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ABSTRACT 
Software understanding for documentation, maintenance or 
evolution is one of the longest-standing problems in Computer 
Science. The use of “high-level” programming paradigms and 
object-oriented languages helps, but fundamentally remains far 
from solving the problem. Most programming languages and 
systems have fallen prey to the assumption that they are supposed 
to capture idealized models of computation inspired by 
deceptively simple metaphors such as objects and mathematical 
functions. Aspect-oriented programming languages have made a 
significant breakthrough by noticing that, in many situations, 
humans think and describe in crosscutting terms. In this paper we 
suggest that the next breakthrough would require looking even 
closer to the way humans have been thinking and describing 
complex systems for thousand of years using natural languages. 
While natural languages themselves are not appropriate for 
programming, they contain a number of elements that make 
descriptions concise, effective and understandable. In particular, 
natural languages referentiality is a key factor in supporting 
powerful program organizations that can be easier understood by 
humans.   

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features – control structures. 

D.3.2 [Programming Languages]: Language Classifications – 
Very high-level languages. 

General Terms 
Documentation, Design, Human Factors, Languages. 

Keywords 
Language Design, Aspect-Oriented Programming, Natural 
Language, Cognitive Foundations of Programming. 

1. INTRODUCTION 
Software systems in fields such as Science, Engineering and 
Business are naturally complex, in that the structures and 
processes that they capture have a certain level of domain-specific 
complexity requiring domain expertise. But, on top of that natural 
complexity, the problem of software development is worsened by 
the existing software development technologies. The kernel of the 
problem is that the existing description mechanisms – 
programming languages – are inadequate when it comes to 
conveying relevant information to people about the software 
systems. The established programming paradigms fail in 
providing appropriate support for non-hierarchical concerns, 
additional or custom-made behavior, and non-trivial domain-
specific structures and processes. As a result, software systems 
become fragile “monuments” of code that only illuminated 
software “artisans” (i.e. projects leads) dare to modify, preventing 
the real domain experts to control the software in a direct and 
systematic manner.  

The use of architectural descriptions, rigorous software 
development practices and modern programming languages and 
tools helps, but fundamentally remains far from solving the 
problem. The kernel of the problem is the lack of support for 
program understanding by the different people involved in the 
project. Multithreading, exceptional cases, optimizations, and the 
like, contribute to the natural complexity of the programs. But a 
considerable part of the complexity is due to the fact that 
programmers, when writing the code, are forced by the 
programming language to write it down in arcane and esoteric 
ways that are a long way from expressing the natural intentions 
behind the code. As a consequence, many times programmers 
prefer to write blocks of code from scratch rather than having to 
understand and debug other people’s code. Especially when 
working at the systems level, code that communicates effectively 
to the machine rarely communicates effectively to human readers. 

1.1 Programming Reflects Thinking 
Researchers are constantly looking for ways to express the 
programs in a form that more closely follows the way 
programmers think before they are forced to break their thoughts 
in operational details imposed by the existing programming 
languages. We know that this is possible, because when 
programmers are asked to explain their code, they do so 
concisely, skipping operational details, sometimes using a thought 
flow that is quite different from the control flow in the code. Our 
goal is to address the gap between those two forms of explanation. 
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Over the years, several languages, both textual and visual, have 
been designed that focus specifically on issues of usability and 
expressiveness (e.g., [60] and [10]). They usually target children, 
the novice programmer, end-user programming and rapid 
prototyping. None of these languages, however, has had much 
success in systems software development. The problem is that 
those languages and environments present simplified models of 
computation that cannot support the demands of systems 
programming.   

In the domain of professional programming, Object-Oriented 
Programming and Aspect-Oriented Programming (AOP) [20] 
have been addressing some related issues within existing 
programming languages, targeting complex software applications. 
In particular, AspectJ [1], an AOP extension to Java, allows 
programmers to localize crosscutting concerns such as tracing, 
logging or profiling in program modules of their own and outside 
the classes. That way, code that reflects some important design 
units, but that Java forces to be spread throughout the system, can 
be encapsulated in their own modules, improving readability, 
maintainability and configurability. The success of AspectJ is 
due, in part, to the acknowledgement in the software industry that 
the problems of programming language expressiveness are 
serious; AspectJ embodies an approach which makes code more 
expressive, more readable, and more reliable, and can address 
industry’s need for improved reliability and decreased 
development time. AspectJ achieves this by making programs 
follow more closely the intentions of their developers. But even 
AspectJ is still far from supporting the natural expression forms 
we are looking for. 

1.2 The Role of Natural Languages 
Before computers came along, people were successfully defining 
and disseminating complex systems for thousands of years, using 
a technology they come equipped with: natural language. They 
were writing all sorts of documents containing structure and 
process information, ranging from specification manuals of 
complex systems to constitutions of social organizations. Writing 
a structured document, for example, the Constitution of the State 
of California, requires much more than simply putting words 
together in grammatically correct sentences; it requires dividing 
the subject matter into smaller and smaller units, e.g., chapters, 
sections, subsections, paragraphs, sentences, that convey semantic 
information to the reader. Those small units don’t exist in 
isolation; they refer to and use each other. They do so in ways 
that obey the rules of the natural language and that very rarely 
obey the simple functional module structures supported by 
existing programming languages. 

