

Beyond AOP: Toward Naturalistic Programming

Cristina Videira Lopes, Paul Dourish
School of Information and Computer Science

University of California, Irvine
Irvine, CA 92697

+1-949-824-1525/8127

{lopes, jpd} @ ics.uci.edu

David H. Lorenz, Karl Lieberherr
College of Computer and Information Science

Northeastern University
Boston, MA 02115

+1-617-373-2076/2077

{lorenz, lieber} @ ccs.neu.edu

ABSTRACT
Software understanding for documentation, maintenance or
evolution is one of the longest-standing problems in Computer
Science. The use of “high-level” programming paradigms and
object-oriented languages helps, but fundamentally remains far
from solving the problem. Most programming languages and
systems have fallen prey to the assumption that they are supposed
to capture idealized models of computation inspired by
deceptively simple metaphors such as objects and mathematical
functions. Aspect-oriented programming languages have made a
significant breakthrough by noticing that, in many situations,
humans think and describe in crosscutting terms. In this paper we
suggest that the next breakthrough would require looking even
closer to the way humans have been thinking and describing
complex systems for thousand of years using natural languages.
While natural languages themselves are not appropriate for
programming, they contain a number of elements that make
descriptions concise, effective and understandable. In particular,
natural languages referentiality is a key factor in supporting
powerful program organizations that can be easier understood by
humans.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – control structures.

D.3.2 [Programming Languages]: Language Classifications –
Very high-level languages.

General Terms
Documentation, Design, Human Factors, Languages.

Keywords
Language Design, Aspect-Oriented Programming, Natural
Language, Cognitive Foundations of Programming.

1. INTRODUCTION
Software systems in fields such as Science, Engineering and
Business are naturally complex, in that the structures and
processes that they capture have a certain level of domain-specific
complexity requiring domain expertise. But, on top of that natural
complexity, the problem of software development is worsened by
the existing software development technologies. The kernel of the
problem is that the existing description mechanisms –
programming languages – are inadequate when it comes to
conveying relevant information to people about the software
systems. The established programming paradigms fail in
providing appropriate support for non-hierarchical concerns,
additional or custom-made behavior, and non-trivial domain-
specific structures and processes. As a result, software systems
become fragile “monuments” of code that only illuminated
software “artisans” (i.e. projects leads) dare to modify, preventing
the real domain experts to control the software in a direct and
systematic manner.

The use of architectural descriptions, rigorous software
development practices and modern programming languages and
tools helps, but fundamentally remains far from solving the
problem. The kernel of the problem is the lack of support for
program understanding by the different people involved in the
project. Multithreading, exceptional cases, optimizations, and the
like, contribute to the natural complexity of the programs. But a
considerable part of the complexity is due to the fact that
programmers, when writing the code, are forced by the
programming language to write it down in arcane and esoteric
ways that are a long way from expressing the natural intentions
behind the code. As a consequence, many times programmers
prefer to write blocks of code from scratch rather than having to
understand and debug other people’s code. Especially when
working at the systems level, code that communicates effectively
to the machine rarely communicates effectively to human readers.

1.1 Programming Reflects Thinking
Researchers are constantly looking for ways to express the
programs in a form that more closely follows the way
programmers think before they are forced to break their thoughts
in operational details imposed by the existing programming
languages. We know that this is possible, because when
programmers are asked to explain their code, they do so
concisely, skipping operational details, sometimes using a thought
flow that is quite different from the control flow in the code. Our
goal is to address the gap between those two forms of explanation.

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

Over the years, several languages, both textual and visual, have
been designed that focus specifically on issues of usability and
expressiveness (e.g., [60] and [10]). They usually target children,
the novice programmer, end-user programming and rapid
prototyping. None of these languages, however, has had much
success in systems software development. The problem is that
those languages and environments present simplified models of
computation that cannot support the demands of systems
programming.

In the domain of professional programming, Object-Oriented
Programming and Aspect-Oriented Programming (AOP) [20]
have been addressing some related issues within existing
programming languages, targeting complex software applications.
In particular, AspectJ [1], an AOP extension to Java, allows
programmers to localize crosscutting concerns such as tracing,
logging or profiling in program modules of their own and outside
the classes. That way, code that reflects some important design
units, but that Java forces to be spread throughout the system, can
be encapsulated in their own modules, improving readability,
maintainability and configurability. The success of AspectJ is
due, in part, to the acknowledgement in the software industry that
the problems of programming language expressiveness are
serious; AspectJ embodies an approach which makes code more
expressive, more readable, and more reliable, and can address
industry’s need for improved reliability and decreased
development time. AspectJ achieves this by making programs
follow more closely the intentions of their developers. But even
AspectJ is still far from supporting the natural expression forms
we are looking for.

1.2 The Role of Natural Languages
Before computers came along, people were successfully defining
and disseminating complex systems for thousands of years, using
a technology they come equipped with: natural language. They
were writing all sorts of documents containing structure and
process information, ranging from specification manuals of
complex systems to constitutions of social organizations. Writing
a structured document, for example, the Constitution of the State
of California, requires much more than simply putting words
together in grammatically correct sentences; it requires dividing
the subject matter into smaller and smaller units, e.g., chapters,
sections, subsections, paragraphs, sentences, that convey semantic
information to the reader. Those small units don’t exist in
isolation; they refer to and use each other. They do so in ways
that obey the rules of the natural language and that very rarely
obey the simple functional module structures supported by
existing programming languages.

Computer programs, of course, are different. They must define
structure and process for computational systems, and therefore
must address issues of data types and control flow. Systems
software development is hard partially because of the inherent
complexity of the structures and processes that they convey. But a
considerable part of the burden of systems software development
is due to the complexity added by the operational details imposed
by programming languages, such as having to deal with
temporary variables or having to cope with exceptional cases. We
argue that such problems are historical artifacts. They reflect the
legacy of traditional programming languages in either machine
languages (resulting in an overriding concern with control flow
and assignment) or mathematical formalisms (resulting in an

overriding concern with binding and transformation.) Existing
programming languages force programmers to express ideas using
a narrow support for structural and reflective referencing and a
total lack of support for temporal referencing.

1.3 Contribution
The main purpose of this paper is to re-generate some discussion
around the role of Natural Languages in Programming Language
design. We are aware that this is a relatively old theme that can be
traced to the 1960’s [55]. A lot has happened in Linguistics and in
Programming Languages since then. In particular, some lessons
learned from Aspect-Oriented Programming lead us to believe
that there is value in revisiting the issue now. AOP made us pay
more attention to the way certain referencing mechanisms
occurring in natural languages allow us to express some ideas that
can’t be easily expressed in traditional programming languages.

