.back;
Source Target.getSource() { return back; }

nature. If the advised method returns a primitive or void
value, it will be wrapped in the proper java.lang wrapper
class before being returned from proceed (line 15.14). The
returned object from the advice will be downcast (and possi-
bly extracted) to the type indicated by the signature of the
advised method. Although the AspectJ compiler protects
the programmer against so called stupid casts [20] during
this procedure, any use of Object (as when retrieving return
values from a Collection) can easily lead to casting errors
in generated code not visible to the user. Understanding
why this occurred requires the programmer to be a language
“wizard”.

For simplicity, we assume that a cached method never
returns null, and use this as a sentinel for cache validity.
An additional boolean variable, as in the Hyper/J example,
could have been used to keep track of the validity of the
cached value.

6.2 Back Aspect

Listing 16 shows the AspectJ implementation of Back.
We write an abstract aspect which is made concrete in a
subclasses by providing the necessary application-specific in-
formation. AspectJ uses interfaces to declare types, which
are then populated with behavior by introductions and im-
plemented by the base program, while the two other ap-
proaches’ concerns declare their behavior in classes which
are externally composed with the base program.

The situation in AspectJ is analogous to that of Java: it
is conscidered good programming style to program against
an interface, but up to the programmer to decide when and
where to do so. The AspectJ approach shares with Java the
problem that one cannot instantiate an interface directly,
but rather need an abstract factory pattern. We discuss
the advantages and disadvantages of interfaces pertaining
to attachment in the section on concrete aspects (section
6.3).

The interfaces describe the aspect’s required interface.
Due to restrictions in interfaces, the required interface can
only contain methods. This can be worked around by in-
stead adding getters and setters to the interface, and intro-
ducing methods to fulfill this interface . Thus, in AspectJ
the situation with fields is even more restrictive than in Hy-
per/J, where we were forced to use comments to indicate a
deferred field, but were able to compose them in the hyper-
module.

Provided methods are added to host classes directly via
AspectJ’s introduction mechanism, which interacts grace-
fully with interfaces, adding the introductions to the im-
plementing class rather than the interface (which of course
could not be an interface were it to contain code). Specify-
ing an interface and its added behavior separately both sep-
arates provided from deferred behavior textually (deferred
methods are directly on their interfaces, while provided be-
havior is in the aspect body), and also tangles the provided
behavior for all the participants into one class body.

Advice is declared against abstract pointcuts. AspectJ
has a mature join point model, and we are easily able to
express our intended behavior. The format of the advice
method differs from the Aspectual Collaboration and Hy-
per/J approach in that we explicitly pass in the receiver of
modifyTargets, while this refers to the object representing
the reified aspect. This allows advice to be quite general,
wrapping methods of varying signatures in different classes.

6.3 Concrete Aspects

Listing 17 illustrates how the abstract aspects can be in-
stantiated for the current application through subclassing.
We attach the participant interfaces of the two abstract as-
pects to classes by having the class implement the interface.
This is perhaps the biggest difference in approach between
AspectJ, and Hyper/J or AspectJs, in that the latter two
specify composition externally, while the former does so in-
ternally to the application.

We have moved the adapt concern into the connection
aspect, as it is tightly bound to both of the concerns it
adapts. AspectJ provides a very natural way to specify this
sort of adaptation code.

The implicit effect of supplying a concrete point-cut to the
abstract aspect is that its advice becomes attached to the ap-
plication at the join points specified. However, using inter-
faces has explicit effects on the program as well: it becomes

Listing 17: Concrete instances of the Aspects.

import java.util. Vector;
aspect Concretel extends Back {
declare parents: Item implements Target;
declare parents: Container implements Source;
pointcut modifyTargets(Source s,Target t):
target(s)
&& call(x Container.addItem(Item))
&& args(t) ;

aspect Concrete2 extends Caching {
declare parents: Container implements C;
pointcut cachedmeth(C t):
target(t) && call(x Item.check(..));
pointcut invalidate(C t):
target(t) && call(x Container.addItem(..));

aspect Adapt {
public Vector Container.alllnvalidated () {
Vector v = new Vector();
Container ¢ = this;
while (c != null) {
v.add(c);
¢ = (Container) c.getSource();

return v;

public Vector Container.getTargets() {
return contents;

visible outside the package that a class has implemented a
participant interface. For example, anObject instanceof
Target tests whether the back concern has been attached to
anObject. Ironically, while it is apparent at runtime that
Item implements Target, this is not apparent statically by
inspecting the code, unless we come across Concretel. A
naming convention can easily ameliorate this, however.