Computer programs, of course, are different. They must define 
structure and process for computational systems, and therefore 
must address issues of data types and control flow. Systems 
software development is hard partially because of the inherent 
complexity of the structures and processes that they convey. But a 
considerable part of the burden of systems software development 
is due to the complexity added by the operational details imposed 
by programming languages, such as having to deal with 
temporary variables or having to cope with exceptional cases. We 
argue that such problems are historical artifacts. They reflect the 
legacy of traditional programming languages in either machine 
languages (resulting in an overriding concern with control flow 
and assignment) or mathematical formalisms (resulting in an 

overriding concern with binding and transformation.) Existing 
programming languages force programmers to express ideas using 
a narrow support for structural and reflective referencing and a 
total lack of support for temporal referencing.  

1.3 Contribution 
The main purpose of this paper is to re-generate some discussion 
around the role of Natural Languages in Programming Language 
design. We are aware that this is a relatively old theme that can be 
traced to the 1960’s [55]. A lot has happened in Linguistics and in 
Programming Languages since then. In particular, some lessons 
learned from Aspect-Oriented Programming lead us to believe 
that there is value in revisiting the issue now. AOP made us pay 
more attention to the way certain referencing mechanisms 
occurring in natural languages allow us to express some ideas that 
can’t be easily expressed in traditional programming languages. 

In this paper we suggest two new ways of thinking beyond AOP, 
the first one within the AOP framework, and the second outside 
that framework. We make the argument that the primitive 
abstractions in programming languages should be drawn from the 
study of Natural Languages, rather than from Computer 
Engineering or Mathematics or ad-hoc metaphors such as Objects. 

The reminder of the paper is organized as follows. In Section 2 
we revisit AOP, highlighting the English-equivalents of the 
expression mechanisms in some AOP languages. In Section 3 we 
state some improvements that can be done in AOP systems, while 
remaining centered in the AOP paradigm. Section 4 builds on the 
observations in previous sections and drafts a programming 
language way beyond AOP. Section 5 describes the relevant 
fields of research that should be taken into consideration. Finally, 
Section 6 concludes the paper in a rather inconclusive manner. 

2. ASPECT-ORIENTED PROGRAMMING 
Understanding the leap between object-oriented modular 
programming and aspect-oriented crosscutting programming is 
crucial to contemplate a leap beyond AOP. We have been deeply 
involved in the development of Aspect-Oriented Programming 
[20] and several flavors of it, D ([34], [35], [36]), AspectJ ([37], 
[21]), Demeter [32] and Aspectual Collaborations [31]. AspectJ, 
now reaching the 1.0 version, is a stable extension to Java used by 
large numbers of software engineers in industry.  

The following is a brief historical overview of AOP that 
illustrates how it comes one step closer to certain referencing 
mechanisms in natural languages.   

2.1 Domain Specific Languages: D 
D was a domain-specific language that targeted two issues: 
synchronization of threads and parameter passing in remote 
method invocations. In this summary we describe only the 
synchronization issue. In D, coordinator modules, separated from 
Java classes, encapsulated the synchronization of threads. For 
example, the following coordinator module mandates the 
synchronization of BoundedBuffer objects: 

coordinator BoundedBuffer { 
    selfex put, take; 
    mutex {put, take}; 
    condition empty = true, full = false; 
    put: requires !full; 
         on_exit { 



 

 

           if (empty) empty = false; 
           if (usedSlots == capacity) 
         full = true; 
         } 
    take: requires !empty; 
          on_exit { 
            if (full) full = false; 
            if (usedSlots == 0) 
              empty = true; 
          } 
  } 

 

What this says, in English, is the following: 

• This is a coordinator for BoundedBuffer objects. 

• The operations put and take are self-exclusive, i.e., no 
two threads can execute either of them simultaneously. 

• The operations put and take are also mutually exclusive, 
i.e., no two threads can execute both of them 
simultaneously. 

• Let’s define the conditions empty, which should be true 
in the beginning, and full, which should be false in the 
beginning. 

• For the operation put: its execution requires that full 
is false; after exiting the operation: if empty was true, 
then the buffer is not empty anymore; if, on the other 
hand, the buffer reached its capacity after this put 
operation, then now it’s full. 

• <similar for take> 
The binding between coordinator code and object code is done by 
the name of types, such as BoundedBuffer, and operations, 
such as put and take. Coordinators could also directly refer to 
internal variables of the classes, illustrated in this case by 
usedSlots. 

2.2 General Purpose Language: AspectJ 
In AspectJ, this idea was expanded and generalized. AspectJ is a 
general-purpose aspect language that uses the concept of “join 
point.” Join points in AspectJ are points in the execution (run-
time) of a Java program that programmers can name and handle at 
program time. Examples of join points are the beginning of a 
certain method execution, the invocation of an operation on an 
object, etc. In AspectJ, aspect modules, separated from Java 
classes, can encapsulate not only synchronization but also a 
variety of crosscutting concerns such as debugging or notification. 
For example, the following aspect mandates the display update 
upon moving objects, involving different operations in objects of 
three different types: 

aspect DisplayUpdating { 
  pointcut move(): 
   call(void FigureElement.moveBy(int, int)) 
   || call(void Line.setP1(Point))  
   || call(void Line.setP2(Point)) 
   || call(void Point.setX(int)) 
   || call(void Point.setY(int)); 
  after() returning: move() { 
    Display.update(); 
  } 
} 

 

What this means, in English, is the following: 

• This is an aspect called DisplayUpdate. 

