
Pluggable Reflection: Decoupling Meta-Interface and Implementation

David H. Lorenz
�

Northeastern University
College of Computer & Information Science

Boston, MA 02115, USA
lorenz@ccs.neu.edu

John Vlissides
IBM T.J. Watson Research Center

P.O. Box 704,
Yorktown Heights, NY 10598, USA

vlis@us.ibm.com

Abstract

Reflection remains a second-class citizen in current pro-
gramming models, where it’s assumed to be imperative
and tightly bound to its implementation. In contrast, most
object-oriented APIs allow interfaces to vary independently
of their implementations. Components take this separation
a step further by describing unforeseeable attributes—the
key to pluggable third-party components. This paper de-
scribes how reflection can benefit from a similar evolution-
ary path.

1. Introduction

A reflective computation [30, 31, 23] is one that has
an accurate representation of itself, and the computa-
tion is consistent with its representation. A change to
the computation appears in the representation and vice
versa. Many object-oriented languages (OOLs) provide a
mechanism—reflection—that supports reflective computa-
tion explicitly. Reflection is a versatile tool, applicable at
run-time, compile-time, load-time, and during component
assembly.

A tenet of software development in general and object-
oriented design in particular is to program to an interface.
Doing so allows client and implementation to evolve sep-
arately, thereby facilitating code evolution, portability, and
testability. Maintaining several native implementations for
the same interface also promotes portability, much as mul-
tiple back-ends do for a compiler. Swappable implementa-
tions can even simplify prototyping and testing, say, by pro-
viding a choice of instrumented, optimized, and stubbed-out
implementations.

Unfortunately, no mainstream OOL extends the benefits
of programming to an interface to its reflection facilities.

�
Supported in part by the National Science Foundation (NSF) under

Grants No. CCR-0098643 and CCR-0204432, and by the Institute for
Complex Scientific Software at Northeastern University.

Code that uses reflection is assumed to access the reflec-
tive representation—they are one and the same. The result
is a situation resembling the one that gave rise to printer
drivers. Back then, each application was tailored to work
with specific printers. Buying a printer with new or differ-
ent features required upgrading or replacing the application.
Something similar can be said of current applications that
use meta-information.

The problem lies in a strong coupling between the re-
flection interface and its implementation. A debugger, for
example, may obtain information about a program being
debugged either from a source code repository or through
reflection. Debuggers usually work with one information
source or the other, not both; changing the source would re-
quire substantial rework of the debugger. But that needn’t
be the case. Reflection is just another application program-
ming interface (API) that can have several implementations.

Consider how a printer driver defines a standard API
through which printer and application communicate. Any
application that can print may use the printer driver’s in-
terface, confident that it will work subsequently with new
printers without change. Conversely, a printer needn’t be
aware of the applications it serves; it can rely on the driver
to relay status and problem information to applications. In
the same way, decoupling the reflection interface from its
implementation affords the novelty of more than one im-
plementation of meta-information. Then third parties, for
example, could plug the debugger into either a source code
repository or reflection. We call this vision pluggable re-
flection.

The paper demonstrates the potential advantages of plug-
gability by illustrating two extralingual approaches to plug-
gable reflection. In the first, clients of reflection are struc-
tured as visitors of objects representing a grammar (i.e., an
instance of the INTERPRETER pattern [13]). For added flex-
ibility, the second approach implements INTERPRETER dy-
namically rather than statically using a set of event-based
ReflectionBeans components.

Both examples are based on an abstract syntax represen-

tation of reflection. Programming against a grammar as op-
posed to a physical implementation of reflection is key to re-
targeting clients of meta-information to different sources. In
fact, the INTERPRETER pattern’s class hierarchy can mimic
Java’s reflection facilities precisely enough that clients can
use one or the other just by changing import statements.

The ability to retarget tools to different meta-information
sources is not only useful but sometimes necessary. In Sec-
tion 2 we motivate this work by explaining the trade-offs
between two meta-information sources. In Section 3 we
show the benefits of choosing the most appropriate source,
and then in Section 4 the benefits of using both. We de-
scribe our experience implementing a javadoc-like tool that
can be easily retargeted to various reflective sources. An
alternative implementation strategy applies the object-to-
component transformation that we present elsewhere [22]
to produce JavaBeans from Java’s Reflection API.

2. Motivation

The need for pluggable reflection arises as soon as you
have more than one source of meta-information. Consider
for example the overlap between reflective facilities and
source code repositories. Both manage information about
classes and their relationships, and both aid in the software
development process—they can make changing, tuning, and
debugging your program a lot easier.

Yet reflection and repositories have obvious differences
that complicate interoperability. Ideally we could ignore
such differences, choose either approach, and switch be-
tween them freely; the origin of reflective information
would be transparent to clients. But in practice, the reflec-
tion interface and its implementation are strongly coupled.
Again, the code that uses reflective information is the same
as the code that accesses the reflective representation.

Suppose you are writing a tool that processes source
code, such as a class browser. It requires services found
in both the reflection interface and the class repository in-
terface at your disposal (that is, the intersection of those
interfaces). You therefore have a choice—you can get class
information from either source. Your browser can compile
and load classes and then use reflection to reveal their struc-
ture, or it can parse the class source, store the information
in the repository, and query the repository for the same in-
formation (Figure 1).