The objection to runtime composition tests may appear
more of an aesthetic than Software Engineering issue, but
the mechanism of attaching participants by implementing
interfaces has consequences for type safety as well. If the
back collaboration were attached twice in an application,
there would be two classes that now have the type Tar-
get. Since we intend to reuse back, there may be additional
such classes in library code. The problem is that the be-
havior provided to the application by the concern is written
against the interface types, while the methods implementing
the concern’s required interface will likely be casting these
type to the implementation classes'?. Ie, it is to pass any
Target class to a method with that argument type, but that
method’s implementation may likely assume that the Source
returned by getSource is actually a Container. This assump-
tion would be foolish in normal code implementations of an
interface, but since a concern is declared as a unit, it makes
sense for the programmer to assume that the attachment is
also a unit.

Lastly, we were lucky that back and cache didn’t have
any name clashes. While AspectJ offers aspect-local meth-
ods for the concern’s implementation behavior, the expected

20ur examples do not involve any expected methods that
take participant types as arguments, so this case does not
appear.

methods on the interfaces must be implemented by public
methods with exactly that name.

7. DISCUSSION AND LESSONS

The previous sections offered a detailed comparison be-
tween Aspectual Collaborations, Hyper/J, and AspectJ. In
this section we summarize the lessons learned from the com-
parison.

7.1 Hyper/J

Hyper/J and the work on Multi-dimensional Separation
of Concerns [39, 40] generalizes the ideas behind Subject-
Oriented Programming [17, 35] by moving to finer grained
units of combination. A HyperSlice is a named set of classes
containing sets of methods and fields. The slice can be added
to new classes in a very similar way to collaborations.

Hyper/J takes a stricter approach to phase distinction
than Aspectual Collaborations, performing all concern re-
lated operations on pure Java programs, with absolutely no
language modifications. In contrast Aspectual Collabora-
tions add some additional syntax to Java, requiring them to
be compiled as well as composed by acc.

HyperSlices were somewhat inflexible to use for our chal-
lenge problem, requiring us to hardwire the signature for
an around method, and requiring downcasts of intercepted
method arguments in before and after advice. HyperSlices
do not control the visibility of members and classes, open-
ing slice composition up to inadvertent name capture [31].
However, Hyper/J does well at type-safe reuse, achieving
reuse without requiring the hosts to share types and hence
make casting errors more likely.

Hyper/J additionally offers several features that did not
come up in the example. Post-hoc remodularisation allows
a HyperSlice to be teased out of a set of classes (possibly
generated by composing slices, or by compilation of .java
files) and used separately. Hyper/J also provides several
dimensions of composition, of which our examples only used
the feature dimension.

7.2 Aspect]

Aspect]J from Xerox PARC [41] resulted from the initia-
tive to factor out commonalities in several domain specific
aspect languages. Crista Lopes’ thesis [27] investigated two
of those languages in detail: COOL [29] for specifying the
synchronization aspects, and RIDL [28] for specifying data
transfer aspects.

AspectJ integrates aspect features tightly into the lan-
guage, forgoing the semantic and syntactic overhead of mod-
ule systems, but also the benefits of encapsulation and sepa-
rate compilation. While this gives rise to very natural speci-
fication of aspectual behavior, it comes at a cost of program
comprehension, as the lack of encapsulation boundaries for
advice forces the programmer to read the whole program
to determine whether a join-point has advice. The AspectJ
team developed tools to perform such system-wide program
comprehension, and integrate join-point feed-back into sev-
eral IDEs. Analogously, there is no way to protect a join-
point against being advised.

AspectJ aspects are reusable by programming abstract
aspects against interfaces that are attached at a later time to

the host program.'® Aspectual advice achieves surprisingly
good reuse, both by mentioning only the types necessary in
a point-cut signature, and also by the somewhat unorthodox
genericity mechanisms of around methods (see section 6.1),
which appear to work very well in practice.