In this paper we suggest two new ways of thinking beyond AOP,
the first one within the AOP framework, and the second outside
that framework. We make the argument that the primitive
abstractions in programming languages should be drawn from the
study of Natural Languages, rather than from Computer
Engineering or Mathematics or ad-hoc metaphors such as Objects.

The reminder of the paper is organized as follows. In Section 2
we revisit AOP, highlighting the English-equivalents of the
expression mechanisms in some AOP languages. In Section 3 we
state some improvements that can be done in AOP systems, while
remaining centered in the AOP paradigm. Section 4 builds on the
observations in previous sections and drafts a programming
language way beyond AOP. Section 5 describes the relevant
fields of research that should be taken into consideration. Finally,
Section 6 concludes the paper in a rather inconclusive manner.

2. ASPECT-ORIENTED PROGRAMMING
Understanding the leap between object-oriented modular
programming and aspect-oriented crosscutting programming is
crucial to contemplate a leap beyond AOP. We have been deeply
involved in the development of Aspect-Oriented Programming
[20] and several flavors of it, D ([34], [35], [36]), AspectJ ([37],
[21]), Demeter [32] and Aspectual Collaborations [31]. AspectJ,
now reaching the 1.0 version, is a stable extension to Java used by
large numbers of software engineers in industry.

The following is a brief historical overview of AOP that
illustrates how it comes one step closer to certain referencing
mechanisms in natural languages.

2.1 Domain Specific Languages: D
D was a domain-specific language that targeted two issues:
synchronization of threads and parameter passing in remote
method invocations. In this summary we describe only the
synchronization issue. In D, coordinator modules, separated from
Java classes, encapsulated the synchronization of threads. For
example, the following coordinator module mandates the
synchronization of BoundedBuffer objects:

coordinator BoundedBuffer {
 selfex put, take;
 mutex {put, take};
 condition empty = true, full = false;
 put: requires !full;
 on_exit {

 if (empty) empty = false;
 if (usedSlots == capacity)
 full = true;
 }
 take: requires !empty;
 on_exit {
 if (full) full = false;
 if (usedSlots == 0)
 empty = true;
 }
 }

What this says, in English, is the following:

• This is a coordinator for BoundedBuffer objects.

• The operations put and take are self-exclusive, i.e., no
two threads can execute either of them simultaneously.

• The operations put and take are also mutually exclusive,
i.e., no two threads can execute both of them
simultaneously.

• Let’s define the conditions empty, which should be true
in the beginning, and full, which should be false in the
beginning.

• For the operation put: its execution requires that full
is false; after exiting the operation: if empty was true,
then the buffer is not empty anymore; if, on the other
hand, the buffer reached its capacity after this put
operation, then now it’s full.

• <similar for take>
The binding between coordinator code and object code is done by
the name of types, such as BoundedBuffer, and operations,
such as put and take. Coordinators could also directly refer to
internal variables of the classes, illustrated in this case by
usedSlots.

2.2 General Purpose Language: AspectJ
In AspectJ, this idea was expanded and generalized. AspectJ is a
general-purpose aspect language that uses the concept of “join
point.” Join points in AspectJ are points in the execution (run-
time) of a Java program that programmers can name and handle at
program time. Examples of join points are the beginning of a
certain method execution, the invocation of an operation on an
object, etc. In AspectJ, aspect modules, separated from Java
classes, can encapsulate not only synchronization but also a
variety of crosscutting concerns such as debugging or notification.
For example, the following aspect mandates the display update
upon moving objects, involving different operations in objects of
three different types:

aspect DisplayUpdating {
 pointcut move():
 call(void FigureElement.moveBy(int, int))
 || call(void Line.setP1(Point))
 || call(void Line.setP2(Point))
 || call(void Point.setX(int))
 || call(void Point.setY(int));
 after() returning: move() {
 Display.update();
 }
}

What this means, in English, is the following:

• This is an aspect called DisplayUpdate.

• First let’s define a set of join points consisting of the
invocation of: moveBy in FigureElement objects,
setP1 in Line objects, setP2 in Line objects, setX
in Point objects and setY in Point objects; let’s call
this set move.

• When the computation reaches any of the join points in
move, and after returning from the invocations, perform
Display.update.

The thesis behind AspectJ is that certain units of program
specification or design––in this case, the display update upon
objects that have moved––have a systemic nature that cuts across
any of the single object modules that those units pertain to. This
thesis seems to be meaningful for software engineers at large,
who have been adopting AspectJ enthusiastically.

2.3 The Kernel of AOP
What is it about Aspects that makes them both attractive to
researchers and useful to practitioners? Consider tracing, for
example. When we think of tracing, we formulate something like
this: “for all methods, call Trace.in before they start executing and
Trace.out after they finish executing.” However, all programming
languages will force us to transform this sentence into something
like this: “In method A, call Trace.in; … call Trace.out; return. In
method B, etc.” So what is it about the first representation of the
intention that’s better than the second, and how does the natural
language help? In this case it’s the references to “all methods,”
“before … executing” and “after … executing”. That is the power
of AspectJ: it supports a richer set of structural and temporal
referencing that follows what we have in natural languages.
AspectJ does it in a way that seems to be very useful for
practitioners: it allows the encapsulation of these forms in
modules that can be added to or removed from the applications
with a compilation switch. In other words, writing a tracing aspect
is like writing a different chapter, or section, in a book.

So, what makes an Aspect be an Aspect, before we even think of
programming it with AspectJ? Given the name chosen for it,
which clearly influences our perception, Aspects are software
concerns that affect what happens in the Objects but that are more
concise, intelligible and manageable when written as separate
chapters of the imaginary book that describes the application.
This pseudo-definition of Aspect aligns well with what users have
been using AspectJ for. The structural and temporal referencing in
AspectJ are essential mechanisms for achieving the separation
between the Objects and those other concerns. Those mechanisms
are also naturalistic: we would use those kinds of referential
relations if we were to write it in English, Portuguese or Hebrew.
But the need for better referencing mechanisms doesn’t end with
what the word “Aspect” conveys.

3. LESSONS FROM AOP
AspectJ is, by no means, the ultimate language and model that
solves the program-understanding problem. A lot more can and
needs to be done. But there are several important lessons to be

learned from AspectJ and AOP that can feed into the next
generation of language support for complex systems.