2.1. Reflection-Repository Trade-offs

Neither approach is adequate in all circumstances. Here
are several trade-offs to consider:

� Completeness. A reflection-based approach precludes
browsing code that is not compilable. Repositories

reflection

repository

file

compiler

parse

tool

Figure 1. Reflection-repository duality

only require the code to be reasonably parsable, and
they can make broad assumptions about incomplete
portions.

� Coupling. Reflection is closely associated with the
programming language. As a result, there is tight bind-
ing between reflection facilities, client code, and the
run-time environment. A repository, in contrast, can be
more loosely coupled to its clients. One result is that
testing a client apart from the repository is generally
easier than testing it apart from the reflection machin-
ery.

� Semantic mismatch. A repository may have facilities
beyond reflection, such as versioning and concurrency
control, that are overkill for simple clients like the class
browser, which has no editing or versioning capabili-
ties. The repository doesn’t justify its cost for such
clients. Conversely, a repository that offers no more
than a subset of a language’s reflection facilities has
limited use in that language.

� Inconsistency. Information about a class might be dif-
ferent depending on whether it was obtained from a
repository versus reflection. If a program loads a class
dynamically, reflection may know about it but not the
repository. The repository might provide more accu-
rate information when someone else changes the class.

� Inflexibility. If you have a tool designed to use reflec-
tion, can you run it without a compiler? If the tool
works with files, can you retarget it to use reflection?
How easy is it to divorce class-browsing facilities from
the mechanisms for extracting and managing source
information? The easier all that is, the more flexible
and reusable the tool.

Making the meta-information source pluggable makes it
easy to choose one approach and change your mind later. It
can also offer the best of both worlds.

3. Application

Clearly, the degree of pluggability is determined by the
ease with which a tool can be retargeted to either infor-

javadoc
component

generator
component reflection

generator

reflection
javadoc

reflection

component
generator

javadoc
repository repositoryrepository

Figure 2. Pluggable reflection

mation source. Conversely, pluggability must cope with
changes in the information sources themselves—to a dif-
ferent reflection model, for example, or to a different repos-
itory. Figure 2 shows how two tools, each a client of meta-
information, can exploit pluggability:

1. Object-to-component generator [22], initially depen-
dent on reflection, is retargeted to use a repository.

2. javadoc [12],1 normally a repository client, is retar-
geted to use reflection.

3.1. A Retargetable Component Generator

In previous work, we developed an object-to-component
transformation wherein every class in the OO API becomes
an event type, and every method becomes a JavaBeans com-
ponent. A bean can be a transmitter of an event, a receiver
of an event, or both. Most beans both receive and transmit
and are hence called transceivers. There are several kinds of
transceiver beans. A bean is considered a conduit if it pro-
duces only side effects. A complete classification appears
elsewhere [22].

We have also prototyped a component generator that per-
forms this transformation automatically [21]. The generator
uses reflection to analyze class interfaces (i.e., relying on
method signatures only) and then produces a set of compo-
nents. Later, we wanted to let clients use the generator as a
web service [32]. Unfortunately, Java’s reflection lacks in-
terfaces, and retargeting required code modifications. Plug-
gability would let us disconnect a component generator that
was designed to work with reflection and plug it into a meta-
data repository.

3.2. A Retargetable javadoc

javadoc is a command-line tool that reads a .java
source file and generates HTML documentation from the
class declaration and stylized comments. By default,
javadoc generates the documentation according to a pre-
defined standard template, subject to limited user options.

1http://java.sun.com/products/jdk/javadoc

Indeed, early versions gave users little control over its op-
eration. The parse tree was inaccessible, the abstract syntax
was not revealed, and altering the tool’s processing was not
possible.

By JDK 1.2, javadoc had undergone two substantial de-
sign changes. First, the internal javadoc representation was
exposed in a package called sun.tools.javadoc. Sec-
ond, the format of the documentation became customiz-
able. By running javadoc with the new command-line
option -doclet SomeDocletTool (where SomeDo-
cletTool.class is a user-supplied compiled class), the
SomeDocletTool program may use the Doclet API to
access the internal representation of the parsed file and to
control how the parse tree is processed [28].

For documentation purposes, Sun provides the javadoc-
generated HTML files for system classes but generally not
their source code. If you don’t have the source or the HTML
files for a certain class, you cannot re-generate the docu-
mentation. Even if you have both the source and the HTML
files, there is always uncertainty as to whether the versions
you’re using are consistent. Unfortunately, javadoc can-
not rely on reflection to recover this information despite the
functional similarity.

3.2.1. Disparities

The doclet repository that javadoc uses internally resembles
reflection in at least two respects:

� The repository is not persistent: its lifetime is limited
to that of the hosting javadoc’s execution. The repos-
itory lives and dies with each such execution, just as
reflective information is available only at run-time.

� The Doclet API and the Core Reflection API are nearly
isomorphic. The Doclet API classes ClassDoc,
MemberDoc, FieldDoc, ConstructorDoc, and
MethodDoc correspond to the Core Reflection API
classes Class, Member, Field, Constructor,
and Method. The methods correspond closely as
well, although they are distributed a little differently
in the two class hierarchies.

Although quite similar, the two APIs are incompatible.
The JDK design fails to recognize this similarity, let alone
providing the pluggable abstraction and attempting to unify
them. As a result, things tend to be more complex than
they need to be, and reuse opportunities are forgone. Here
are two examples of difficulties in the design, the first seen
from its designer’s viewpoint and the second from a client’s:

1. The Doclet API’s design is newer and more complete
than the reflection API’s. But since no connection be-
tween the two was made, the improvements have not
and may never make their way into the reflection API.