Unfortunately, programming abstract aspects against in-
terfaces suffers from low levels of type safety: generating
casts in programmer-invisible code that can fail, and forc-
ing multiple uses of an aspect to share types (recall section
6.3), which opens up the program to further casting errors.
The use of interfaces interferes with reuse, as it restricts
expected members to be methods, and requires name equiv-
alence between expected and provided methods.

7.3 Aspectual Collaboration critique

Aspectual Collaborations are not without flaws: the ex-
plicit use of reified aspectual methods may impose a perfor-
mance penalty, and requiring the user to capture and return
a reified result introduces some awkwardness into aspectual
methods. However, we gain a very clear insight into the
exact behavior of our program, in addition to strong type-
safety guarantees and flexible reuse.

Encapsulation allows us to also understand the program
in a compositional manner: by looking only at one attach-
ment specification, we can make accurate predictions about
how the mentioned parts of the program can communicate
with each other. In contrast, AspectJ has long recognized
the “come-from” [7] nature of advice [37], and integrate tool
support into several IDEs to assist programmer overview
of the program. Similarly, while Hyper/J’s HyperModule
definitions make it explicit how concerns are composed, al-
leviating the “come-from” nature of aspects, the seeming
lack of encapsulation makes understanding what concerns
are composed impossible without performing a full trace of
the concern composition history to gather up the accumu-
lated interfaces for the slices.

Adaptive PlugéPlay (AP&P) components [34] and the
follow-on report [25] are the immediate precursors to As-
pectual Collaborations. AP&P components are rooted in
Holland’s executable contracts [19] and in Rondo [33]. This
work builds on [25], but with significant modifications from
experience with implementation, and with a very different
attachment / matching model stemming from clarified se-
mantics. The difference in attachment and matching reflects
that AP&P components are aimed at being language level
components rather than system structuring modules. Addi-
tionally, they AP&P components offered somewhat weaker
aspectual capabilities.

Mezini and Herrmann [18] discuss a software engineering
environment capable of combining dynamic plugability, sep-
arate compilation, and aspectual attachment. It is unclear
how their PIROL system deals with type safety.

8. RELATED AND FUTURE WORK

In this section we bring in work related to Aspectual Col-
laboration and future research issues.

8.1 Module Systems

Module systems are effectively the dual of AspectlJ, offer-
ing powerful encapsulation and reuse support, but no sup-

131t is unclear whether an abstract aspect can be separately
compiled, or whether it is recompiled with the application.

port for aspectual or concern-oriented features. However,
just as AspectJ can still achieve reuse without encapsula-
tion, it is possible to achieve some aspectual features with-
out tool support — as in Hyper/J’s implementation of an
around method. Indeed, we are currently investigating the
possibility to use a third-party module system as a back end,
rather than our own solution, in order to free up developer
resources.

Jiazzi [30] is the implementation of Units [15] for Java.
Jiazzi reuses Java’s core composition feature — inheritance
— and the Open Class pattern to construct the resulting
classes from partial implementations. Late binding is used
to allow mutually recursive dependencies between modules.
A Jiazzi implementation of the caching example would likely
look very similar to the Hyper/J version, but instead of
capturing the original method explicitly and then relinking
the resulting class to swap in the cached version instead of
the original, In Jiazzi we would specify that we expected
the cached method to be declared on a superclass, and then
proceed to override it, calling the original method with a
super call.

It is interesting to note that although developed com-
pletely separately, the current back end for Aspectual Col-
laborations and Jiazzi are strikingly similar. The main dif-
ferences are how the finished classes are assembled (Jiazzi
favors inheritance, while we manually combine and link par-
ticipant .class files) and the fact that we favor intrinsic
typing for collaborations, while Jiazzi allows reuse of a unit
type for several unit implementations.

Mixin-Layers [38] represent a collaboration as a layer of
mixin classes. This layer is treated as a unit, so that the
interface to the mixin layer is a set of superclass imports,
and a set of class exports. Mixin layers can be composed
creating composite layers, allowing modular construction of
complex programs. Both Jiazzi and Aspectual Collabora-
tions generalize layers, in that both can represent layers as
a programming pattern, but can also represent other forms
of modular construction.