3.1 Binding between Aspects and Objects
Once the application objects and the aspect routine are un-tangled
and decoupled, they may bind with various degrees. If the aspect
routine has great relevance to the application objects, it may
palpate every element in the program and potentially affect every
heartbeat of its execution. If the aspect routine has no bearing on
the application program whatsoever, there is no interaction. We
call this the binding extent of putting an aspect routine and an
application program together. In AspectJ, pointcut designators
determine the binding extent and join points are the binding
elements.

With the binding model in mind, we can begin to look at some
more flexible AOP mechanisms. We identify three characteristics
of the binding extent:

Spread: The binding spread is the size of the cut, i.e., the number
of different join points the aspect binds to. A logging aspect may
affect every method of the code. Therefore the binding between
the logging aspect and any program is typically wide spread. In
contrast, an advice that only introduces a variable to a particular
class in a particular program, and only to that class, has a very
narrow spread: a single join point. The binding spread is a metric
over the crosscutting and tangling resolution.

Form: Aspects have various forms of interaction with objects.
The binding form is the model of the join points. In AspectJ, the
form is mainly event-based, the events being the underlying
object execution events. In aspectual collaborations [31], the
form is a collaboration-oriented join graph. Complex descriptions
may need binding forms beyond that expressible within the
existing join point models.

Granularity: The granularity of the binding is the density of the
underlying grid of potential hooks for aspects in the application
program to bind to. In AspectJ, granularity is a property of the
join point model and is independent of the particular application
program or a particular aspect subroutine, but this need not be the
case in general. The granularity influences the lower bound on the
form and the upper bound on the spread.

3.2 AOP, Reflection and Metaobject Protocols
AOP has a deep connection with work in computational reflection
and metaobject protocols ([57], [19]). A reflective system
provides a base language and (one or more) meta-languages that
provide control over the base language’s semantics and
implementation. The meta-languages provide views of the
computation that no one base language component could ever see,
such as the entire execution stack, or all calls to objects of a given
class. Thus, they crosscut the base level computation.

Expressiveness is a goal, for which reflection is one powerful
tool. We have exploited this connection to great advantage in our
previous work on AOP. Early on, when prototyping AOP
systems, we often started by developing simple metaobject
protocols for the component language, and then prototype
imperative aspect programs using them. Later, once we had a
good sense of what the aspect programs need to do, we developed
more explicit aspect language support for them.

Existing programming languages force programmers to express
ideas using a narrow support for structural and reflective
referencing [39] and a total lack of support for temporal
referencing. AOP languages offer a reflective architecture. Unlike
core reflection, which is structural, the aspectual reflection [22] is
temporal, namely occurrence of join points. Natural languages
seem to posses more temporal referential forms beyond what
AOP currently provides.

3.3 Anaphoric Relations
One of the main characteristics of natural languages, which
distinguish them from most formal languages, is the use of a
diversity of anaphoric relations. Anaphora is, essentially,
referentiality between utterances. Pronouns are examples of
context-dependent anaphora: this, that, it, her, which, etc. But
referent expressions can be more than pronouns. Natural
languages support a multiplicity of possible forms that can be
used to identify a referent in a given sentence or among sentences.
In general linguistic usage, anaphora refers to referential
dependence regardless of morphological form and regardless of
whether it is context-dependent or context-free. In other words,
ordinary pronouns and even full noun phrases count as anaphora.
For example, they can be: lists of nouns such as “The president,
the cat, the resident and the hat”; constraints on nouns “colorless
liquids”; etc. We are using the term anaphora in this very broad
sense. In this sense, as explained in Section 2.3, AOP supports a
simple form of temporal anaphora. It can be extended to support a
richer set.

3.4 Domain-Specific AOP Languages
Although Domain-Specific Aspect Languages (DSAL) are not the
focus of this paper, DSALs might be a better approach than a
general purpose aspect language. The reason is that domain
specific aspect languages can utilize a higher level join point
model. We can use a domain-specific language that generates
code that is the basis for a higher-level join point model. The join
points are then advised by additional aspects. For further
arguments for DSALs, see [56].

4. BEYOND AOP
Elements of natural language, especially those pertaining to
referencing, can create programming languages that are both
expressive and executable. The goal of this paper is to identify the
binding mechanisms in natural languages that will enable the
description and organization of programs in a more natural way.

4.1 Example
To have a more clear idea of which relations are useful and which
aren’t, and to illustrate the objectives of a naturalistic
programming language, we present an example in three steps.
First we show a piece of Java code; second we show the same
program using English words – the purpose of this second form is
to illustrate what we do NOT seek; finally, we show another
version of the same program, this time written in form we target.

4.1.1 Extreme 1: Description using Java (version 1)
In the Ubiquitous Computing project at UCI we are developing
applications using several hardware and software platforms. The
applications include, for example, short-range acoustic modems,
Personal Area Network protocols and speech processing [38].

These applications involve low-level systems programming, they
are computationally intensive and, therefore, require a solid grasp
of data structures, optimizations and multi-thread programming.
They are written in Java and C, and the code is to be shared and
(re)used by many students.

Consider the following code, extracted from one of our acoustic
modems:

/**
 * encodeStream converts a given stream of
 * bytes into sounds.
 * @param input the stream of bytes to
 * encode
 * @param output the stream of audio
 * samples representing the input
 */
static void encodeStream(InputStream in,
 OutputStream out){
 int readindex = 0;
 byte[] buff=new byte[kBytesPerDuration];
 while ((readindex = in.read(buff))
 == kBytesPerDuration) {
 out.write(Encoder.encodeDuration(buff));
 }
 if (readindex > 0) {
 for (int i=readindex;
 i < kBytesPerDuration;
 i++)
 buff[i] = 0;
 out.write(Encoder.encodeDuration(buff));
 }
}
4.1.2 Extreme 2: English Sugar-Coat (version 2)
Now consider the following description using English. This
English sugarcoat represents the other extreme (and is not what
we advocate.)

encodeStream service
Summary: it converts a given stream of bytes
into sounds
It requires the following:
 An InputStream object known as in; it
 is supposed to contain the stream of bytes
 to encode.
 An OutputStream object known as out; it
 will be filled with the stream of audio
 samples representing the input.
It returns nothing
It is implemented as follows:
 . Create an integer called readindex and
 initialize it to zero.
 . Create an array of kBytesPerDuration
 bytes called buff.
 . A loop begins:
 . Request the service read from in,
 with argument buff; set readindex to
 the return value of this service.
 . If readindex is equal to
 kBytesPerDuration, then
 . Request the service write from
 out; the argument to this service
 is the return value of
 . Request the service encodeDuration
 from Encoder, with argument buff.
 End of loop.
 . If readindex is greater than 0 then

 . Set to zero all positions of buff
 starting at readindex.
 . Request the service write from out;
 the argument to this service is the
 return value of
 . Request the service encodeDuration
 from Encoder, with argument buff.

