
Oron Peled and myself as part of the requirements
in a course on Advance Topics in Java. IBM Haifa
Research Lab provided the Java software.

References
[1] Apple Computer, Inc., Cupertino, CA. Dylan: An

object-oriented dynamic language, 1992.
[2] L. G. DeMichiel and R. P. Gabriel. The common

lisp object system: An overview. In J. Bézivin,
J.-M. Hullot, P. Cointe, and H. Lieberman, edi-
tors, Proceedings of the 1st European Conference on
Object-Oriented Programming, number 276 in Lec-
ture Notes in Computer Science, pages 151–170,
Paris, France, June 15-17 1987. ECOOP’87, Springer
Verlag.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Computing.
Addison-Wesley Publishing Company, Reading,
Massachusetts, 1995.

[4] J. Y. Gil and D. H. Lorenz. Design patters and lan-
guage design. IEEE Computer, 31(3):118–120, Mar.
1998. Object Technology.

[5] J. Hernandez, M. Papathomas, H. M. Murillo, and
F. Sanchez. Coordinating concurrent objects: How
to deal with the coordination aspect?, 1997.

[6] D. Holmes, J. Noble, and J. Potter. Aspects of syn-
chronization, 1997.

[7] C. Houser. Manual and compiler for the terse and
modular lagnuage DEM. ACM SIGPLAN Notices,
31(12):41–51, Dec. 1996.

[8] M. E. N. III. Default and extrinsic visitor. In Martin
et al. [13], pages 105–124.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
oriented programming. In M. Akşit and S. Mat-
suoka, editors, Proceedings of the 11th European
Conference on Object-Oriented Programming, num-
ber 1241 in Lecture Notes in Computer Science,
pages 220–242, Jyväskylä, Finland, June 9-13 1997.
ECOOP’97, Springer Verlag.

[10] K. J. Lieberherr. Adaptive Object-Oriented Software:
The Demeter Method with Propagation Patterns. PWS-
Kent Publishing, 1996.

[11] K. J. Lieberherr, I. Silva-Lepe, and C. Xiao. Adap-
tive object-oriented programming using graph-
based custom ization. Commun. ACM, 37(5):94–101,
May 1994.

[12] D. H. Lorenz. Tiling design patterns - a case study
using the interpreter pattern. In Proceedings of the
12th Annual Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages
206–217, Atlanta, Georgia, Oct. 5-9 1997. OOP-
SLA’97, Acm SIGPLAN Notices 32(10) Oct. 1997.

[13] R. Martin, D. Riehle, and F. Buschmann, editors.
Pattern Languagesof Program Design 3, Software Pat-
terns. Addison-Wesley, 1998.

[14] R. C. Martin. Acyclic visitor. In Martin et al. [13],
pages 93–104.

[15] K. Mens, C. Lopes, B. Tekinerdogan, and G. Kicza-
les. Aspect-oriented programming workshop re-
port, 1997.

[16] J. Vlissides. Pattern hatching: Visiting rights. C++
Report, 7(7), Sept. 1995.

Page 8



ample, for the class java.lang.reflect.Method, three
class names will flash: java.lang.Object—its super-
class, java.lang.Member—its interface, and int—
the type of its field. The figure shows the screen
dump at the end of the execution, and therefore int
is showing in the output box.

This example comprises of only traversal beans.
Examples using behavioral beans (e.g., introducing
counters, resets, increments, and counter reporters
along the path to compute the number of classes
instead of just flashing them) are skipped.

5 Conclusions

This paper submits that it is useful to develop
aspect-oriented patterns for describing an aspect-
oriented solution to a tangling problem in a par-
ticular context. We presented the Visitor Beans pat-
tern, as an example of an aspect-oriented pattern,
which solves the problem of tangling between re-
flection, navigation, and behavior.

The Visitor Beans pattern is a substantive vari-
ant of the VISITOR pattern. It implements the pat-
tern in Java without confining to the working of
the traditional implementation. Visitor Beans uses
Java’s new event model as an alternative to writ-
ing visit() methods, and Java Reflection as an al-
ternative to writing accept() methods. Instead of
sending a visitor to visit an element, the element
is fired to the visitor as an event. Weaving is done
via visual builder tools that support the JavaBeans
technology.