• First let’s define a set of join points consisting of the 
invocation of: moveBy in FigureElement objects, 
setP1 in Line objects, setP2 in Line objects, setX 
in Point objects and setY in Point objects; let’s call 
this set move.  

• When the computation reaches any of the join points in 
move, and after returning from the invocations, perform 
Display.update. 

The thesis behind AspectJ is that certain units of program 
specification or design––in this case, the display update upon 
objects that have moved––have a systemic nature that cuts across 
any of the single object modules that those units pertain to. This 
thesis seems to be meaningful for software engineers at large, 
who have been adopting AspectJ enthusiastically.  

2.3 The Kernel of AOP 
What is it about Aspects that makes them both attractive to 
researchers and useful to practitioners? Consider tracing, for 
example. When we think of tracing, we formulate something like 
this: “for all methods, call Trace.in before they start executing and 
Trace.out after they finish executing.” However, all programming 
languages will force us to transform this sentence into something 
like this: “In method A, call Trace.in; … call Trace.out; return. In 
method B, etc.” So what is it about the first representation of the 
intention that’s better than the second, and how does the natural 
language help? In this case it’s the references to “all methods,” 
“before … executing” and “after … executing”. That is the power 
of AspectJ: it supports a richer set of structural and temporal 
referencing that follows what we have in natural languages. 
AspectJ does it in a way that seems to be very useful for 
practitioners: it allows the encapsulation of these forms in 
modules that can be added to or removed from the applications 
with a compilation switch. In other words, writing a tracing aspect 
is like writing a different chapter, or section, in a book. 

So, what makes an Aspect be an Aspect, before we even think of 
programming it with AspectJ? Given the name chosen for it, 
which clearly influences our perception, Aspects are software 
concerns that affect what happens in the Objects but that are more 
concise, intelligible and manageable when written as separate 
chapters of the imaginary book that describes the application. 
This pseudo-definition of Aspect aligns well with what users have 
been using AspectJ for. The structural and temporal referencing in 
AspectJ are essential mechanisms for achieving the separation 
between the Objects and those other concerns. Those mechanisms 
are also naturalistic: we would use those kinds of referential 
relations if we were to write it in English, Portuguese or Hebrew. 
But the need for better referencing mechanisms doesn’t end with 
what the word “Aspect” conveys. 

3. LESSONS FROM AOP 
AspectJ is, by no means, the ultimate language and model that 
solves the program-understanding problem. A lot more can and 
needs to be done. But there are several important lessons to be 



 

 

learned from AspectJ and AOP that can feed into the next 
generation of language support for complex systems.  

3.1 Binding between Aspects and Objects 
Once the application objects and the aspect routine are un-tangled 
and decoupled, they may bind with various degrees. If the aspect 
routine has great relevance to the application objects, it may 
palpate every element in the program and potentially affect every 
heartbeat of its execution. If the aspect routine has no bearing on 
the application program whatsoever, there is no interaction. We 
call this the binding extent of putting an aspect routine and an 
application program together. In AspectJ, pointcut designators 
determine the binding extent and join points are the binding 
elements. 

With the binding model in mind, we can begin to look at some 
more flexible AOP mechanisms. We identify three characteristics 
of the binding extent: 

Spread: The binding spread is the size of the cut, i.e., the number 
of different join points the aspect binds to. A logging aspect may 
affect every method of the code. Therefore the binding between 
the logging aspect and any program is typically wide spread.  In 
contrast, an advice that only introduces a variable to a particular 
class in a particular program, and only to that class, has a very 
narrow spread: a single join point.  The binding spread is a metric 
over the crosscutting and tangling resolution. 

Form: Aspects have various forms of interaction with objects. 
The binding form is the model of the join points. In AspectJ, the 
form is mainly event-based, the events being the underlying 
object execution events.  In aspectual collaborations [31], the 
form is a collaboration-oriented join graph.  Complex descriptions 
may need binding forms beyond that expressible within the 
existing join point models. 

Granularity: The granularity of the binding is the density of the 
underlying grid of potential hooks for aspects in the application 
program to bind to.  In AspectJ, granularity is a property of the 
join point model and is independent of the particular application 
program or a particular aspect subroutine, but this need not be the 
case in general. The granularity influences the lower bound on the 
form and the upper bound on the spread. 

3.2 AOP, Reflection and Metaobject Protocols  
AOP has a deep connection with work in computational reflection 
and metaobject protocols ([57], [19]). A reflective system 
provides a base language and (one or more) meta-languages that 
provide control over the base language’s semantics and 
implementation. The meta-languages provide views of the 
computation that no one base language component could ever see, 
such as the entire execution stack, or all calls to objects of a given 
class. Thus, they crosscut the base level computation.  

Expressiveness is a goal, for which reflection is one powerful 
tool. We have exploited this connection to great advantage in our 
previous work on AOP. Early on, when prototyping AOP 
systems, we often started by developing simple metaobject 
protocols for the component language, and then prototype 
imperative aspect programs using them. Later, once we had a 
good sense of what the aspect programs need to do, we developed 
more explicit aspect language support for them. 