This description follows a similar philosophy to that of Hypertalk
[60] and NaturalJava [53]. It is not much more than syntactic
sugar over the Java programming model and language. Not only
doesn’t it help in understanding the implementation, but it is
likely to be even worse for understanding a complex application,
because it’s a lot more verbose than the Java program. It misses
the point.

4.1.3 Something Else: Focus on the “Natural” Way
of Describing What We Want (version 3)
Finally consider this third version.

/**
 * encodeStream converts a given stream of
 * bytes into sounds.
 * @param input the stream of bytes to
 * encode
 * @param output the stream of audio
 * samples representing the input
 */
encodeStream(InputStream in,
 OutputStream out) {
 while there is data in in:
 read the first N bytes from it;
 perform encodeDuration on those bytes
 and write the result into out.

 if, however, after reading the input,
 the number of bytes read is less than N,
 then, before continuing, patch the
 resulting byte array of size N with
 zeros.

Let’s assume for a moment this language can be implemented as
is. The reader will probably agree that this version is the one that
most concisely describes the intent of the implementation. This
text could probably be easily implemented. What’s valuable in
this version is that it not only reads like English, but, moreover,
organizes the ideas in a “natural” way and without “distracting”
elements. The next section will analyze these points.

4.2 Analysis of the Target Language
Let’s analyze the program in version 3 and compare it to versions
1 and 2.

• Versions 1 and 2 dwell in details of handling temporary
variables; the last version doesn’t mention any variables.
o Instead of buff, it uses the natural dynamic binding

“those bytes,” which, according to standard English,
refers to the bytes mentioned in the previous sentence.

o Readindex is made redundant. This is because it was
only there in the first place to cope with the exceptional
case of when the input stream returns less bytes than
what we asked for.

• Version 3 makes use of a reflective element: “this last
operation.” We consider this to be a reflective element,
because it exposes knowledge about the underlying
execution of the program by mentioning “operation.”

• Most importantly, version 3 uses a subtly different
organization of ideas. Namely, it first states the normal cases
(i.e., we get the number of bytes we ask for out of the input
stream), and only afterwards states how to handle the special
case (i.e., we get less than what we ask for). In this case, the
binding of the special case sentence with the place in the
computational process where the special case might occur is
done with the expression “after reading the input stream.”

The third point must be carefully analyzed, because it embodies
what we think are the most novel contributions of this proposal
that can transform for the better the way people express ideas in
programming.

These sorts of bindings, called anaphora in linguistics, are
pervasive and perfectly natural when people speak and write
documents. They are also natural ways of thinking about
computational processes. However, existing programming
languages lack appropriate support for them.

Existing programming languages are based on the premise that
each statement, expression or function is a little “black box” that
relates to the rest of the program through an input-output
interface. This premise is made very clear in functional
programming languages that reduce everything, including other
languages’ constructs, to functions. As a consequence,
programmers are forced to stream their intentions into a series of
sequential steps aligned with this very narrow pipeline view of the
world.

So in this case, in the first two versions of the encodeStream
function, the test of whether the read of the input stream returned
less than expected is stated immediately after performing the read
operation. This splits an important semantic unit––the occurrence
and handling of the special case––in two statements whose
relation is loosely established by the variable readindex:

 while ((readindex = in.read(buff))
 == kBytesPerDuration) {
 out.write(Encoder.encodeDuration(buff));
 }
 if (readindex > 0) {
 for (int i=readindex;
 i < kBytesPerDuration;
 i++)
 buff[i] = 0;
 out.write(Encoder.encodeDuration(buff));
 }

As a consequence of this split, the write operation is repeated
twice in the program text, once in the loop and again in the
conditional that follows it. This is typical in existing programs,
and it’s extremely bad from an evolution point of view: when a
specification changes, programmers must find all these redundant
places and fix them by hand.

In this case, this redundancy could be avoided by using a do-
statement like this one:

do {
 if ((readindex = input.read(buff))
 < kBytesPerDuration)
 if (readindex > 0)
 for (int i=readindex;
 i < kBytesPerDuration;
 i++)
 buff[i] = 0;

 out.write(Encoder.encodeDuration(buff));
} while (readindex == kBytesPerDuration);

But in this case, the test of the value of readindex happens twice
in each iteration of the loop rather than once. Furthermore, this
organization emphasizes the special case: because of all those
tests in the beginning, we can hardly notice what the loop is
actually supposed to do most of the times. This is also typical and
also bad.

In this pipeline view of the world, there is no way of refining a
statement or expression or function at a later point in the program
text. Yet, this refinement happens pervasively in written
discourse. The existing programming languages have a very
shallow support for structural referencing and a complete lack of
support for temporal referencing.

In version 3, the test is stated as another sentence outside the
lexical scope of the loop where the read occurs. The binding
expression is “after reading the input stream”. We can evaluate
this expression unambiguously, in that we immediately
understand that this expression refers to a point in time that has
been established in the previous sentence “read … from the input
stream.” A programming language processor can also evaluate
this expression correctly, if we make it do it.

4.3 Placing this “Language” into Perspective
There are two aspects pertaining to referencing: what to refer to
and how to refer to it. This is, in fact, one of the most basic design
decisions of any programming language. Programming languages
have been highly biased in this decision. Here are some examples
of things that are referred to. In low-level assembly languages, the
what consists of registers and memory cells; in functional
languages, it consists of functions and variables; in OOP
languages, it consists of objects (very well-defined entities with a
precise form), fields, variables and, when inheritance is included,
classes. In typed languages, types are also part of what can be
referred to. The mechanisms to refer to things vary from the use
of syntactic forms to the explicit application of binding functions.