5.1 VISITOR pattern lessons

Visitor Beans present a better way to compose visi-
tors. Each visitor is packed as a Java bean. A vis-
itor may register as an event listener with other
visitors and send events to other visitors. Visual
builder tools (like Java StudioTM and VisualAgeTM

for Java Professional) provide visual means to
compose the visitors.

With Visitor Beans, we can extend class hierar-
chies that never anticipated extension. This capa-
bility was illustrated by extending java.lang.reflect
itself, although java.lang.Class is a system class
definition with no accept hooks, and its instances
are pre-existing classes.

5.2 AOP lessons

The VISITOR BEANS pattern describes an aspect-
oriented solution to a tangling problem in a partic-

ular context. Identifying the components, aspects,
join-points, and aspect weaver in the Visitor Beans
pattern, nonetheless, was not all that straightfor-
ward. Some observations are listed here.

� Weaving-time weaving. Beans are first com-
piled, then combined into an application via a
builder. The weaving is done during the run-
time of the builder, after compilation and be-
fore running. Hence this is neither compile-
time weaving nor run-time weaving. Rather,
this seams to be a new time frame for weav-
ing, which may be called weaving-time weav-
ing.

� Reflection and AOP. Reflection was used here
intensively. It was the subject for extension
and an aspect of the extension. It plays part in
introspection during weaving-time weaving;
and it is the means in which run-time weaving
is achieved.

� Visual representation of AOP. To a limited de-
gree, the graphical builder tool provides a
visual representation of the component, as-
pects, and of the weaving. The lines connect-
ing beans can be viewed as webs, connecting
the beans’ connectors, which it turn can be
viewed as primitive aspects.

� AOP and existing technology. Patterns are es-
sentially about achieving the desired from
what exists. The Visitor Beans pattern demon-
strated how the JavaBeans technology may be
applied in AOP.

� Decoupling of aspects. Join points, like the ac-
cept() and visit() methods, create undesired
coupling between aspects. Reflection decou-
pled those.

� Strongly typed weaving. Connectors of beans
are an example of typed join points. The as-
pect weaver processes the aspect language in
terms of the join points of components. A
strongly typed aspect language can thus pre-
vent senseless weaving.

6 Acknowledgments

I thank Karl Lieberherr for objecting to the state-
ment about the VISITOR in [4, page 119]. My
thanks also to Daniel Berry for his encouragement
and for helpful comments on the manuscript. The
example shown in Figure 4 was implemented by

Page 7



Figure 4: Weaving Visitor Beans

4.1 Weaving-time weaving

Figure 4 is an example of how Visitor Beans may be
combined as reusable software components using
any standard visual builder tool that supports Jav-
aBeans technology. The figure is a screen dump of
Java StudioTM builder. The top window is show-
ing the user panel with 15 visitor beans that are
currently available. The untitled window on the
lower-left is the visual image of the application be-
ing built in the lower-right window entitled ‘Java
Studio Design’. The two field text lines are the
visual appearance of primitive IO beans used for
I/O. The upper one named IO1 is used for input,
and the lower one named IO2 for output.

When text is entered to the input IO1 beans,
TextEvents are fired to VclassTransmitter1.
VclassTransmitter1 reacts by customizing itself to
generate a ClassEvent with a class whose name is
the string received from IO1. (VclassTransmitter1
can also be customized directly via a bean cus-
tomizer.) Once it has been customized, the event
is ready to be fired.

Button1 is connected to the method fire() of
VclassTransmitter1 so that when it is pressed the

VclassTransmitter1 sends out the awaiting Clas-
sEvent. If the string obtained from IO1 is not a
legal class name, no event is fired. For debugging
and demonstration purposes, VclassTransmitter
writes to System.out whether the string is legal or
not. The Button, the Distributer and the Merger are
GUI beans that come with Java StudioTM.