Class ::= name:String superclass:[Class] interfaces:Class[] Member[];
Member ::= Field

�
Constructor

�
Method;

Field ::= declaringClass:Class name:String type:Class;
Constructor ::= declaringClass:Class name:String ParameterTypes:Class[];

Method ::= declaringClass:Class name:String ReturnType:Class ParameterTypes:Class[];

Figure 3. Grammarized reflection

2. If you already have SomeReflectionTool that ad-
heres to the Core Reflection API, you cannot reuse it
with javadoc; you must rewrite it as SomeDoclet-
Tool. The opposite is also true: an existing Some-
DocletTool cannot be easily applied to reflective
information.

In particular, the sun.tools.javadoc.-
doclet.Standard HTML doclet, which javadoc
itself uses by default, cannot be retargeted to .class
files. Even newly written programs (like your Some-
DocletTool) cannot use reflection unaltered—a
common interface does not exist. There is no way
to replace the front-end analyzer. There isn’t even a
converter in the form of a ClassDoc constructor that
would translate reflection information into doclets.

Pluggability would let us disconnect javadoc from its repos-
itory source, namely doclets, and plug it into reflection.

4 Pluggability

javadoc can be made pluggable. Section 4.1 illustrates
such pluggability by using a unified interface as the abstract
representation. An alternative abstract representation using
generated ReflectionBeans to implement a pluggable reflec-
tive javadoc is illustrated in Section 4.2.

4.1. Reconciliation via Abstract Representation

Figure 3 describes a simple abstract grammar for
Java’s structural reflection akin to similar representations
in Smalltalk [14, 7]. Left-hand-side variables are classes;
right-hand-side fields are instance variables. In the figure,
fields have the general form label:type, meaning that the
class has an instance variable named label. The type of the
instance variable can be a primitive type, as in name:String,
or one of the left-hand-side variables—that is, a reference
to another class as in type:Class.

A type in square brackets is optional, as in super-
class:[Class]. That means an instance of Class may have
a null superclass. Suffixing a type with “[]” describes a con-
tainer of values. For example, in interfaces:Class[], “inter-
faces” is the name of an instance variable of type “Array
of Class.” If the label is missing, we assume the instance

variable’s name to be the plural of the component type. So
Member[] means there is an instance variable named “mem-
bers” of type “Array of Member.”

The grammar describes a subset of reflection syntax.
Java’s reflection includes information that is not revealed
in this grammar, such as modifiers of methods and fields.
These were excluded to simplify the exposition. The gram-
mar displayed in Figure 3 is not, however, an ordinary BNF
specification. It is an abstract grammar. Information about
the concrete syntax of classes, fields, and methods is miss-
ing. Hence it is worthless for parsing, but we do not intend
to parse class declarations with this grammar.

In sum, this grammar serves as a semantic description of
class declarations. An instance of the hierarchy in Figure 3
is better thought of as a typed semantic net than a parse
tree. For example, the superclass field of Class is not an
instance variable of type String with the name of the super-
class. Rather, it is a reference to an instance of type Class
that is the superclass itself (if one exists). Another exam-
ple: Method knows its declaringClass—information that re-
quires semantic analysis on top of parsing.

4.1.1. Retargeting legacy reflective code

Applying INTERPRETER to this grammar would yield
a precise definition of a class hierarchy, a mirror of
java.lang.reflect. Legacy code that works with re-
flection also works with the mirrored repository with triv-
ial code modifications—only import declarations need to be
changed. As the name suggests, the mirrored repository is
fully compatible with the reflection API. We have also built
a tool that parses source files and stores them in this repos-
itory. We employ these facilities to demonstrate plugga-
bility’s advantages for testing and debugging programs that
use reflection.

4.1.2. Writing new retargetable reflective tools

To complete the javadoc example, we describe a proto-
typed version of javadoc that generates HTML documen-
tation from reflective information, and in Section 4.1.3 we
demonstrate its usefulness by comparing its output to the of-
ficial JDK documentation for the Java Core Reflection API.

We have two alternative approaches to implementing a
reflective version of javadoc. The first (re)uses doclets; the

Standard
doclet HTML

bytedoc

reflectdoc

classdoc

doclets

mirrored
reflection

reflection

jad

file.class

file.java

javadoc

javaCC

javac

java

Figure 4. Implementation strategies for a reflective javadoc tool

second does not. The reader is encouraged to use Figure 4 as
a guide to the examples in particular and more generally to
the difficulties conventional reflection creates and the bene-
fits of pluggability.

Suppose we’d like to make javadoc generate HTML doc-
umentation using reflection. One tack is to implement a
converter from instances of reflection classes to instances of
doclet classes (represented by the downward arrows marked
“convert” in the figure). It is possible then to implement a
classdoc tool that works much like javadoc except that it
documents classes based on reflective information. Unlike
javadoc, which works only on .java files, classdoc may
work on .class files, hence its name.

A possible implementation strategy has the tool travers-
ing the reflected information, building a temporary do-
clet structure, and then passing its root (necessar-
ily of type sun.tools.javadoc.doclet.Root) to
Standard.start(Root root)2 to generate HTML.
Of course, not all doclet information can be constructed
from reflective information. Some entries (e.g., comments)
must be left empty or assigned default values. This could
make the generated documentation look awkward. Avoid-
ing that requires a different implementation approach, one
independent of javadoc and the doclet package—a tool that
generates the HTML output directly. reflectdoc is such a
tool. Yet another implementation strategy would be to de-
velop a bytedoc for parsing the .class files directly with-
out using reflection (see Figure 4).