Existing programming languages force programmers to express 
ideas using a narrow support for structural and reflective 
referencing [39] and a total lack of support for temporal 
referencing. AOP languages offer a reflective architecture. Unlike 
core reflection, which is structural, the aspectual reflection [22] is 
temporal, namely occurrence of join points.  Natural languages 
seem to posses more temporal referential forms beyond what 
AOP currently provides. 

3.3 Anaphoric Relations 
One of the main characteristics of natural languages, which 
distinguish them from most formal languages, is the use of a 
diversity of anaphoric relations. Anaphora is, essentially, 
referentiality between utterances. Pronouns are examples of 
context-dependent anaphora: this, that, it, her, which, etc. But 
referent expressions can be more than pronouns. Natural 
languages support a multiplicity of possible forms that can be 
used to identify a referent in a given sentence or among sentences. 
In general linguistic usage, anaphora refers to referential 
dependence regardless of morphological form and regardless of 
whether it is context-dependent or context-free. In other words, 
ordinary pronouns and even full noun phrases count as anaphora. 
For example, they can be: lists of nouns such as “The president, 
the cat, the resident and the hat”; constraints on nouns “colorless 
liquids”; etc. We are using the term anaphora in this very broad 
sense. In this sense, as explained in Section 2.3, AOP supports a 
simple form of temporal anaphora. It can be extended to support a 
richer set. 

3.4 Domain-Specific AOP Languages 
Although Domain-Specific Aspect Languages (DSAL) are not the 
focus of this paper, DSALs might be a better approach than a 
general purpose aspect language. The reason is that domain 
specific aspect languages can utilize a higher level join point 
model. We can use a domain-specific language that   generates 
code that is the basis for a higher-level join point model. The join 
points are then advised by additional aspects. For further 
arguments for DSALs, see [56]. 

4. BEYOND AOP 
Elements of natural language, especially those pertaining to 
referencing, can create programming languages that are both 
expressive and executable. The goal of this paper is to identify the 
binding mechanisms in natural languages that will enable the 
description and organization of programs in a more natural way.  

4.1 Example 
To have a more clear idea of which relations are useful and which 
aren’t, and to illustrate the objectives of a naturalistic 
programming language, we present an example in three steps. 
First we show a piece of Java code; second we show the same 
program using English words – the purpose of this second form is 
to illustrate what we do NOT seek; finally, we show another 
version of the same program, this time written in form we target. 

4.1.1 Extreme 1: Description using Java (version 1) 
In the Ubiquitous Computing project at UCI we are developing 
applications using several hardware and software platforms. The 
applications include, for example, short-range acoustic modems, 
Personal Area Network protocols and speech processing [38]. 



 

 

These applications involve low-level systems programming, they 
are computationally intensive and, therefore, require a solid grasp 
of data structures, optimizations and multi-thread programming. 
They are written in Java and C, and the code is to be shared and 
(re)used by many students.  

Consider the following code, extracted from one of our acoustic 
modems: 

/** 
 * encodeStream converts a given stream of  
 * bytes into sounds. 
 * @param input the stream of bytes to 
 * encode 
 * @param output the stream of audio 
 * samples representing the input 
 */ 
static void encodeStream(InputStream in,  
                         OutputStream out){ 
 int readindex = 0; 
 byte[] buff=new byte[kBytesPerDuration]; 
 while (  (readindex = in.read(buff))  
        == kBytesPerDuration) { 
  out.write(Encoder.encodeDuration(buff)); 
 } 
 if (readindex > 0) { 
   for (int i=readindex; 
        i < kBytesPerDuration;  
        i++) 
     buff[i] = 0; 
   out.write(Encoder.encodeDuration(buff)); 
 } 
} 
4.1.2 Extreme 2: English Sugar-Coat (version 2) 
Now consider the following description using English.  This 
English sugarcoat represents the other extreme (and is not what 
we advocate.) 

encodeStream service 
Summary: it converts a given stream of bytes 
into sounds 
It requires the following: 
 An InputStream object known as in; it 
  is supposed to contain the stream of bytes  
  to encode.  
 An OutputStream object known as out; it 
  will be filled with the stream of audio 
  samples representing the input. 
It returns nothing 
It is implemented as follows: 
 . Create an integer called readindex and 
   initialize it to zero. 
 . Create an array of kBytesPerDuration 
   bytes called buff. 
 . A loop begins: 
   . Request the service read from in, 
     with argument buff; set readindex to  
     the return value of this service. 
   . If readindex is equal to 
     kBytesPerDuration, then 
     . Request the service write from  
       out; the argument to this service  
       is the return value of  
       . Request the service encodeDuration  
         from Encoder, with argument buff. 
  End of loop. 
  . If readindex is greater than 0 then 

    . Set to zero all positions of buff  
      starting at readindex. 
    . Request the service write from out;  
      the argument to this service is the  
      return value of  
      . Request the service encodeDuration 
        from Encoder, with argument buff. 
 

This description follows a similar philosophy to that of Hypertalk 
[60] and NaturalJava [53]. It is not much more than syntactic 
sugar over the Java programming model and language. Not only 
doesn’t it help in understanding the implementation, but it is 
likely to be even worse for understanding a complex application, 
because it’s a lot more verbose than the Java program. It misses 
the point. 