Once Button1 is pressed and VclassTransmitter1
fires the ClassEvent, it is distributed to Super-
class2, Interfaces1, and Fields1. As a result, Su-
perclass2 triggers a ClassEvent with the super-
class of the class. Interfaces1 triggers multiple
ClassEvents, one for each interface of the class.
Fields1 triggers multiple FieldEvents, one for each
public field of the class. The FieldEvents are re-
ceived by Type1 which fires a ClassEvent corre-
sponding to the type of the filed. All the Clas-
sEvents are then collected by Merger1, and sent,
one by one, to VclassReceiver1. Finally, Vclass-
Receiver1 generates a TextEvent, and IO2 displays
the class names, one by one. In order not to miss
any class name, IO2 pauses for about half a second
after each name change.

In short, this example generates for a given class
all the classes it immediately depend on. For ex-

Page 6



package visitor.beans.event;

import java.util.EventObject;

public class VisitEvent extends EventObject {

protected VisitEvent(Object source,int type,Object visited,Object[] data) {
super(source);
fieldType = type;
fieldVisited = visited;
fieldData = data;

}

private transient int fieldType = 0;
private transient Object fieldVisited = null;
private transient Object[] fieldData = null;

}

Figure 3: VisitEvent class

classed visitor. There is no filtering of visitations.
The visit() methods is always called on a visitor
regardless of whether the visitor actually handles
those elements or not, thus the need for a DEFAULT
VISITOR [8] or a NULL VISITOR. [12]

3.3 Visit events

Instead of using C++ templates (which do not yet
exist in Java), we shall pack each visitor as a Java
bean. Packing visitors as JavaBeans changes the
ways visitors are used. Visitors may now report
their visiting actions via events which are the natu-
ral inter-bean communication mechanism in Java.
The direct implications of this approach are:

� Sending an event passes an event object. This
object may carry information (like a reference
to the visited object which the receiver of the
event may access.)

� A visitor may register as an event listener
with (possibly many) other visitors, and send
events to (possibly many) other visitors. An
arbitrary graph of event passing may be con-
structed, representing some complex visitor
composition, without extra cost.

� Events are typed by the event objects sent.
Since the event types form an inheritance hier-
archy, visitors may register to each other in a
typesafe (although not polymorphic) manner.

In order to supply the visitor with sufficient
data, VisitEvent extends java.util.EventObject as
given by the code of Figure 3. It consists of four
parts. The first is the source of the event, like in
any EventObject. Like java.awt.event.AWTEvent,
the second part is the type of the event. We use the
event type to pass control instruction, such as reset,
normal, and terminate. The third part contains a ref-
erence to the visitee. It allows visitors to access the
visited object. The fourth part contains an array of
additional data.

Traversal visitors manipulate the visitee part and
pass the data as is, while behavioral visitors pass the
visitee untouched and manipulate only the data.
All visitors mark themselves as the source of the
event, for upwards compatibility with other beans.

4 Implemented Example

We do not need, in the reflection case,
to create the class hierarchy since these
classes already exist in java.lang and
java.lang.reflect. Instead we create for each
class � 2 fClass; Field; Method; Constructorg,
an event class named �Event. For each of these
events we need of course to define a correspond-
ing Listener interface. A visitor that is interested
in visiting only particular types of elements
would register to receive notifications from only
those types of events, and should declare itself as
implementing the required interface.

Page 5



public void visit_dispatch(Object o) {
Class[] formal = new Class[1];
formal[0] = o.getClass();
try {

Method m = getClass().getMethod("visit", formal);
Object[] actual = new Object[1];
actual[0] = o;
m.invoke(this, actual);

} catch (Exception e) {
e.printStackTrace(System.err);

}
}

Figure 2: Dispatching visit calls using reflection

java.lang.Class, which serves as the type of all
those instances.

Adding to this that reflection is also a useful class
to extend, makes this example possess all the right
qualities. The classes are predefined; elements are
pre-instantiated; and still, we wish to be able to
visit elements (classes) and perform a new oper-
ation over them. We shall do so using run-time
weaving by applying Java’s reflection to itself.

3.1 Cross-cutting aspects

Consider a particular extension to Java’s reflec-
tion: a class’s dependency method. There are three
orthogonal aspects to computing dependency of
classes (instances) conforming to the grammar
in Figure 1:

� Reflection: Ability to discover information
about the fields, methods and constructors
of loaded classes, and to use reflected fields,
methods, and constructors to operate on their
underlying counterparts.

� Navigation: Traversing through the reflected
information.