8.2 Component Systems

Component Systems can be seen as a restricted form of
module system, where imports are not classes, but rather
objects and operations on objects. The distinction is that
component systems seldomly offer any form of parametricity
over types, relying rather on subtype polymorphism. Fur-
thermore, the result of linking components typically does
not generate a new type, but rather links existing compo-
nent instances together to construct complex behaviors from
simpler ones.

ArchJava [3, 2] is a a modern example of a component
system. Components communicate with each other over
named sets of methods, called ports. Component instances
can be connected both statically or dynamically, and in both
cases, the system guarantees that components only commu-
nicate to their neighbors, ensuring communication-integrity.
However, the authors point out that this applies only to
method invocations — shared object references can still be
propagated through the system allowing communication to
pass via the shared object.

Aspectual Collaborations are not able to conveniently ex-
press, nor guarantee communication integrity for dynamic
component connection, but are able to quite well for the
static case. Using encapsulation, we are able to make state-

ments not only which components a component is able to
talk to, but more strongly which components it can talk
about. If a component doesn’t import another component’s
type, direct communication between them is impossible. This
applies additionally to auxiliary classes and objects that are
passed between components. If a component has only a lim-
ited view of a class (for example omitting a sensitive field),
then we can statically guarantee that this field cannot be di-
rectly manipulated by the component. If a component does
not know about a class at all, it cannot communicate via
objects of that type at all.

Interestingly, analysis of the ArchJava papers has yielded
a programming pattern — tentatively called the component/-
port pattern, which significantly enhances the readability of
an Aspectual Collaboration by separating out connections
between collaborations onto port classes.

8.3 Modeling Languages

Moving away from implementation to the modeling arena,
we see some connections to modeling efforts.

Composition Patterns [9] adds the concept of compo-
sition patterns to UML [6]. The implementation suggestions
for composition patterns [8] strongly influenced the imple-
mentation of reusable aspects and hyperslices in this paper,
and we propose that Aspectual Collaborations do an partic-
ularly elegant job of representing Composition Patterns. It
is unclear whether Composition Patterns capture multiple
attachments of a collaboration, and how sharing of members
between such attachments would be expressed.

Catalysis methodology [12] has a strong emphasis on
modeling collaborations. Catalysis uses a common model of
attributes. In comparison, we use a participant graph, and
have built-in support to express aspectual decompositions.

8.4 Future Work

There are several subtle implementation issues that need
to be dealt with in future work. These are issues that we
have solved at the language design level, but not yet imple-
mented.

Parameterization. By adding types to collaborations,
it becomes feasible to express attachments which are ab-
stracted over the exact collaboration attached. By passing
collaboration-valued parameters as arguments to attached-
collaborations, very complicated behaviors can be succinctly
expressed. The challenge is to develop a type system that
allows flexible use while capturing errors early. Errors will
always be caught at compilation time, but it is desirable to
catch them when the parameterized collaboration is defined,
rather than used.

Point-cuts in the interface. The interface to an As-
pectual Collaboration currently contains only participants
and members. Thus, in order to add advice to a member, it
must be in the interface, and hence visible. It would be nice
to be able to decouple these concepts, also putting point-
cuts into the interface of an Aspectual Collaboration. Thus,
the collaboration could export the ability to add advice to
a member, without exporting the member itself.

Constructors. The main problem with constructors is
that they are the only methods which should be merged,
rather than kept separate. When two constituent partici-
pants are mapped to the same output participant, we want
creation of an output-participant object to invoke all three

(two constituent, and one output) constructors. Each par-
ticipant may actually contribute several constructors, which
in turn may lead to several inheritance chains of construc-
tors. Since a constructor may invoke any method of a class,
we have to be wvery careful about the order in which class
initialization methods are invoked. Our current solution is
to have a sensible heuristic, and ask the user to specify in
the situations where that does not apply. We note that Ji-
azzi [30] has a similar restriction, requiring all constructors
in an inheritance chain to have exactly the same signature.