4.1.3 Something Else: Focus on the “Natural” Way 
of Describing What We Want (version 3) 
Finally consider this third version. 

/** 
 * encodeStream converts a given stream of  
 * bytes into sounds. 
 * @param input the stream of bytes to 
 * encode 
 * @param output the stream of audio 
 * samples representing the input 
 */ 
encodeStream(InputStream in,  
             OutputStream out) { 
  while there is data in in: 
    read the first N bytes from it; 
    perform encodeDuration on those bytes 
    and write the result into out. 
 
  if, however, after reading the input,  
    the number of bytes read is less than N, 
    then, before continuing, patch the 
    resulting byte array of size N with  
    zeros. 
 

Let’s assume for a moment this language can be implemented as 
is. The reader will probably agree that this version is the one that 
most concisely describes the intent of the implementation. This 
text could probably be easily implemented. What’s valuable in 
this version is that it not only reads like English, but, moreover, 
organizes the ideas in a “natural” way and without “distracting” 
elements. The next section will analyze these points. 

4.2 Analysis of the Target Language 
Let’s analyze the program in version 3 and compare it to versions 
1 and 2.  

• Versions 1 and 2 dwell in details of handling temporary 
variables; the last version doesn’t mention any variables.  
o Instead of buff, it uses the natural dynamic binding 

“those bytes,” which, according to standard English, 
refers to the bytes mentioned in the previous sentence. 

o Readindex is made redundant. This is because it was 
only there in the first place to cope with the exceptional 
case of when the input stream returns less bytes than 
what we asked for. 



 

 

• Version 3 makes use of a reflective element: “this last 
operation.” We consider this to be a reflective element, 
because it exposes knowledge about the underlying 
execution of the program by mentioning “operation.” 

• Most importantly, version 3 uses a subtly different 
organization of ideas. Namely, it first states the normal cases 
(i.e., we get the number of bytes we ask for out of the input 
stream), and only afterwards states how to handle the special 
case (i.e., we get less than what we ask for). In this case, the 
binding of the special case sentence with the place in the 
computational process where the special case might occur is 
done with the expression “after reading the input stream.”   

 

The third point must be carefully analyzed, because it embodies 
what we think are the most novel contributions of this proposal 
that can transform for the better the way people express ideas in 
programming.  

These sorts of bindings, called anaphora in linguistics, are 
pervasive and perfectly natural when people speak and write 
documents. They are also natural ways of thinking about 
computational processes. However, existing programming 
languages lack appropriate support for them.  

Existing programming languages are based on the premise that 
each statement, expression or function is a little “black box” that 
relates to the rest of the program through an input-output 
interface. This premise is made very clear in functional 
programming languages that reduce everything, including other 
languages’ constructs, to functions. As a consequence, 
programmers are forced to stream their intentions into a series of 
sequential steps aligned with this very narrow pipeline view of the 
world. 

So in this case, in the first two versions of the encodeStream 
function, the test of whether the read of the input stream returned 
less than expected is stated immediately after performing the read 
operation. This splits an important semantic unit––the occurrence 
and handling of the special case––in two statements whose 
relation is loosely established by the variable readindex: 

 while (  (readindex = in.read(buff))  
        == kBytesPerDuration) { 
  out.write(Encoder.encodeDuration(buff)); 
 } 
 if (readindex > 0) { 
   for (int i=readindex; 
        i < kBytesPerDuration;  
        i++) 
     buff[i] = 0; 
   out.write(Encoder.encodeDuration(buff)); 
 } 
 
As a consequence of this split, the write operation is repeated 
twice in the program text, once in the loop and again in the 
conditional that follows it. This is typical in existing programs, 
and it’s extremely bad from an evolution point of view: when a 
specification changes, programmers must find all these redundant 
places and fix them by hand. 

In this case, this redundancy could be avoided by using a do-
statement like this one:  

 

do { 
  if ( (readindex = input.read(buff))  
      < kBytesPerDuration) 
    if (readindex > 0) 
      for (int i=readindex; 
           i < kBytesPerDuration;  
           i++) 
        buff[i] = 0; 
 
  out.write(Encoder.encodeDuration(buff)); 
} while (readindex == kBytesPerDuration); 
 

But in this case, the test of the value of readindex happens twice 
in each iteration of the loop rather than once. Furthermore, this 
organization emphasizes the special case: because of all those 
tests in the beginning, we can hardly notice what the loop is 
actually supposed to do most of the times. This is also typical and 
also bad.  

In this pipeline view of the world, there is no way of refining a 
statement or expression or function at a later point in the program 
text. Yet, this refinement happens pervasively in written 
discourse. The existing programming languages have a very 
shallow support for structural referencing and a complete lack of 
support for temporal referencing. 

In version 3, the test is stated as another sentence outside the 
lexical scope of the loop where the read occurs. The binding 
expression is “after reading the input stream”. We can evaluate 
this expression unambiguously, in that we immediately 
understand that this expression refers to a point in time that has 
been established in the previous sentence “read … from the input 
stream.” A programming language processor can also evaluate 
this expression correctly, if we make it do it. 