� Behavior: The actual computation carried out
(along the path).

These are aspects that cut across system function-
ality. They are not simply functional decompo-
sition because they affect each other’s semantics.
Traversal is defined in terms of the reflected struc-
ture and may depend on partial computation re-
sults. Similarly, the computation may depend both
on the reflected information and on the traversal

path. The Visitor Beans pattern tells you to imple-
ment these aspects as beans, and handle the de-
pendencies during weaving.

3.2 Decoupling aspects

One adaptation to Java is to discard the original
accept() methods and replace them with a general
dispatching mechanism using Java reflection. Ap-
plying reflection, we need only a single accept()
method, global to all visitors, that takes two argu-
ments, the element instance and the visitor instance,
as illustrated by the code in Figure 2. (In the fig-
ure, the concrete visitor is the hidden this param-
eter.) It then introspects the visitor class to locate
a method named ‘visit’ which takes a single argu-
ment of type element class, and finally invokes the
method found on the element instance.

The next adaptation is to find a better way
for visitor composition and for combining visi-
tors. The model for visitor combinations proposed
in [12] is based on inheritance and templates. In
order for a visitor to extend and process another
visitor’s visit() method, it must subclass that visitor
and override either the visit() for that element or
one of its related classes. Returning without call-
ing the inherited accept() method consumes the
visit. Otherwise the visit is propagated up the vis-
itor hierarchy until the traversal completes.

While the above works fine for small tilings of
simple visitors, it does not scale well for larger vis-
itor combinations for the following reasons. The
requirement to subclass a visitor in order to make
any real use of its functionality is cumbersome.
The inheritance-genericity model does not lend
itself well to maintaining a clean separation be-
tween the traversal and behavioral because traver-
sal code must be integrated statically into the sub-

Page 4



3 A Case Study: Extending Re-
flection

Figure 1 describes a simplified grammar for Java’s
reflection. Following the guide lines of the INTER-
PRETER, it prescribes a definition of a class hierar-
chy. Left-hand-side variables are classes. Right-
hand-side fields are instance variables. In the
figure, fields have the general form ‘label :type’,
meaning that the class will have an instance vari-
able named ‘label ’.

The type of the instance variable can be a primi-
tive type like in ‘name:String’, or one of the left-
hand-side variables, i.e., a reference to another
class like in ‘type:Class’. A type surrounded in
square brackets indicates that it is optional, as in
‘superclass:[Class]’ which means that the super-
class of an instance of Class may be null. Suffix-
ing a type with a ‘[] ’ indicates that the instance
variable is a container of values. For example, for
‘interfaces:Class[] ’, interfaces is the name of an
instance variable of type ‘Array of Classes’. If the
label is missing, we assume the instance variable’s
name to be the plural of the component type. So
‘Method[] ’ means that there is an instance vari-
able named methods of type ‘Array of Method’.
The same goes for Constructor and Field.

The grammar displayed in Figure 1 is not an
ordinary BNF specification, for the following rea-
sons:

� It is a simplified grammar for reflection. Java’s
reflection includes information that is not re-
vealed in the grammar in Figure 1, like Mod-
ifiers of Methods and Fields. These were ex-
cluded because their merit does not justify
their weight in this exposition.

� It is an abstract grammar. It is worthless for
parsing. Information about the concrete syn-
tax of class, fields, or methods is missing.
But this is all right because we do not intent
to parse class declarations. On the contrary,
much of the challenge lies in visiting pre-
existing objects, that is, in this case, classes.

� It is a semantic description of class declara-
tions. An instance of the hierarchy expressed
by Figure 1 is a semantic net rather than a
parse tree. For example, the superclass field of
Class is not an instance variable of type String
with the name of the superclass, but rather
an instance of type Class which references the

Class ::= name:String
superclass:[Class]
interfaces:Class[]
Field[]
Method[]
Constructor[] ;

Member ::= Field j Method j Constructor ;

Field ::= declaringClass:Class
name:String
type:Class ;

Method ::= declaringClass:Class
name:String
returnType:Class
parameterTypes:Class[] ;

Constructor ::= declaringClass:Class
name:String
parameterTypes:Class[] ;

Figure 1: A simplified grammar for reflection

superclass itself (if one exists). As another ex-
ample, Method knows its declaringClass, infor-
mation that requires semantic analysis on top
of parsing.