In contrast, Natural Languages have a much less well-defined set
of things that can be referred to. In fact, the best word to describe
what we can refer to is thing, which can be just about anything. It
can be the computer memory and registers, for example; or
functions and variables; or OOP’s objects and classes; or types.
But it goes way beyond these. It can be sets of things; it can be
points in time; it can be “the previous paragraph” and “all sections
of this paper.” However, Natural Languages aren’t as chaotic as it
seems. Things tend to fall into a small number of classes. They
can be structures, actions or time (many kinds of all of these).

The challenge in taking Natural Languages as the basis to
producing a programming language is to decide which things
should be referenceable in the context of computer programming,

given the wide range of application domains. We should keep in
mind that a naturalistic language should have an important
property of most modern programming languages: it should be
possible to construct abstractions on top of a relatively small
number of primitive abstractions. Ideally, each application
domain would build its own terminology and idioms, similar to
what happens with Java APIs and similar to Natural Languages’
dictionaries. What we propose here is that such primitive
abstractions should be inferred from wider ground of Linguistics,
rather than from computer engineering or mathematics or ad-hoc
models such as objects. We propose this based on the fact that
Natural Language comes before, and supports, all other domain-
specific formal languages.

On a pragmatic vein, one fact has been clearly exposed by the
wide adoption of Aspect-Oriented Programming: reflective and
temporal references are important elements in programming. It is
therefore logical to explore them even further. In our approach,
we go back to the original, and more general, AOP idea described
in [20]. For example, unlike AspectJ, statement-level anaphora,
such as the one presented in the working example in Section
4.1.3, should be considered.

A more profound difference is that the emphasis in AOP was put
on separation of aspects and components, and the reusability of
aspects by different components. That design feature came from
D and has proved to be very useful in practice, especially for
development aspects such as tracing and profiling that are later
removed from the final software product. However, because of
that emphasis, the binding mechanisms in AspectJ don’t use
context information that could naturally be used. For example,
expressions such as “the last operation” and “those bytes” “after
reading [in a certain context]” should be supported. The emphasis
should be the exploration of a variety of structural and temporal
anaphora, some of which are captured by AspectJ, but most of
which are not.

The anaphoric relations targeted here include not only intra-
module referencing but also inter-module referencing. This may
challenge the principle of modular programming. But, similar to
what happens in AOP, if breaking the principle proves to be
useful, then it means that the principle itself needs to be
reformulated.

4.4 What This “Language” Is Not
The languages we’re advocating are not for “end-user
programming” (see related work section 5.4). While we believe
that programs written in a naturalistic language will be more
readable to non-programmers, our goal is not primarily to enable
non-programmers to write computer programs. Nor is it for
“natural language programming,” an idea that has been around for
some decades and that has been instantiated occasionally (e.g.,
[55], [2], [42], [60], [53]). We don’t advocate implementing
English! The languages we are proposing are naturalistic, but not
natural. However, they will take their direction from the structure
and expressiveness of natural languages rather than from the
idealized models of traditional programming languages.

5. RELATED WORK
The ideas presented here have their roots in Aspect-Oriented
Programming and the lessons we’ve learned from it. However,

there are several fields of research, some of them considerably
more mature than AOP, to which we must pay special attention.

5.1 Anaphoric Relations and Binding Theory
Researchers in computational linguistics and natural language
processing have developed a sophisticated array of approaches to
some of the problems that we are addressing, in the forms in
which they occur in natural language. Anaphorical reference
within natural language is the domain of binding theory, which
draws its roots from Chomsky's pioneering work [8]. The problem
that binding theory addresses is how to relate anaphoric
expressions to their references; binding principles describe the
relative positions of anaphors and their admissible antecedents in
grammatical structure [4]. Chomsky's work proceeds from the
observation that the two primary forms of anaphora (pronouns
and anaphors, which are more complex referential expressions)
correspond to forms (WH-movement and NP-movement) of
syntactic movement. Alternative approaches to formal grammar,
such as Head-driven Phrase Structure Grammar (HPSG), Lexical-
Functional Grammar (LFG), or Categorial Unification Grammar
(CUG), also must incorporate alternative, non-transformational
(and less purely syntactic) accounts of anaphora (e.g., [51], [52],
[7]).

While this work is clearly relevant, dealing as it does with the
processing of richly expressive referential phrases of the sort that
we would like to exploit, it’s critical to recognize the difference
between the analysis of naturally-occurring language, such as
NLP must address, and the processing of restricted, formal, and
artificial languages of the sort that we aim to develop. While there
is much to learn from the natural handling of anaphoric reference,
the language that we seek to develop is naturalistic but not
natural. Therefore, our challenge is not to account for anaphora,
but to exploit it, which reduces the challenge considerably.

5.2 Temporal Logic Programming
Most programming models and languages lack mechanisms for
temporal reference. The notable exception is the work within the
community of logic programming and the language generally
associated with it, Prolog. Temporal logic programming has been
proposed to reason about hardware and software systems (e.g.,
[50]). It has been used in the specification (e.g., [18], [29]),
verification (e.g., [40], [46]), and synthesis (e.g., [12], [40]) of
concurrent systems, as well as in the synthesis of robot plans (e.g.,
[14]). For a survey on temporal and modal logic programming
languages, the reader may refer to [45].

While this work is relevant, its purpose is quite different from that
of the work proposed here. Logic programming, in general, and
temporal logic programming, in particular, focus on writing
programs upon which certain theorems can be proved. While
there are some lessons to be learned from formal specifications of
time-dependent symbols in temporal logic, the language we seek
to develop doesn’t attempt at being used for proving theorems
about the programs.

5.3 Cognitive Foundations of Programming
Languages
The question of the degree of expressiveness afforded by
programming languages, and the effectiveness of the notations in
which programs are expressed, has been a topic of research

investigation for some time. For example, studies in the
psychology of programming have explored a range of issues
including expert/novice differences in programming strategies
[59], mental imagery used by programmers in thinking about
programs [49], and the relationship of cognitive strategies to
language features [58].

The use of intelligent systems to support learning programming
languages has been the focus of a major research effort in the AI
in Education community. In particular, a significant body of
research, particularly arising in the UK, has investigated students’
understandings of Prolog programs ([3], [5], [6], [11]). Prolog is a
particularly interesting language to study, for a variety of reasons.
First, for programmers used to procedural or functional styles, the
declarative model that Prolog embodies can be a major challenge.
Second, Prolog, being based on a logical calculus, has a
superficial naturalism that can make it initially accessible to
novice programmers. Third, for those novice programmers,
Prolog rapidly becomes much more complex as the semantics of
more advanced features such as “cuts” requires them to
reconceptualize Prolog programs in terms of the sequential
organization of search rather than in terms of a purely declarative
formalism. These studies highlight the mutual influence of
programming language structure and conceptual understandings
on the part of its users.