2Oddly enough, the JDK Standard class neither inherits from
sun.tools.javadoc.Doclet nor does it implement any interface
that would guarantee the existence of a start method with the proper
signature.

AspectJ, an implementation of AOP for Java, recently
provided a javadoc-like tool named ajdoc [19]. Running
ajdoc SomeAspect.java generates documentation for
the aspect SomeAspect, which includes aspect instance
specifications such as issingleton, aspectual links to
known advisors and advisees, advice summary, and more.

ajdoc is an application that uses this pluggability ap-
proach, and it is superior in design to javadoc. Akin to
the -doclet option of javadoc, which generates output
via an alternate doclet, Palm [27] added a -compiler
option for generating a RootDoc instance via an alter-
nate compiler.3 Thus the user of ajdoc can control both
the front-end and the back-end of the compilation. With a
supplemental RootDocMakerImpl and a minor change
to org.aspectj.tools.ajdoc.Ajdoc.java, one
can build the doclets from .class files. For example,
runningajdoc -standard -compiler RootDoc-
MakerImpl java.lang.reflect.Method would
produce documentation for Method via reflection. Never-
theless, AspectJ code cannot expect to reflect on aspectual
structure but must make do with the underlying object struc-
ture. For example, running ajdoc -compiler Root-
DocMakerImpl SomeAspect generates documentation
using reflection, but the result reveals SomeAspect to be
a class, complete with instrumentation details, instead of
displaying the aspectual information.

4.1.3. Pluggable reflection’s benefits

By applying javadoc to files and reflectdoc to reflec-
tion, you can compare the HTML outputs to reveal un-

3The option exists but is unsupported in the AspectJ release.

Figure 5. JDK documentation for Method

Figure 6. Method documentation obtained via reflectdoc

expected differences. By applying reflectdoc to system
classes, moreover, you may produce documentation that
is not included in the standard distribution. For ex-
ample, Figure 5 is a portion of the JDK 1.2 documen-
tation for java.lang.reflect.Method. Figure 6
is the HTML documentation generated by running our
reflective version of javadoc, specifically reflectdoc
java.lang.reflect.Method.

You might appreciate reflectdoc just for presenting re-
flective information in the familiar format of javadoc. But
note the slight differences. Comments appear in Fig-
ure 5 but not in Figure 6. The class modifier synchro-
nized appears4 in Figure 6 but not Figure 5. The same
is true of URL links, because reflectdoc was run only on
java.lang.reflect.Method. Future work may in-
clude developing activedoc for producing and controlling
javadoc’s output dynamically.

reflectdoc reveals the following undocumented informa-
tion about class Method:

� Private instance variables: The Method class has the
variables listed in Figure 7. In the JDK documentation,
the Variables section does not exist.

� A private constructor: Method has the private default
constructor shown in Figure 8.

4Bug Id 4109635, fixed in JDK 1.3 [33].

Figure 7. Variable Index

Figure 8. Constructor Index

� A static copy method whose signature is shown in
Figure 9.

Knowledge of private and undocumented features might
not be crucial, but it can offer insight into the software’s
design. And you never know what you might find unless
you look. Judging from the API, one might expect class
Class to have properties like name, superclass, interfaces,
and so forth in its implementation. But one might also ex-
pect Class’s implementation to be lightweight. reflectdoc
reports that class Class has no member variables at all,

Figure 9. Copy method

thus confirming the latter expectation.
Often, information is deliberately omitted in documen-

tation produced by javadoc (e.g., private members are not
displayed), since these are not part of the interface. But
whether certain implementation details should be hidden is
orthogonal to whether you have access to the information.
The synchronized modifier bug is an example where
even reflective information may be wrong [33].

4.2. Pluggability through Components

The component generator has proven useful for enabling
pluggability. So far we’ve showed pluggability through
interface conformity. Now we show an alternative ap-
proach to pluggability using components. We demonstrate
this again for javadoc by applying the object-to-component
transformation and automatic generator to produce Reflec-
tionBeans. The input to the generator is Java’s Reflection
API; ReflectionBeans are the output.

Using ReflectionBeans instead of the reflection interface
makes retargeting much easier. Third-party tools can mix
and match with third-party providers of meta-information:
simply specify the desired .jar file in the tool’s classpath.
This retargeting requires no source code change or recom-
pilation.

ReflectionBeans act as a facade to the actual source, be
it reflection, a repository, or anything else. JavaBeans may
seem like overkill here, but they have the added benefit of
allowing modest visual programming capabilities.

Figure 10 depicts basic cooperation among Reflection-
Beans. VclassTransmitter1 is a transmitter-bean [22]: it
translates from the AWT-event world to the class-event
world. Specifically, it expects a text event and responds with
a corresponding class event. The class event encapsulates
the class whose name was received in the class event. Inter-
nally, it calls on the reflective operation Class.forName
to do the job. The button Button1 is connected to the event
trigger in VclassTransmitter1.

VclassReceiver1 is a receiver-bean: it works like
VclassTransmitter1 but in the opposite direction. On receiv-
ing a class event, it fires the name of the class as a text event.
Entering a class name in the top text field and pressing the
button makes the class name appear in the bottom text field.