Change the Back End. Currently, acc, the Aspectual
Collaboration compiler, compiles a collaboration to plain
Java, compiles that, and then works on the generated byte-
code for the attachment and composition operations. How-
ever, the mechanics of the byte-code manipulation are te-
dious, and is not the contribution of our research. Instead
it may be possible to offload this development burden to
a back-end based on Jiazzi, which would allow us to focus
on developing the module interface language and aspectual
features.

8.5 Possible Extensions

In addition to those implementation issues, the following
are natural extensions to this work:

Object Graph Constraints. A key concept of collabora-
tions is that each has its own class-graph, which are fused
when one is attached to another. The behavior of a class-
graph will in general instantiate classes of that class graph
and store the objects in variables. In effect, each collabo-
ration will build its own object-graph. In addition to build-
ing an object graph, the collaboration also makes assump-
tions about it—these assumptions are encoded in the code of
the collaboration, and take the form of invariants over the
object-graph.

Examples of invariants are that a non-zero value for one
variable indicates that another is ready to be read, or that
two variables of the same type in fact alias the same object.
The key insight here is that the fused collaborations must
make compatible assumptions about their object-graphs, as
in addition to sharing a fused class-graph after attachment,
they will at runtime also share an object-graph.

It would be helpful to capture these constraints in the in-
terface of the collaboration, so as to be able to catch such
attachment errors at compile-time. This can be seen as a
special case of contract checking, where perhaps machine
analysis can help derive the object-graph (run-time) con-
straints to be checked at compile-time.

Macro System. We purposefully keep our core language
minimal to achieve a simple semantics. However, this leads
to programming patterns occurring over and over. Rather
than adding these patterns to our core language, one ap-
proach would be to desugar a rich input language (perhaps
containing “before” and “after” advice) into our core. This
desugaring could be written as pre-processing task, but this
would force the developers to update it at the whims of the
users of the language. A better solution would be to in-
clude a macro language, to allow the users to encode their
particular programming patterns.

Garbage-collect Participants Because collaborations are
closed to future extension apart from the exported inter-
face, we can statically determine all reachable participants
and members. Thus, we can safely remove all non-reachable

participants and members, retaining only the exported in-
terface and any non-visible but reachable members. This
smaller collaboration becomes very similar to a teased-out
HyperSlice.

9. CONCLUSION

A known AOP problem addressed by several authors is the
difficultly to tease out and reuse aspects which are tightly
integrated into host code [14]. The reason why aspects are
often so tightly integrated with the host code is the lack of an
encapsulating interface between the aspectual unit and the
rest of the system. This paper addresses this issue by com-
bining the power of aspects with the encapsulation power of
modules. We demonstrate that writing aspects against for-
mal participant graphs, and attaching them to other partici-
pant graphs, helps in making the aspects both more abstract
and reusable.

We have presented Aspectual Collaborations, which com-
bine the static properties of modules: encapsulation, exter-
nal composition, and separate compilation, with the flexible
programming power of aspects. Aspectual Collaborations
are a wrapper around Java, which adds a module system
and support for aspectual behavior and separate compila-
tion. We have shown how the system implements separate
compilation of aspectual and additive behavior; allows com-
position and parameterization of collaborations; and can
transparently interface with existing Java programs. We
have elided the description of the implementation, which is
implemented as a somewhat involved desugaring of aspec-
tual features to a module language back-end.

This paper has compared Aspectual Collaborations against
two popular aspect-oriented systems, on a small but reason-
able example, to evaluate the overhead of each system, and
if possible to gauge whether the presumed overhead of our
system is “worthwhile”.

We expected Aspectual Collaborations to, by design, be
better than AspectJ at reuse, but under perform on a small
sized example, since the extra syntax of a module language
may be comparatively cumbersome for a small program.
Much to our delight, we found that compared to reusable
aspects in AspectJ, Aspectual Collaborations are only some-
what more verbose, but at the considerable benefit of sepa-
rate compilation and type safety.