One of the most influential analyses of the usability of
programming languages is Greene’s “cognitive dimensions”
framework for notations ([15], [17]). The cognitive dimensions
highlight the properties of notations in terms of the cognitive
activities that they support, and so illuminate the questions of how
and why notations “work” for particular sorts of tasks. For
example, the dimension of viscosity [16] refers to a notation’s
resistance to change, and more generally, the complexity of
making a single revision. A simple illustration of viscosity might
be the insertion of a clause, such as an if or a while, around a
block of code in a language that uses indentation to express
structure (as in Python or Occam.) In these languages,
encapsulating code inside a particular block involves changing the
indentation of each newly-enclosed line of code. The notational
device of using indentation to indicate block structure, then, has
greater viscosity than the more conventional practice of indicating
structure by using brackets. (However, the bracket approach may
reduce visibility – the at-a-glance readability of the notation.)
Greene and his collaborators have identified a range of relevant
cognitive dimensions of notations, including premature
commitment and role-expressiveness. The critical element of
Greene’s analysis is that it seems programs not simply as
specifications of computer behavior, but as artifacts that people
have to manipulate. It highlights the relationship between the
program and the act of programming. Likewise, our approach is
more concerned with expressiveness for the programmer rather
than expressiveness for the computer.

In an effort to develop programming representations that bridge
“the expressiveness gap,” Pane ([47], [48]) studied the natural
language descriptions of programming language tasks given by
non-programmers. Pane was particularly interested in children’s
use of programming languages, although his methods and perhaps
some of his findings apply more broadly. In an experimental
setting, he had people give descriptions of programmatic behavior
(in particular, the program for a Pacman-like game) and analyzed

the forms of description that people produced. His findings
pointed to a range of linguistic expressions by which people
would describe the program’s behavior, but which are poorly
supported in conventional programming languages. For example,
where people often produce complex grouping statements (such
as “all the red objects” or “the objects on this side of the screen”),
programming languages tend not to offer facilities for such
dynamic groups, requiring iterative testing instead. Pane then
went on to develop a programming language incorporating some
of these elements.

In addition to the empirical approach that characterizes Pane’s
work, we feel that a theoretical grounding will be important for
successfully developing this research. One promising and
intriguing approach that we are beginning to explore in some
preliminary work is the cognitive semantics perspective
developed by Lakoff and others ([24], [25], [26]). Lakoff is a
linguist and cognitive scientist whose work for many years has
focused on the relationship between linguistic practice and
cognitive capabilities. In particular, his studies of categorization
(how people define and use classifications and categories) and of
metaphor have begun to uncover a new way of understanding
cognition. The central claim of cognitive semantics is that
metaphor, rather than being a purely literary device, is in fact a
central element of cognitive function. Metaphors typically occur
not as individual elements of linguistic practice, but as entire
systems of metaphors that relate different areas of experience. For
example, the metaphor “LOVE IS A JOURNEY” reveals a
complex structural mapping between domains, in which lovers are
mapped to travelers, a relationship is mapped to a vehicle, shared
goals are mapped to destinations, etc., and which accounts for a
range of linguistic expressions such as “our relationship has hit a
dead end,” “I don’t think we’re going anywhere,” “we’re in high
gear,” “we were in the fast lane,” “we hit a bump,” “our
relationship is on the rocks,” etc. Through a series of detailed
analyses, researchers in cognitive semantics have detailed the
ways in which cognition is built upon a system of structural
mappings between domains, of which these expressions are
symptomatic. This applies not only to everyday cognition, but to
more complex and abstract domains of reasoning which they
demonstrate to be based through this metaphorical relation to
embodied physical experience. Domains of application have
included mathematics [28] and philosophy [27]. Our In some
preliminary work, we are is beginning to explore the metaphorical
structure of computer science, by analyzing the language used to
describe and express computational concepts. This research
suggests that the metaphorical model of cognition plays a strong
role in Computer Science just as it does in other areas of
reasining; metaphors of embodied experience such as
“ITERATION IS MOVEMENT” and “DATA STRUCTURES
ARE CONTAINERS” provide the foundation on which cognitive
understanding of computation is based. We anticipate that these
understandings will support the development of a language that is
appropriately matched to everyday cognition.

5.4 End-User Programming
Although it is not the focus of our work, end-user programming is
a related area of research because of its concern with forms of
expression. End-user programming is inspired by the dual
observations that, first, most software systems must be adapted by
users, to some extent, to fit into their actual work; and, second,

that although most people do not engage in programming in
traditional languages, they certainly are adept at using many
formal schemes. Nardi [43] discusses the use of such formal
representations as knitting patterns and baseball scoring systems,
and argues that there may be alternative formalisms which,
suitably embedded in practice, will allow end-users to customize,
program and adapt software systems; she cites the example of
spreadsheet programming as an example [44]. Lave [30] has
similarly observed that people who have difficulty with, say,
mathematics in learning situations nonetheless can perform
complex calculations in domains of everyday experience such as
comparison shopping, currency exchange or calculating gambling
odds.

One formalism that has been explored, especially in the area of
programming environments for children, is graphical rewrite
rules. KidSim [10] (subsequently called Cocoa and marketed as
Stagecast Creator) and AgentSheets [54] are both systems for
building interactive simulations based on graphical rule systems,
and both have been successful, albeit in limited areas. Others have
explored the use of Programming By Demonstration as a means to
specify the behavior of software systems ([9], [33]). Programming
by demonstration allows users to specify software systems
through concrete operations rather than abstract description;
however, the twin difficulties of generating appropriate
generalizations and of conveying potential future activity to users
have largely resulted in systems that are tightly coupled to
specific domains, which have limited the uptake of the approach.

These approaches suggest that, despite decades of research into
programming language design, there is still a great deal to learn
not just about languages, but about programming, and especially
about the relationship between the two. While those concerned
with domain-specific languages or end-user programming have
attempted to understand this relationship in order to make
programming available to new communities of users, we believe
that they are equally applicable to traditional programming
practice.