This approach is overkill for just propagating a class
name, but it illustrates the architecture and its bean-based
implementation. A more realistic composition would
have nontrivial beans on the communication path between
VclassTransmitter1 and VclassReceiver1.

Figure 10. Transmit-Receive

Figure 11. Using the Superclass bean

In Figure 11, a Superclass1 is inserted between those
components. Superclass1 is both a class-event receiver and
a class-event transmitter. It accepts and fires class events.
It does not fire exactly the same event it receives, however;
it is a transceiver-bean as opposed to a conduit-bean. Its
operation is straightforward. It may use reflection or any
other source of meta-information to find the superclass of
the incoming class and transmits that superclass as its out-
put. Now if you type a legal class name in the top field and
press the button, you would see the name of its superclass
in the bottom field.

Although individual beans may be simple, they can per-
form complex jobs in concert. In Figure 12, pressing the
button after entering a class name computes the class’ de-
pendents and displays them sequentially in the bottom text
field. SuperclassLoop1 composes a Superclass bean and
a self-loop. Thus for each input event this composition of
beans outputs multiple events, one for each of the super-
classes on the path to the Object class. InterfacesLoop1
does the same for interfaces.

This example generates all the classes that a given
class immediately depends on. When text is entered in
the upper field, TextEvents are fired to VclassTransmitter1.
VclassTransmitter1 reacts by preparing itself to generate and
fire a ClassEvent containing a class whose name is the
string received.5 The button labeled “Dependences” is con-
nected to the fire()method of VclassTransmitter1. When

5VclassTransmitter1 can also be customized directly using a bean
customizer.

Figure 12. Dependencies

the button is pressed, VclassTransmitter1 transmits the Clas-
sEvent if and only if the string is a legal class name.

Once the button is pressed and VclassTransmitter1 fires
the ClassEvent , it is distributed to Superclass1, Interfaces1,
and Fields1. Superclass1 in turn triggers a ClassEvent with
the superclass of the class. Interfaces1 triggers multiple
ClassEvents, one for each interface the class implements.
Fields1 triggers multiple FieldEvents, one for each public
field of the class. The FieldEvents are received by Type1,
which fires a ClassEvent corresponding to the field’s type.
All the ClassEvents are subsequently merged and sent, one
by one, to VclassReceiver1. Finally, VclassReceiver1 gen-
erates a TextEvent , and the class names are displayed se-
quentially.

We applied this approach to javadoc to make its source
of reflective information pluggable. Implementing reflect-
doc using beans introduces behavioral beans (counters, re-
setters, etc.) into the datapath to generate HTML rather than
just displaying class names. There are in fact two orthog-
onal datapaths: one governs how reflective information is
traversed, the other governs the flow of data. Our orig-
inal classification [22], which assumed a single datapath,
differentiated among several types of transceivers: conduit,
converter, transmuter, etc. Implementing reflectdoc requires
two datapaths; hence each bean is characterized by a taxo-
nomic tuple, e.g., � transmuter, conduit � . To avoid a Carte-
sian product of bean classifications, we require that any pair
of transceivers must include a conduit.6

These extensions to our taxonomy are needed to charac-
terize some of the beans that implement javadoc’s behavior,
for example, regarding event synchronization. Further de-
tails are beyond the scope of this paper. The important point
is that ReflectionBeans are powerful enough to express real
applications.

6More generally, given an n-dimensional datapath, all but one dimen-
sion must denote a conduit.

5. Related Work

Pluggable reflection would be helpful not only for re-
targeting javadoc to reflection but also to let new language
extensions reason about themselves explicitly. This need is
symptomatic of the difficulty in keeping reflection in step
with language features. Pluggability could avert this prob-
lem. Indeed, pluggable reflection can and should become
as standard a facility as garbage collection. In the mean-
time, the implementation we describe here can help bring
reflective facilities to new languages that lack them.

5.1. Mirrors in Self and Smalltalk

The idea of having multiple sources of reflective infor-
mation is not new. Smith’s seminal work [30, 31] explicitly
accounts for the possibility of differing kinds of causal con-
nection in reflective systems.

The ANSI Smalltalk standard [15] uses an abstract syn-
tax specification to describe the global components of a
Smalltalk program and their relationships. In particular, the
work on Mirrors in Self [34], Animorphic Smalltalk [4],
and Strongtalk [3] (as well as the Mirror interface in JDI)
address concerns similar to ours from a programming lan-
guage perspective [5]. Our extralingual approaches to plug-
gability should help inform the design and implementation
of new reflection mechanisms at the language level.

While we use Java as our testbed, these concepts are
valid for other languages. Even in a dynamically typed
language such as Smalltalk, the implementation and in-
terface are insufficiently decoupled to achieve pluggabil-
ity. This becomes apparent when trying to retarget re-
flective Smalltalk code from a 3-metalevel system (e.g.,
in Little Smalltalk [6]) to a 5-metalevel system (e.g., in
Squeak [17]).

5.2. Intercession

Chiba and Tatsubori [9] extend Java reflection
to permit language extensions by re-implementing
java.lang.Class. They put forth the classes open-
java.mop.OJClass and OJMethod as replacements
for Class and Method. The ability to perform language
customization in addition to introspection is achieved using
compile-time reflection in their OpenJava compiler [8]. In
comparison, we make a point of preserving class names
in the mirrored package to ensure that code can run with
either the original reflection or the mirrored repository.
Instead of creating a dedicated compiler, we can rely on
a standard Java compiler. VISITOR [13] furnishes the
extended functionality non-invasively.