4.3 Placing this “Language” into Perspective 
There are two aspects pertaining to referencing: what to refer to 
and how to refer to it. This is, in fact, one of the most basic design 
decisions of any programming language. Programming languages 
have been highly biased in this decision. Here are some examples 
of things that are referred to. In low-level assembly languages, the 
what consists of registers and memory cells; in functional 
languages, it consists of functions and variables; in OOP 
languages, it consists of objects (very well-defined entities with a 
precise form), fields, variables and, when inheritance is included, 
classes. In typed languages, types are also part of what can be 
referred to. The mechanisms to refer to things vary from the use 
of syntactic forms to the explicit application of binding functions.  

In contrast, Natural Languages have a much less well-defined set 
of things that can be referred to. In fact, the best word to describe 
what we can refer to is thing, which can be just about anything. It 
can be the computer memory and registers, for example; or 
functions and variables; or OOP’s objects and classes; or types. 
But it goes way beyond these. It can be sets of things; it can be 
points in time; it can be “the previous paragraph” and “all sections 
of this paper.” However, Natural Languages aren’t as chaotic as it 
seems. Things tend to fall into a small number of classes. They 
can be structures, actions or time (many kinds of all of these). 

The challenge in taking Natural Languages as the basis to 
producing a programming language is to decide which things 
should be referenceable in the context of computer programming, 



 

 

given the wide range of application domains. We should keep in 
mind that a naturalistic language should have an important 
property of most modern programming languages: it should be 
possible to construct abstractions on top of a relatively small 
number of primitive abstractions. Ideally, each application 
domain would build its own terminology and idioms, similar to 
what happens with Java APIs and similar to Natural Languages’ 
dictionaries. What we propose here is that such primitive 
abstractions should be inferred from wider ground of Linguistics, 
rather than from computer engineering or mathematics or ad-hoc 
models such as objects. We propose this based on the fact that 
Natural Language comes before, and supports, all other domain-
specific formal languages. 

On a pragmatic vein, one fact has been clearly exposed by the 
wide adoption of Aspect-Oriented Programming: reflective and 
temporal references are important elements in programming. It is 
therefore logical to explore them even further. In our approach, 
we go back to the original, and more general, AOP idea described 
in [20]. For example, unlike AspectJ, statement-level anaphora, 
such as the one presented in the working example in Section 
4.1.3, should be considered.  

A more profound difference is that the emphasis in AOP was put 
on separation of aspects and components, and the reusability of 
aspects by different components. That design feature came from 
D and has proved to be very useful in practice, especially for 
development aspects such as tracing and profiling that are later 
removed from the final software product. However, because of 
that emphasis, the binding mechanisms in AspectJ don’t use 
context information that could naturally be used. For example, 
expressions such as “the last operation” and “those bytes” “after 
reading [in a certain context]” should be supported. The emphasis 
should be the exploration of a variety of structural and temporal 
anaphora, some of which are captured by AspectJ, but most of 
which are not. 

The anaphoric relations targeted here include not only intra-
module referencing but also inter-module referencing. This may 
challenge the principle of modular programming. But, similar to 
what happens in AOP, if breaking the principle proves to be 
useful, then it means that the principle itself needs to be 
reformulated.  

4.4 What This “Language” Is Not 
The languages we’re advocating are not for “end-user 
programming” (see related work section 5.4). While we believe 
that programs written in a naturalistic language will be more 
readable to non-programmers, our goal is not primarily to enable 
non-programmers to write computer programs. Nor is it for 
“natural language programming,” an idea that has been around for 
some decades and that has been instantiated occasionally (e.g., 
[55], [2], [42], [60], [53]). We don’t advocate implementing 
English! The languages we are proposing are naturalistic, but not 
natural. However, they will take their direction from the structure 
and expressiveness of natural languages rather than from the 
idealized models of traditional programming languages. 

5. RELATED WORK 
The ideas presented here have their roots in Aspect-Oriented 
Programming and the lessons we’ve learned from it. However, 

there are several fields of research, some of them considerably 
more mature than AOP, to which we must pay special attention. 

5.1 Anaphoric Relations and Binding Theory 
Researchers in computational linguistics and natural language 
processing have developed a sophisticated array of approaches to 
some of the problems that we are addressing, in the forms in 
which they occur in natural language. Anaphorical reference 
within natural language is the domain of binding theory, which 
draws its roots from Chomsky's pioneering work [8]. The problem 
that binding theory addresses is how to relate anaphoric 
expressions to their references; binding principles describe the 
relative positions of anaphors and their admissible antecedents in 
grammatical structure [4]. Chomsky's work proceeds from the 
observation that the two primary forms of anaphora (pronouns 
and anaphors, which are more complex referential expressions) 
correspond to forms (WH-movement and NP-movement) of 
syntactic movement. Alternative approaches to formal grammar, 
such as Head-driven Phrase Structure Grammar (HPSG), Lexical-
Functional Grammar (LFG), or Categorial Unification Grammar 
(CUG), also must incorporate alternative, non-transformational 
(and less purely syntactic) accounts of anaphora (e.g., [51], [52], 
[7]).  

While this work is clearly relevant, dealing as it does with the 
processing of richly expressive referential phrases of the sort that 
we would like to exploit, it’s critical to recognize the difference 
between the analysis of naturally-occurring language, such as 
NLP must address, and the processing of restricted, formal, and 
artificial languages of the sort that we aim to develop. While there 
is much to learn from the natural handling of anaphoric reference, 
the language that we seek to develop is naturalistic but not 
natural. Therefore, our challenge is not to account for anaphora, 
but to exploit it, which reduces the challenge considerably. 