6. CONCLUSION
The main goal of this paper was to re-generate some discussion
around the role of Natural Languages in Programming Language
design, and we tried to give a solid frame for this discussion. We
believe this is an important topic for the problem of program
understanding. The “end units” of any program are not only the
microprocessors but also the human programmers. As such, it is
only logical to take a serious look at the main form of human
communication, namely Natural Languages. The power of
Natural Languages is not so much the syntax but the way they
allow us to organize ideas in “natural” ways. It is so much so that
Natural Languages are, in fact, the primitive support for all other
formal languages such as mathematical formalisms or
microprocessor instructions. In other words, everything that can
be expressed in those formal languages can be expressed in
English, and not the other way around. This expressive power of
Natural Languages is, to a great extent, supported by their
sophisticated referencing and binding mechanisms, and those are
precisely the focus of this paper.

We gave an informal example of a naturalistic programming
language and analyzed some of its properties. At this point, this

programming language is rather fuzzy, and many of the details
will need to be worked out.

Further work includes a careful look at Linguistics and the
existing models of Natural Languages. We will be looking for a
variety of anaphora such as (1) pronouns, e.g. this, that, it, those,
etc.; (2) object referents, e.g. the input stream, non-empty streams,
etc.; (3) temporal referents, e.g. last, first, after reading, before
encoding, etc.; (4) group referents, e.g. all, any; and (5) reflective
referents, e.g. iteration, loop, operation, etc. We hope this study
will give a solid framework for identifying primitive language
mechanisms upon which we can design powerful programming
languages that support not only a variety of programming models
but also, and more importantly, natural program organizations
within those models.

7. REFERENCES
[1] AspectJ Web site. http://aspectj.org
[2] Ballard, B. and Biemann, A. 1979. Programming in Natural

Language: NLC as a Prototype. Proc. ACM/CSC-ER Annual
Conference, 228-237.

[3] Bergantz, D., and Hassell, J. 1991. Information relationships
in PROLOG programs: how do programmers comprehend
functionality? Intl. Jnl. Man-Machine Studies, 35 (3), 313-
328.

[4] Branco, A. 2001 Without an Index: A Lexicalist Account of
Binding Theory. Proc. 8th Intl. HPSG Conference (Norway).

[5] Brna, P., Pain, H., and du Boulay, B. 1991. Teaching and
Learning Prolog: Supporting the Programmer. Instructional
Science, 20(2-3), 81-87.

[6] Brna, P., du Boulay, B. and Pain, H. 1999. Learning to
Build and Comprehend Complex Information Structures:
Prolog as a Case Study. Cognitive Science & Technology.
Ablex.

[7] Chierchia, G. 1988. Aspects of a categorial theory of
binding. In Oehrle, R., Bach, E. and Wheeler, D. (Eds),
Categorial Grammars and Natural Language Structures, D.
Reidel, Dordrecht. 125--151.

[8] Chomsky, N. 1973. Conditions on Transformations. In
Anderson, S. and Kiparsky, P. (Eds), A Festschrift for
Morriss Halle, 232-286. New York: Holt, Reinhart and
Winston.

[9] Cypher, A. (ed.) 1993. Watch What I Do: Programming by
Demonstration. Cambridge, MA: MIT Press.

[10] Cypher, A. and Smith, D. 1995. KidSim: End User
programming of Simulations. Proc. ACM Conf. Human
Factors in Computing Systems CHI’95 (Denver, CO). New
York: ACM.

[11] Duncan, D., Brna, P. and Morss, L. 1994. A Bayesian
Approach to Diagnosing Problems with Prolog Control
Flow. In Proceedings of the 4th International Conference on
User Modeling, (Cape Cod, MA).

[12] Emerson E. A., and Clark E. M. 1982. Using branching time
temporal logic to synthesize synchronization skeletons. Sci.
Comput. Prog. 2.

[13] Ernst, E. and Lorenz, D.H. Aspects and Polymorphism in
AspectJ. In Proceedings of the 2nd International Conference
on Aspect-Oriented Software Development, pages 150-157,
Boston, Massachusetts, March 17-21, 2003. AOSD 2003,
ACM.

[14] Georgeff, M. 1983. Communication and interaction in
multi-agent planning. In Proceedings of the American
Association for Artificial Intelligence. AAAI, Menlo Park,
Calif.

[15] Greene, T. 1989. Cognitive Dimensions of Notations. In
People and Computers V: Proceedings of HCI’89 (ed.
Sutcliffe and Macaulay), 443-460. Cambridge: Cambridge
University Press.

[16] Greene, T. 1990. The Cognitive Dimension of Viscosity: A
Sticky Problem for HCI. Proc. IFIP Conf. On Computer-
Human Interaction Interact’90.

[17] Greene, T. and Petre, M. 1996. Usability analysis of visual
programming environments: a 'cognitive dimensions'
framework. J. Visual Languages and Computing, 7, 131-174.

[18] Halpern, B., and Owicki, S. 1983. Modular verification of
computer communication protocols. IEEE Trans.
Communications COM-31.

[19] Kiczales, G., des Rivères J., Bobrow D. 1991. The Art of the
Metaobject Protocol. MIT Press.

[20] Kiczales, G., Lamping, J., Mendhekar, M., Maeda, C.,
Lopes, C., Loingtier, J-M and Irwin, J. Aspect-Oriented
Programming. In proc. European Conference on Object-
Oriented Programming (ECOOP'97). Springer-Verlag LNCS
n.1241. 1997.

[21] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.
and Griswold, W. 2001. An overview of AspectJ. In proc.
European Conference on Object-Oriented Programming
(ECOOP'01). Springer-Verlag LNCS n.2072.

[22] Kojarski, S., Lieberherr, K., Lorenz, D.H., and Hirschfeld, R.
Aspectual Reflection. In Proceedings of the AOSD 2003
Workshop on Software-engineering Properties of Languages
for Aspect Technologies, Boston, Massachusetts, AOSD
2003, March 17-21, 2003.

[23] Kojarski, S. and Lorenz, D.H. Unplugging Components
using Aspects. In Proceedings of the ECOOP 2003 Eighth
International Workshop on Component-Oriented
Programming. Darmstadt, Germany, July 21, 2003.

[24] Lakoff, G. 1987. Women, Fire, and Dangerous Things: What
Categories Reveal about the Mind. Chicago. University of
Chicago Press.

[25] Lakoff, G. 1993. The Contemporary Theory of Metaphor. In
Ortony, A. (ed), Metaphor and Thought (2nd ed). New York:
Cambridge University Press.

[26] Lakoff, G. and Johnson, M. 1980. Metaphors We Live By.
Chicago: University of Chicago Press.