Javassist [8] supports structural reflection in Java by
bytecode manipulation at load-lime without replacing the

compiler. Javassist relies on a configuration file and class
loading interception. In contrast, we focus on supporting
run-time introspection.

5.3. Aspect-Oriented Software Development

Pluggability can be characterized as a separation of
concerns—reflective information’s use separated from its
access. In fact, an attempt to apply VISITOR to effect
a form of Aspect-Oriented Programming (AOP) [16] was
the genesis of this research. We first characterized im-
plicit invocation combined with VISITOR as an aspect-
oriented pattern [20]. Then we developed a taxonomy of
JavaBeans [22]. This paper builds on those works.

We introduced two variants of javadoc (classdoc and re-
flectdoc) that use reflection instead of a repository. More
complex tools corroborate the trade-offs and potential ben-
efits of pluggable reflection. Demeter/J [18], for example,
is a repository-based tool for adaptive programming (AP).
A variant of Demeter/J called DJ uses Java’s reflection in-
stead of a repository [29, 26]. Its developers report simi-
lar trade-offs in using reflection versus a repository. The
effort required to implement DJ underscores the need for
pluggability. Ideally, it would have been trivial to retarget
Demeter/J; unifying the reflection-repository duality can be
viewed as an adaptability problem—the raison d’être of the
Demeter system. Demeter achieves structure-shy adaptabil-
ity through traversal strategies. This may suggest applying
a notion similar to the VISITOR approach to achieve better
unification in DJ.

5.4. Language Extensions for Components

Jiazzi [24] extends Java with package types as a means
for implementing units [11]. One could thus use Jiazzi to
define a “blueprint” for the Java reflection package. As with
AspectJ, the difficulty in using reflection with Jiazzi stems
from its being a language extension.

ArchJava [1, 2] addresses the decoupling of implemen-
tation code from architecture. New constructs for ports
and connections are introduced to enforce, for example,
architectural communication-integrity. We aspire to push
reflection up to the architectural level, while maintaining
“reflective-integrity.” Aldrich, et al., mention an arch-
javadoc tool as future work.

5.5. Visual Programming

Everyone who uses visual programming tools experi-
ences their limitations. Building an application with a Java-
Beans builder is no exception. Once the program gets big,
the visual description is no longer manageable. Neverthe-
less, visual programming has undeniable appeal for pro-
gramming in the small—the kind of programming you do

with reflection. Instead of learning the textual syntax of re-
flection in Java, one can describe a portion of an application
visually with only the general understanding of the seman-
tics of reflection JavaBeans. The visualization is however
orthogonal to the idea of pluggability.

5.6. Typed Reflection

Reflective code typically uses strings and relies on con-
ventions rather than language mechanisms. Weirich pro-
poses incorporating mechanisms for dynamic type analysis
into Java’s reflection [35]. In the component approach to
pluggability, we assign types to events to achieve typed con-
struction. Typed reflection would make reflective code more
concise and safe, but it would not resolve the problem of re-
targeting a reflective program to another reflective structure
or to another language. Unifying the notions of pluggable
and typed reflection is a promising tack for further research.

6. Conclusion

People tend to think of reflection as a language feature
(and thus coupled to the language) and reflection code as
coupled to the language implementation. In this paper, we
look at reflection more abstractly as just another interface
with the potential for multiple implementations. We con-
sider how to retarget a reflective program to another meta-
information source such as a repository, and the benefits of
doing so. Indeed, retargetability could even apply across
languages: Why couldn’t reflectdoc also run on Smalltalk?

To demonstrate reflection as an interface, we took an ab-
stract grammar of a Java class definition and applied the
INTERPRETER pattern to it, producing a mirrored class hi-
erarchy with the same interface as reflection. This hierarchy
can serve as a class repository by generating a parser that
converts source code to instances of the mirrored classes.
In particular, visitors written for the INTERPRETER pattern
are no different than other clients—they can be retargeted
to use reflection as well.

We demonstrated three pluggability approaches:

1. Legacy clients of the reflection interface can be retar-
geted to use the mirrored hierarchy without modifica-
tion apart from changing import statements.

2. New clients that use visitors as building blocks are
pluggable at compile-time.

3. For even looser coupling, third-party clients may use
components as their building blocks, affording full
assembly-time pluggability.

The key contribution of this paper lies in staging the
problem. In an evolutionary path from conventional to plug-
gable reflection, mirroring reflection is merely the first step:

a BRIDGE [13] for decoupling users from providers of meta-
information. Clients cannot tell the difference between mir-
rored and genuine reflection. Implicit invocation adds flex-
ibility through looser coupling, allowing third-party com-
position of reflection information and clients. The Holy
Grail, of course, is to give clients uniform access to meta-
data sources with disparate and unforeseen semantics.

An obvious limitation of mirroring is that the reflection
and repository APIs must be kept in sync. Unfortunately,
interfaces invariably evolve. A single interface may go
through several versions; parallel interfaces may diverge.
How do you reconcile two interfaces that are similar but
not identical? Programming to the least common denomi-
nator may be unsatisfactory because you cannot exploit the
unique advantages of either interface. On the other hand,
specialized interfaces make switching implementations dif-
ficult, thereby forgoing the benefits of encapsulation, porta-
bility, and testability.