5.2 Temporal Logic Programming 
Most programming models and languages lack mechanisms for 
temporal reference. The notable exception is the work within the 
community of logic programming and the language generally 
associated with it, Prolog. Temporal logic programming has been 
proposed to reason about hardware and software systems (e.g., 
[50]). It has been used in the specification (e.g., [18], [29]), 
verification (e.g., [40], [46]), and synthesis (e.g., [12], [40]) of 
concurrent systems, as well as in the synthesis of robot plans (e.g., 
[14]). For a survey on temporal and modal logic programming 
languages, the reader may refer to [45]. 

While this work is relevant, its purpose is quite different from that 
of the work proposed here. Logic programming, in general, and 
temporal logic programming, in particular, focus on writing 
programs upon which certain theorems can be proved. While 
there are some lessons to be learned from formal specifications of 
time-dependent symbols in temporal logic, the language we seek 
to develop doesn’t attempt at being used for proving theorems 
about the programs. 

5.3 Cognitive Foundations of Programming 
Languages 
The question of the degree of expressiveness afforded by 
programming languages, and the effectiveness of the notations in 
which programs are expressed, has been a topic of research 



 

 

investigation for some time. For example, studies in the 
psychology of programming have explored a range of issues 
including expert/novice differences in programming strategies 
[59], mental imagery used by programmers in thinking about 
programs [49], and the relationship of cognitive strategies to 
language features [58]. 

The use of intelligent systems to support learning programming 
languages has been the focus of a major research effort in the AI 
in Education community. In particular, a significant body of 
research, particularly arising in the UK, has investigated students’ 
understandings of Prolog programs ([3], [5], [6], [11]). Prolog is a 
particularly interesting language to study, for a variety of reasons. 
First, for programmers used to procedural or functional styles, the 
declarative model that Prolog embodies can be a major challenge. 
Second, Prolog, being based on a logical calculus, has a 
superficial naturalism that can make it initially accessible to 
novice programmers. Third, for those novice programmers, 
Prolog rapidly becomes much more complex as the semantics of 
more advanced features such as “cuts” requires them to 
reconceptualize Prolog programs in terms of the sequential 
organization of search rather than in terms of a purely declarative 
formalism. These studies highlight the mutual influence of 
programming language structure and conceptual understandings 
on the part of its users. 

One of the most influential analyses of the usability of 
programming languages is Greene’s “cognitive dimensions” 
framework for notations ([15], [17]). The cognitive dimensions 
highlight the properties of notations in terms of the cognitive 
activities that they support, and so illuminate the questions of how 
and why notations “work” for particular sorts of tasks. For 
example, the dimension of viscosity [16] refers to a notation’s 
resistance to change, and more generally, the complexity of 
making a single revision. A simple illustration of viscosity might 
be the insertion of a clause, such as an if or a while, around a 
block of code in a language that uses indentation to express 
structure (as in Python or Occam.) In these languages, 
encapsulating code inside a particular block involves changing the 
indentation of each newly-enclosed line of code. The notational 
device of using indentation to indicate block structure, then, has 
greater viscosity than the more conventional practice of indicating 
structure by using brackets. (However, the bracket approach may 
reduce visibility – the at-a-glance readability of the notation.) 
Greene and his collaborators have identified a range of relevant 
cognitive dimensions of notations, including premature 
commitment and role-expressiveness. The critical element of 
Greene’s analysis is that it seems programs not simply as 
specifications of computer behavior, but as artifacts that people 
have to manipulate. It highlights the relationship between the 
program and the act of programming. Likewise, our approach is 
more concerned with expressiveness for the programmer rather 
than expressiveness for the computer. 

In an effort to develop programming representations that bridge 
“the expressiveness gap,” Pane ([47], [48]) studied the natural 
language descriptions of programming language tasks given by 
non-programmers. Pane was particularly interested in children’s 
use of programming languages, although his methods and perhaps 
some of his findings apply more broadly. In an experimental 
setting, he had people give descriptions of programmatic behavior 
(in particular, the program for a Pacman-like game) and analyzed 

the forms of description that people produced. His findings 
pointed to a range of linguistic expressions by which people 
would describe the program’s behavior, but which are poorly 
supported in conventional programming languages. For example, 
where people often produce complex grouping statements (such 
as “all the red objects” or “the objects on this side of the screen”), 
programming languages tend not to offer facilities for such 
dynamic groups, requiring iterative testing instead. Pane then 
went on to develop a programming language incorporating some 
of these elements. 