Normally, the next stage involves the creation of
the prescribed class hierarchy. Sometimes, how-
ever, we do not need to, do not wish to, or simply
cannot produce the class hierarchy. When extend-
ing Java’s reflection all three apply:

1. The class hierarchy already exists, and the de-
signer did not leave accept() methods, nor ac-
commodated our desire to extend this class.
This example will show how we can extend
an existing class hierarchy, something that the
traditional VISITOR cannot.

2. Moreover, it is a system class whose classes
are spread in more that one package. Even if
we wanted to we cannot replace those classes
with classes of our own, let alone change their
code.

3. Instances of these classes already exist, and
in abundance. Every class in the system is
in fact an instance of this hierarchy. So, we
cannot permit ourselves to change the class

Page 3



aspect-oriented characteristics of the VISITOR are as-
similated, making it difficult to tell them apart. Im-
plemented in Java, however, the two aspects of the
VISITOR, namely OOP and AOP, are more easily
discerned. This is outlined in Section 3 by intro-
ducing a new variant of the VISITOR, the Visitor
Beans pattern, and a case study of using it. Sec-
tion 4 describes an implemented example. Finally,
Section 5 concludes the AOP lessons learned in the
process.

2 VISITOR as an Aspect-
Oriented Pattern

The VISITOR pattern lets you add behavior to a
class hierarchy without extending it. It localizes
structure into a set of accept() methods, and be-
havior into a set of visitor objects. The details of
implementation vary (e.g., [14, 8, 16]), of course. In
the delicate balance between the purpose and the
internal-working of the pattern, this section high-
lights the aspect-oriented intent of the VISITOR.

Although structure and behavior are not the best
examples of aspects that cross-cut system func-
tionality, the VISITOR does have basic AOP char-
acteristics: without it the structure and behav-
ior decisions are scattered throughout the tangled
code instead of being dealt with separately. The
VISITOR thus provides “a solution to an aspect-
oriented problem in a context.” We shall look at
the VISITOR from this perspective for what it is, a
case for an aspect-oriented pattern, and put aside
the controversy on whether or not the VISITOR is
“really” aspect-oriented in its full sense (whatever
that may be.)

When you use the VISITOR for traversing an
INTERPRETER [3] pattern, using accept() methods
and performing the visiting tasks with visitor ob-
jects, you have the advantage that object struc-
ture is spelled out in the accept() methods which
are reused in performing varies tasks. When the
class structure changes, you need to update only
once the accept() methods instead of changing the
code for all the different tasks. Conversely, when
new tasks are required, you need to implement
only new visitors, hooking-up to the already exist-
ing accept() methods, without changing the class
structure.

One can argue (or rather, be mis-understood [4])
that there is very little need for the VISITOR pat-
tern if you use a multi-method object-oriented lan-
guage such as CLOS [2] or Dylan. [1] While this

is true for the object-oriented internal workings of
the VISITOR (e.g., the single-dispatch “ping-pong”
implementation in C++), it is not so for its aspect-
oriented purpose.

In a way, such an argument would have said,
for example, that Adaptive Programming [10], an
aspect-oriented technique explicitly applying the
VISITOR pattern, is not useful for CLOS, although
the CLOS community developed a useful version
of DEM [7] (a tiny version of Demeter [11]) in
CLOS. The localization of structural information
is thus also quite helpful for languages with multi-
methods. It is the aspect-oriented ingredient of the
VISITOR which prevails.

Implementing the VISITOR pattern in Java,
which does not support multi-methods but pro-
vides other programming capabilities, introduces
a dilemma. You can technically realize the C++-
specific implementation of the VISITOR also in
Java. Most applications of the VISITOR in Java do.
However, you can better serve the aspect-oriented
need of extending the behavior of a class hierarchy
by exploiting other advanced features of Java. This
results in a different implementation, an aspect-
oriented variant of the VISITOR, which is named
Visitor Beans.