Both kinds of interface evolution are found in Java’s
reflection API. Reflection did not exist in JDK 1.0. Had
you wanted to implement a class browser, you would have
needed a repository. JDK 1.1 introduced reflection, and you
could have migrated your class browser to use it instead.
The initial reflection API did not support all class informa-
tion, however, and so the repository still would have been
useful. JDK 1.2 added the ability to access the package
that a class belongs to, and it introduced the Doclet API,
which can be used instead of a repository. JDK 1.3 added
the ability to define proxy classes dynamically, thereby en-
abling limited behavioral reflection. JDK 1.3 also added the
Mirror API, yet another reflective facility as part of the Java
Debugging Interface (JDI).

The proliferation of APIs poses a dilemma: How does
one design client code that can work with current and future
APIs with minimal (ideally zero) change? Printer driver in-
terfaces are a compromise between generic and specialized
printing features. Unique or advanced features are typically
eschewed to maximize compatibility. As a result, an appli-
cation that needs a specialized feature must circumvent the
printer driver or forgo the feature.

Meanwhile, the role of reflection is expanding. Com-
ponents in particular rely heavily on reflection, and clients
need to understand how so. With increased awareness of
reflection comes the need for supporting tools. Traditional
tools for source code, such as code beautifiers, metrics and
documentation generators, and the like would be most wel-
come if they worked on reflection. Unfortunately, they
rarely do.

Now imagine a world in which reflection is pluggable.
Tools can run on source code files, on class repositories, or
on reflection without change and without the information
sources’ a priori knowledge of each other. Different trade-
offs among the sources permit the tool to optimize itself to

its context.
Testing would come of age in this world. One scenario:

A third-party framework comes with a semantic-checking
tool for certifying correct customization of the framework.
The checker can run on the source code to catch syntax er-
rors. It can also work on class hierarchies to catch semantic
errors (such as forgetting to subclass a framework class).
And it can run on reflection to check for certain semantic
violations that (thanks to the halting problem) can only be
discovered at run-time. Moreover, the checker can cache
and compare test results, as we did with the javadoc and re-
flectdoc outputs, to spot inconsistencies. These are some of
the benefits we can expect of fully pluggable reflection.

Acknowledgment

We thank Gilad Bracha and the anonymous referees for
their valuable comments. Many thanks to Gennady Agra-
nov, Gilad Bracha, Sergei Kojarski, and Jeffrey Palm for
helpful discussions on reflection. The reflectdoc tool, the
JavaBeans-based retargetable javadoc, and the reflection-
based component generator were initially implemented by
Predrag Petkovic, and later re-implemented by students in
COM3240. Ramanathan Sundaram retargeted the compo-
nent generator from using reflection to work with meta-
information as a web service.

References

[1] J. Aldrich, C. Chambers, and D. Notkin. Component-
oriented programming in ArchJava. In D. H. Lorenz and
V. C. Sreedhar, editors, Proceedings of the First OOPSLA
Workshop on Language Mechanisms for Programming Soft-
ware Components, pages 1–8, Tampa Bay, Florida, Oct. 15
2001. Technical Report NU-CCS-01-06, College of Com-
puter Science, Northeastern University, Boston, MA 02115.

[2] J. Aldrich, C. Chambers, and D. Notkin. ArchJava: Con-
necting software architecture to implementation. In Pro-
ceedings of the 24 ��� International Conference on Software
Engineering, pages 187–197, Orlando, Florida, May 19-25
2002. ICSE 2002, ACM Press.

[3] L. Bak, G. Bracha, S. Grarup, R. Griesemer, D. Griswold,
and U. Hölzle. Mixins in Strongtalk. In A. P. Black, E. Ernst,
P. Grogono, and M. Sakkinen, editors, Proceedings of the
Inheritance Workshop at ECOOP 2002, Málaga, Spain, June
11 2002. ECOOP 2002, University of Jyväsjylä Information
Technology Research Institute.

[4] G. Bracha and D. Griswold. Extending smalltalk with mix-
ins. In OOPSLA Workshop on Extending the Smalltalk Lan-
guage, Sept. 1996.

[5] G. Bracha and D. Ungar. Mirrors: Design principles for
meta-level facilities of object-oriented programming lan-
guages. Unpublished manuscript, 2003.

[6] T. Budd. A Little Smalltalk. Addison-Wesley, 1987.

[7] P. J. Caudill and A. Wirfs-Brock. A third generation
Smalltalk-80 implementation. In Proceedings of the 1 	
�
Annual Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, pages 119–130, Port-
land, Oregon, USA, Sept. 29 - Oct. 2 1986. OOPSLA’86,
ACM SIGPLAN Notices 21(11) Nov. 1986.

[8] S. Chiba. Load-time structural reflection in Java. In
E. Bertino, editor, Proceedings of the 14 ��� European Con-
ference on Object-Oriented Programming, number 1850
in Lecture Notes in Computer Science, pages 313–336,
Cannes, France, June 12-16 2000. ECOOP 2000, Springer
Verlag.

[9] S. Chiba and M. Tatsubori. Yet another
java.lang.Class. In ECOOP’98 Workshop on
Reflective Object-Oriented Programming and Systems,
Brussels, Belgium, July 20 1998.

[10] S. Demeyer and J. Bosch, editors. Object-Oriented Technol-
ogy. ECOOP’98 Workshop Reader, number 1543 in Lecture
Notes in Computer Science. Workshop Proceedings, Brus-
sels, Belguim, Springer Verlag, July 20-24 1998.