We expected Aspectual Collaborations to offer modular
power similar to Hyper/J, but with better aspectual fea-
tures. This was borne out. We did find that Hyper/J
brackets allow before and after advice to be written fairly
easily, but simulating around advice was quite tricky, com-
posing hyperslices with differing names was quite verbose,
and controlling the details of the generated output was fid-
dly. Hyper/J’s features work well when working with a set of
hyperslices with common and recurring names, allowing its
composition functions can be used with the mergeByName
matching.

The Aspectual Collaborations advantage shows up when
composing very different collaborations, with differing names
and participant graph shapes. Additionally, Aspectual Col-
laborations will do even better when precise control is needed
over which members are to be visible from a composed col-
laboration, and when one collaboration is to be reused sev-
eral times in different contexts, with the same advice applied
to signatures of different types.

10. REFERENCES
[1] M. Abadi and L. Cardelli. A Theory of Objects.

Springer-Verlag, NY, 1996.

[2] J. Aldrich and C. Chambers. Architectural reasoning
in archjava. In European Conference on
Object-Oriented Programming, 2002.

[3] J. Aldrich, C. Chambers, and D. Notkin. Archjava:
Connecting software architecture to implementation.
In International Conference on Software Engineering,
2002.

[4] Aspect] Team. AspectJ Programming Guide.
http://aspectj.org/doc/dist/progguide/apbs03.html.

[5] X. P. AspectJ Team. AspectJ home page.
http://aspectj.org. Continuously updated.

[6] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified
Modeling Language User Guide. Object Technology
Series. Addison Wesley, 1999. ISBN 0-201-57168-4.

[7] R. L. Clark. A linguistic contribution to goto-less
programming. Communications of the ACM, 1974.
Originally published in Datamation, 1973.

[8] S. Clarke. Designing reusable patterns of cross-cutting
behavior with composition patterns. In the Second
Workshop on Multi-Dimensional Separation of
Concerns in Software Engineering (ICSE 2000), 2000.

[9] S. Clarke and R. Walker. Composition patterns: An
approach to designing reusable aspects. In
International Conference on Software Engineering.
ACM Press, 2001.

[10] S. Clarke and R. Walker. Separating Crosscutting
Concerns Across the Lifecycle: From Composition
Patterns to AspectJ and Hyper/J. Technical Report
UBC-CS-2001-05, University of British Columbia,
Vancouver, CA, 2001.

[11] E. W. Dijkstra. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, N. J., 1976.

[12] D. D’Souza and A. Wills. Objects, Components, and
Frameworks with UML: The Catalysis Approach.
Addison-Wesley, 1998.

[13] T. Elrad, R. Filman, and A. Bader. Aspect-Oriented
Programming. Communications of the ACM,
44(10):28-97, 2001.

[14] E. Ernst. Separation of Concerns and Then What? In
Workshop on Advanced Separation of Concerns,
ECOOP, Cannes, France, 2000. Electronic form:
http://www.cs.auc.dk/ eernst/.

[15] M. Flatt and M. Felleisen. Units: Cool modules for
hot languages. In ACM Conference on Programming
Language Design and Implementation, pages 236—248,
1998.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: Abstraction and reuse of
object-oriented design. In Furopean Conference on
Object-Oriented Programming, number NU-CCS-93-1,
pages 406-431, December 1993.

[17] W. Harrison and H. Ossher. Subject-oriented
programming (A critique of pure objects). In
Proceedings OOPSLA ’93, ACM SIGPLAN Notices,
pages 411-428, Oct. 1993. Published as Proceedings
OOPSLA 93, ACM SIGPLAN Notices, volume 28,
number 10.

[18] S. Herrmann and M. Mezini. PIROL: a case study for
multidimensional separation of concerns in software

[24]

[25]

[26]

[29]

[30]

engineering environments. In OOPSLA, pages
188-207, 2000.

I. M. Holland. The Design and Representation of
Object-Oriented Components. PhD thesis,
Northeastern University, 1993.

A. Igarashi, B. Pierce, and P. Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. In
Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages,
and Applications in Special Issue of SIGPLAN
Notices, pages 132-146, 1999.

S. Katz. A superimposition control construct for
distributed systems. ACM Transactions on
Programming Languages and Systems, 15(2):337-356,
April 1993.