In addition to the empirical approach that characterizes Pane’s 
work, we feel that a theoretical grounding will be important for 
successfully developing this research. One promising and 
intriguing approach that we are beginning to explore in some 
preliminary work is the cognitive semantics perspective 
developed by Lakoff and others ([24], [25], [26]). Lakoff is a 
linguist and cognitive scientist whose work for many years has 
focused on the relationship between linguistic practice and 
cognitive capabilities. In particular, his studies of categorization 
(how people define and use classifications and categories) and of 
metaphor have begun to uncover a new way of understanding 
cognition. The central claim of cognitive semantics is that 
metaphor, rather than being a purely literary device, is in fact a 
central element of cognitive function. Metaphors typically occur 
not as individual elements of linguistic practice, but as entire 
systems of metaphors that relate different areas of experience. For 
example, the metaphor “LOVE IS A JOURNEY” reveals a 
complex structural mapping between domains, in which lovers are 
mapped to travelers, a relationship is mapped to a vehicle, shared 
goals are mapped to destinations, etc., and which accounts for a 
range of linguistic expressions such as “our relationship has hit a 
dead end,” “I don’t think we’re going anywhere,” “we’re in high 
gear,” “we were in the fast lane,” “we hit a bump,” “our 
relationship is on the rocks,” etc. Through a series of detailed 
analyses, researchers in cognitive semantics have detailed the 
ways in which cognition is built upon a system of structural 
mappings between domains, of which these expressions are 
symptomatic. This applies not only to everyday cognition, but to 
more complex and abstract domains of reasoning which they 
demonstrate to be based through this metaphorical relation to 
embodied physical experience. Domains of application have 
included mathematics [28] and philosophy [27]. Our In some 
preliminary work, we are is beginning to explore the metaphorical 
structure of computer science, by analyzing the language used to 
describe and express computational concepts. This research 
suggests that the metaphorical model of cognition plays a strong 
role in Computer Science just as it does in other areas of 
reasining; metaphors of embodied experience such as 
“ITERATION IS MOVEMENT” and “DATA STRUCTURES 
ARE CONTAINERS” provide the foundation on which cognitive 
understanding of computation is based. We anticipate that these 
understandings will support the development of a language that is 
appropriately matched to everyday cognition. 

5.4 End-User Programming 
Although it is not the focus of our work, end-user programming is 
a related area of research because of its concern with forms of 
expression. End-user programming is inspired by the dual 
observations that, first, most software systems must be adapted by 
users, to some extent, to fit into their actual work; and, second, 



 

 

that although most people do not engage in programming in 
traditional languages, they certainly are adept at using many 
formal schemes. Nardi [43] discusses the use of such formal 
representations as knitting patterns and baseball scoring systems, 
and argues that there may be alternative formalisms which, 
suitably embedded in practice, will allow end-users to customize, 
program and adapt software systems; she cites the example of 
spreadsheet programming as an example [44]. Lave [30] has 
similarly observed that people who have difficulty with, say, 
mathematics in learning situations nonetheless can perform 
complex calculations in domains of everyday experience such as 
comparison shopping, currency exchange or calculating gambling 
odds. 

One formalism that has been explored, especially in the area of 
programming environments for children, is graphical rewrite 
rules. KidSim [10] (subsequently called Cocoa and marketed as 
Stagecast Creator) and AgentSheets [54] are both systems for 
building interactive simulations based on graphical rule systems, 
and both have been successful, albeit in limited areas. Others have 
explored the use of Programming By Demonstration as a means to 
specify the behavior of software systems ([9], [33]). Programming 
by demonstration allows users to specify software systems 
through concrete operations rather than abstract description; 
however, the twin difficulties of generating appropriate 
generalizations and of conveying potential future activity to users 
have largely resulted in systems that are tightly coupled to 
specific domains, which have limited the uptake of the approach. 

These approaches suggest that, despite decades of research into 
programming language design, there is still a great deal to learn 
not just about languages, but about programming, and especially 
about the relationship between the two. While those concerned 
with domain-specific languages or end-user programming have 
attempted to understand this relationship in order to make 
programming available to new communities of users, we believe 
that they are equally applicable to traditional programming 
practice. 

6. CONCLUSION 
The main goal of this paper was to re-generate some discussion 
around the role of Natural Languages in Programming Language 
design, and we tried to give a solid frame for this discussion. We 
believe this is an important topic for the problem of program 
understanding. The “end units” of any program are not only the 
microprocessors but also the human programmers. As such, it is 
only logical to take a serious look at the main form of human 
communication, namely Natural Languages. The power of 
Natural Languages is not so much the syntax but the way they 
allow us to organize ideas in “natural” ways. It is so much so that 
Natural Languages are, in fact, the primitive support for all other 
formal languages such as mathematical formalisms or 
microprocessor instructions. In other words, everything that can 
be expressed in those formal languages can be expressed in 
English, and not the other way around. This expressive power of 
Natural Languages is, to a great extent, supported by their 
sophisticated referencing and binding mechanisms, and those are 
precisely the focus of this paper. 

We gave an informal example of a naturalistic programming 
language and analyzed some of its properties. At this point, this 

programming language is rather fuzzy, and many of the details 
will need to be worked out.  

Further work includes a careful look at Linguistics and the 
existing models of Natural Languages. We will be looking for a 
variety of anaphora such as (1) pronouns, e.g. this, that, it, those, 
etc.; (2) object referents, e.g. the input stream, non-empty streams, 
etc.; (3) temporal referents, e.g. last, first, after reading, before 
encoding, etc.; (4) group referents, e.g. all, any; and (5) reflective 
referents, e.g. iteration, loop, operation, etc. We hope this study 
will give a solid framework for identifying primitive language 
mechanisms upon which we can design powerful programming 
languages that support not only a variety of programming models 
but also, and more importantly, natural program organizations 
within those models. 
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