[11] M. Flatt and M. Felleisen. Units: Cool modules for hot lan-
guages. In Proceedings of the conference on programming
language design and implementation, pages 236–248, Mon-
treal, Quebec, Canada, May 1998. PLDI’98, ACM Press.

[12] L. Friendly. The design of distributed hyperlinked program-
ming documentation. In Proceedings of the International
Workshop on Hypermedia Design (IWHD), 1995.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Professional Computing. Addison-Wesley, 1995.

[14] A. Goldberg and D. Robson. Smalltalk–80: The Language.
Addison-Wesley, Reading, MA, USA, 1989.

[15] InterNational Committee for Information Technology Stan-
dards (formerly NCITS). Programming Language
Smalltalk, Jan. 1 1998.

[16] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In M. Akşit and S. Matsuoka, editors, Proceed-
ings of the 11 ��� European Conference on Object-Oriented
Programming, number 1241 in Lecture Notes in Computer
Science, pages 220–242, Jyväskylä, Finland, June 9–13
1997. ECOOP’97, Springer Verlag.

[17] G. Korienek, T. Wrensch, and D. Dechow. Squeak - A Quick
Trip to ObjectLand. Addison–Wesley Publishing Company,
2001.

[18] K. J. Lieberherr. Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns. PWS Publish-
ing Company, Boston, MA, 1996.

[19] C. V. Lopes and G. Kiczales. Recent developments in As-
pectJ. In Demeyer and Bosch [10], pages 398–401.

[20] D. H. Lorenz. Visitor Beans: An aspect-oriented pattern. In
Demeyer and Bosch [10], pages 431–432.

[21] D. H. Lorenz and J. Vlissides. Automated architec-
tural transformation: Objects to components. Techni-
cal Report NU-CCS-00-01, College of Computer Sci-
ence, Northeastern University, Boston, MA 02115,
Apr. 2000. http://www.ccs.neu.edu/home/-
lorenz/papers/reports/NU-CCS-00-01.html.

[22] D. H. Lorenz and J. Vlissides. Designing components versus
objects: A transformational approach. In Proceedings of
the 23 �� International Conference on Software Engineering,
pages 253–262, Toronto, Canada, May 12-19 2001. ICSE
2001, IEEE Computer Society.

[23] P. Maes. Concepts and experiments in computational reflec-
tion. In OOPSLA’87 [25], pages 147–155.

[24] S. McDirmid, M. Flatt, and W. C. H. Jiazzi. New age com-
ponents for old-fashioned java. In Proceedings of the 16 ���
Annual Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, pages 211–222, Tampa
Bay, Florida, Oct. 14-18 2001. OOPSLA’01, ACM SIG-
PLAN Notices 36(11) Nov. 2001.

[25] OOPSLA’87. Proceedings of the 2 � Annual Conference
on Object-Oriented Programming Systems, Languages, and
Applications, Orlando, Florida, Oct. 4-8 1987. ACM SIG-
PLAN Notices 22(12) Dec. 1987.

[26] D. Orleans and K. J. Lieberherr. DJ: Dynamic adaptive pro-
gramming in Java. In A. Yonezawa and S. Matsuoka, editors,
Proceedings of the 3 �� International Conference on Met-
alevel Architectures and Separation of Crosscutting Con-
cerns, Reflection 2001, number 2192 in Lecture Notes in
Computer Science, pages 73–80, Kyoto, Japan, Sept. 25-28
2001. Springer Verlag.

[27] J. Palm. ajdoc. E-mail message, Mon, 18 Mar 2002 21:51:19
-0700 (MST), Mar. 18 2002.

[28] M. Pollack. Code generation using javadoc: Extend
javadoc by creating custom doclets. JavaWorld, Aug.
2000. http://www.javaworld.com/javaworld/
jw-08-2000/jw-0818-javadoc.html.

[29] N. Sangal, E. Farrell, K. Lieberherr, and D. H. Lorenz. In-
teraction schemata: Compiling interactions to code. In Pro-
ceedings of the 30 ��� International Conference on Technol-
ogy of Object-Oriented Languages and Systems, pages 268–
177, Santa Barbara, CA, Aug. 1-5 2000. TOOLS 30 USA
Conference, IEEE Computer Society.

[30] B. C. Smith. Reflection and Semantics in a Procedural Lan-
guage. PhD thesis, MIT LCS TR-272, Jan. 1982.

[31] B. C. Smith. Reflection and semantics in Lisp. In Proceed-
ings of the 11th ACM SIGPLAN symposium on Principles of
programming languages, pages 23–35, 1984.

[32] R. Sundaram and D. H. Lorenz. Meta-data driven code gen-
erator web service. In P. Tarr, A. Finkelstein, B. Hailpern,
G. Piccinelli, and J. Stafford, editors, Proceedings of the
OOPSLA 2002 Workshop on Object-Oriented Web Services,
Seattle, Washington, Nov. 5 2002.

[33] A look at the synchronized modifier. JavaWorld, June
1999. http://www.javaworld.com/javaworld/
javaqa/1999-06/03-synchronized.html.

[34] D. Ungar and R. B. Smith. Self: The power of simplicity. In
OOPSLA’87 [25], pages 227–242.

[35] S. Weirich. Programming With Types. PhD thesis, Cornell
University, 2002. Forthcoming.