G. Kiczales. Beyond the black box: Open
implementation. IEEE Software, (1), January 1996.
G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. Griswold. An Overview of AspectJ.
In J. Knudsen, editor, Furopean Conference on
Object-Oriented Programming, Budapest, 2001.
Springer Verlag.

G. Kiczales, J. D. Riviere, and D. Bobrow. The Art of
the Metaobject Protocol. MIT Press, 1991.

K. Lieberherr, D. Lorenz, and M. Mezini.
Programming with Aspectual Components. Technical
Report NU-CCS-99-01, College of Computer Science,
Northeastern University, Boston, MA, March 1999.
www.ccs.neu.edu/research/demeter.

K. Lieberherr, D. H. Lorenz, and J. Ovlinger.
Aspectual collaborations for collaboration-oriented
concerns. Technical Report NU-CCS-01-08, College of
Computer Science, Northeastern University, Boston,
MA 02115, Nov. 2001.

C. 1. V. Lopes. D: A Language Framework for
Distributed Programming. PhD thesis, Northeastern
University, 1997. 274 pages.

C. V. Lopes. Graph-based optimizations for parameter
passing in remote invocations. In L.-F. Cabrera and
M. Theimer, editors, 4th International Workshop on
Object Orientation in Operating Systems, pages
179-182, Lund, Sweden, August 1995. IEEE,
Computer Society Press.

C. V. Lopes and K. J. Lieberherr. Abstracting
process-to-function relations in concurrent
object-oriented applications. In R. Pareschi and

M. Tokoro, editors, European Conference on
Object-Oriented Programming, pages 81-99, Bologna,
Italy, 1994. Springer Verlag, Lecture Notes in
Computer Science.

S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi: New
age components for old-fashioned java. In Proceedings
of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications in
Special Issue of SIGPLAN Notices, volume 36, pages
211-222, 2001.

B. Meyer. Object-Oriented Software Construction.
Series in Computer Science. Prentice-Hall
International, 1988.

M. Mezini. Maintaining the consistency of class
libraries during their evolution. In Proceedings of the
ACM Conference on Object-Oriented Programming

(33]

(34]

(35]

(36]

37]

(38]

(39]

(40]

(41]

42]

Systems, Languages, and Applications in Special Issue
of SIGPLAN Notices, 1997.

M. Mezini. Variation-Oriented Programming Beyond
Classes and Inheritance. PhD thesis, University of
Siegen, 1997.

M. Mezini and K. Lieberherr. Adaptive plug-and-play
components for evolutionary software development. In
C. Chambers, editor, Object-Oriented Programming
Systems, Languages and Applications Conference, in
Special Issue of SIGPLAN Notices, number 10, pages
97-116, Vancouver, October 1998. ACM.

H. Ossher, M. Kaplan, W. Harrison, A. Katz, and

V. Kruskal. Subject-oriented composition rules. In
Proceedings OOPSLA ’95, ACM SIGPLAN Notices,
pages 235-250, Oct. 1995. Published as Proceedings
OOPSLA 93, ACM SIGPLAN Notices, volume 30,
number 10.

D. Parnas. One the criteria to be used in decomposing
systems into modules. In Communications of the
ACM, volume 15, pages 1053-1058, 1972.

M. Rinard. Aspectual programming is programming
with come-from. Personal Communication to Mitch
Wand, in Parking lot at NEPLS, Oct 2001.

Y. Smaragdakis and D. Batory. Implementing layered
designs with mixin-layers. In Furopean Conference on
Object-Oriented Programming. Springer Verlag, 1998.
P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N
degrees of separation: Multi-dimensional separation of
concerns. In International Conference on Software
Engineering, pages 107-119, 1999.

P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N
degrees of separation: multi-dimensional separation of
concerns. In International Conference on Software
Engineering, pages 107-119, Los Angeles, 1999. ACM.
X. P. A. Team. AspectJ. Technical report, Xerox
PARC, January 1999.
http://www.parc.xerox.com/spl/projects/aop/.

P. Wegner. The object-oriented classification
paradigm. In B. Shriver and P. Wegner, editors,
Research Directions in Object-Oriented Programming,
pages 479-560. Cambridge, Massachusetts, MIT Press,
1988.