2.1 Visitor Beans in a nutshell

The VISITOR patterns can be implemented in Java
almost exactly as it is done in C++: defining in each
element class an accept() method, and in each vis-
itor class multiple visit() methods (one per element
class.) However, new Java core APIs permit an im-
plementation that is tailored for Java. Java Core
Reflection Service allows an alternative to writing
accept() methods; a traversal visitor applies reflec-
tion and handles all dispatches. Java 1.1 new event
model allows an alternative to writing visit() meth-
ods: instead of sending a visitor to visit an ele-
ment, the element is fired to the visitor as an event.

Visitors can chose which events they wish to
listen to. Visitors also communicate by sending
events. Visitors may then be wrapped as Java
beans and combined in different ways using stan-
dard builder tools, allowing this way to combine
primitive visitors into complex ones and keeping a
clean separation between reflective, traversal and
behavioral visitors.

Page 2



Visitor Beans:
An Aspect-Oriented Pattern

DAVID H. LORENZ

The Faculty of Computer Science,
Technion—Israel Institute of Technology,

Technion City, Haifa 32000, ISRAEL;
Email: david@cs.technion.ac.il

Abstract

It’s only natural to assume that aspect-oriented
patterns would one day play the role design pat-
terns play today in the object-oriented technology.
This paper strives to declare aspect-oriented the al-
ready known object-oriented VISITOR design pat-
tern. The VISITOR describes an aspect-oriented so-
lution to a tangling problem in a particular con-
text. We preset a substantive variant of the VIS-
ITOR, a Visitor Beans pattern, which implements
the VISITOR in Java without confining to the tra-
ditional VISITOR pattern operation. Visitor Beans
weaving is done via visual builder tools that sup-
port the JavaBeans technology. With Visitor Beans
it is possible to extend class hierarchies that never
anticipated extension. To illustrate this, we ex-
tend java.lang.reflect. Lessons learned in aspect-
oriented programming are reported.

1 Introduction

Aspect-oriented programming [9] (AOP) in its cur-
rent state has been compared by its mentors Kicza-
les and colleagues to that of object-oriented pro-
gramming (OOP) some twenty years ago. Like
OOP then, the basic concepts are only beginning
to emerge, based on existing research and experi-
ence. Yet they already show increasing promise
and interest (e.g., the Forum on New Research Direc-
tions session, OOPSLA ’97.)

Assuming AOP will indeed evolve similarly to
OOP, it might be a good idea to examine from a
twenty years perspective the milestones in OOP
development. Extrapolating their corresponding
turning points in AOP, might help in avoiding ob-
stacles on one hand, and making right decisions
on the other hand.

One evident breakthrough in OOP is the

emergence of object-oriented design patterns [3].
Object-oriented patterns are considered by many
to be one of the single most important advance
in recent OOP. Surprisingly, however, in the first
workshop on AOP held during the eleventh Eu-
ropean Conference on OOP (ECOOP ’97), a work-
shop whose main goal was to identify the “good
questions” for exploring the idea of AOP, the ques-
tion of aspect-oriented patterns was not raised (at
least not in the workshop report. [15])

What should aspect-oriented patterns be like?
No mainstream programming language is yet
aspect-oriented. But you can design and write
aspect-oriented programs, just like you can write
object-oriented programs in almost any language.
This is because AOP is more than a programming
paradigm. It is a design framework for separation
of concerns. In the absence of linguistic support,
though, aspect-oriented patterns can provide the
novice with simple and elegant aspect oriented solu-
tions to specific problems. In fact, a few of the specific
concerns raised in last year’s workshop (e.g., those
expressed in [6, 5]) are actually quests for aspect-
oriented patterns.

This paper strives to declare aspect-oriented the
already known object-oriented VISITOR [3] design
pattern revisited from the point view of aspect-
orientation. Section 2 ahead leads to the observa-
tion that the VISITOR not only describes an object-
oriented pattern, but and perhaps even more im-
portantly, it describes an aspect-oriented pattern,
an aspect-oriented solution to a tangling problem
in a particular context. As an aspect-oriented pat-
tern it stands up to the known-uses measure: there
are (at least two) real aspect-oriented related ap-
plications, the Demeter [11] system being the most
famous, that apply the VISITOR pattern success-
fully for achieving separation of aspect-oriented
concerns.

Implemented in C++, the object-oriented and the

Page 1