[27] Lakoff, G., and Johnson, M. 1999. Philosophy in the Flesh:
The Embodied Mind and Its Challenge to Western Thought.
New York: Basic Books.

[28] Lakoff, G. and Nunez, R. 2000. Where Mathematics Comes
From: How the Embodied Mind Brings Mathematics Into
Being. New York: Basic Books.

[29] Lamport L. 1983. Specifying concurrent program modules.
ACM Trans. Programming Languages and Systems 5, 2.

[30] Lave, J. 1988. Cognition in Practice. Cambridge: Cambridge
University Press.

[31] Lieberherr, K., Lorenz, D.H., and Ovlinger, J. Aspectual
Collaborations: Combining Modules and Aspects. The
Computer Journal 46(5):542-565, September 2003.

[32] Lieberherr, K., Silva-Lepe, I., Xiao, C. Adaptive Object-
Oriented Programming Using Graph-Based Customization.
Communications of the ACM 37(5): 94-101. 1994.

[33] Lieberman, H. (ed.) 2001. Your Wish is My Command:
Programming by Example. San Francisco, CA: Morgan
Kaufmann.

[34] Lopes, C. and Lieberherr, K. 1994. Abstracting Function-to-
Process Relations in Concurrent Object-Oriented
Applications. In proc. European Conference on Object-
Oriented Programming (ECOOP'94). Springer-Verlag LNCS
821.

[35] Lopes, C., 1996. Adaptive Parameter Passing. In Proc.
International Symposium on Object Technologies for
Advanced Software (ISOTAS’96). Springer-Verlag LNCS
n.1049. Japan, 1996.

[36] Lopes, C. 1998. D: A Language Framework for Distributed
Programming. Ph.D. Thesis, College of Computer Science,
Northeastern University.

[37] Lopes, C. and Kiczales, G. 1998. Recent Developments in
AspectJ. In proc. of Aspect-Oriented Programming workshop
at ECOOP'98. Springer-Verlag LNCS n. 1543.

[38] Lopes, C. and Aguiar, P. 2003. Acoustic Modems for
Ubiquitous Computing. In IEEE Pervasive Computing,
Mobile and Ubiquitous Systems. Volume 2, Number 3,
July—September.

[39] Lorenz, D.H. and Vlissides, J. Pluggable Reflection:
Decoupling Meta-Interface and Implementation. In
Proceedings of the 25th International Conference on
Software Engineering, pages 3--13, Portland, Oregon May 3-
10, 2003. ICSE 2003, IEEE Computer Society.

[40] Manna Z., and Wolper P. 1984. Synthesis of communicating
processes from temporal logic specifications. ACM Trans.
Programming Languages and Systems 6, 1.

[41] Manna Z., and Pnueli A. 1984. Adequate proof principles for
invariance and liveness properties of concurrent programs.
Sci. Comput. Prog. 4, 3.

[42] Miller, L.A. 1981. Natural Language Programming: Styles,
Strategies, and Contrasts. IBM Systems Journal, 20(2), 184-
215.

[43] Nardi, B. 1993. A Small Matter of Programming:
Perspectives on End User Computing. Cambridge, MA: MIT
Press.

[44] Nardi, B. and Miller, J. 1991. Twinkling Lights and Nested
Loops: Distributed Problem Solving and Spreadsheet
Development. Intl. Jnl. Man-Machine Studies, 34, 161-184.

[45] Orgun, M. A. and Ma, W. 1994 An overview of temporal and
modal logic programming. In Temporal Logic. First
International Conference (ICTL'94), Lecture Notes in
Computer Science No 827, (GABBAY D M and OHLBACH
H J, Eds.), pp.445479, Springer Verlag, Bohn.

[46] Owicki, S. and Lamport L. 1982. Proving liveness properties
of concurrent programs. ACM Trans. Programming
Languages and Systems 4, 3.

[47] Pane, J., Ratanamahatana, C., and Myers, B. 2001. Studying
the Language and Structure in Non-Programmers’ Solutions
to Programming Problems. Intl. Jnl. Human-Computer
Systems, 54, 237-264.

[48] Pane, J., Myers, B., and Miller, B. 2002. Using HCI
Techniques to Design a More Usable Programming System.
Proc. IEEE Symp. Human-Centered Computing Languages
and Environments (Washington, D.C.), 198-206. Los
Alamitos, CA: IEEE Computer Society.

[49] Petre, M. and Blackwell, A. 1999. Mental Imagery in
Program Design and Visual Programming. Intl. Jnl. Human-
Computer Studies, 51(1), 7-30.

[50] Pnueli, A. 1981. The temporal semantics of concurrent
programs. Theoretical. Computer. Science 13.

[51] Pollard, C. and Sag, I. 1992. Anaphors in English and the
Scope of the Binding Theory. Linguistic Inquiry, 23, 261-
305.

[52] Pollard, C. and Sag, I. 1994. Head-Driven Phase Structure
Grammar. Chicago: University of Chicago Press.

[53] Price, D., Riloff E., Zachary J. and Harvey B. 2000.
NaturalJava: A Natural Language Interface for
Programming in Java. Proc. ACM Intelligent User Interfaces
Conference.

[54] Repenning, A. and Sumner, T. 1995. AgentSheets: A Medium
for Creating Domain-Oriented Visual Languages. IEEE
Computer, 28(3), 17-25.

[55] Sammet, J. 1966. The Use of English as a Programming
Language. Comm. ACM, 9(3), 228-230.

[56] Shonle, M., Lieberherr, K. and Shah, A. 2003. XAspects: An
Extensible System for Domain Specific Aspect Languages. In
Proc. Object-Oriented Programming Systems, Languages
and Applications (OOPSLA’03) Domain-Driven
Development track.

[57] Smith, B. 1982. Reflection and Semantics in a Procedural
Language. LCS Technical Report. MIT.

[58] Soloway, E., Bonar, J., and Ehrlich, K. 1989. Cognitive
Strategies and Looping Constructs: An Empirical Study. In
Soloway and Iyengar (eds), Empirical Studies of
Programmers, 23-251. Washington, DC: Ablex.

[59] Weidenbeck, S. 1985. Novice/Expert Differences in
Programming Skills. Intl. Jnl. Man-Machine Studies, 23(4),
383-390.

[60] Winkler, D., Kamins S. and DeVoto, J. 1994. Hypertalk 2.2:
The Book. Random House.

